патент
№ RU 2422467
МПК C08F2/00

ВОЛОКНООБРАЗУЮЩИЙ СОПОЛИМЕР АКРИЛОНИТРИЛА И СПОСОБ ЕГО ПОЛУЧЕНИЯ

Авторы:
Дуфлот Владимир Робертович Китаева Наталья Константиновна Касьянова Екатерина Александровна
Все (5)
Номер заявки
2009121094/04
Дата подачи заявки
03.06.2009
Опубликовано
27.06.2011
Страна
RU
Как управлять
интеллектуальной собственностью
Реферат

Изобретение относится к способу получения волокнообразующего полимера или сополимера акрилонитрила и волокнообразующего полимера или сополимеру акрилонитрила, полученному таким способом. Способ включает радиационную полимеризацию акрилонитрила или сополимеризацию акрилонитрила с сомономерами, выбранными из групп эфиров на основе акриловой и метакриловой кислоты, ненасыщенных карбоновых кислот, с долей сомономеров не более 20% в сополимере. Полимеризацию проводят в водно-дисперсионной среде, которая содержит катионоактивный или анионоактивный эмульгатор при соотношении мономерной и водной фазы в эмульсии от 5 к 95 до 20 к 80, при температуре от 5 до 60°С, при мощности дозы облучения от 0,02 до 0,2 Гр/с до степени конверсии мономеров от 80 до 95% с получением латекса с диаметром латексных частиц от 80 до 110 нм или агрегативно устойчивой дисперсии. Технический результат - разработка способа получения волокнообразующего высокомолекулярного полиакрилонитрила, являющегося предшественником углеродного волокна, с возможностью более простого способа регулирования молекулярной массы полиакрилонитрила до 1,5·106, с сохранением высокой скорости полимеризации (в течение нескольких часов), со степенью конверсии мономеров не менее 90%. 2 н. и 3 з.п. ф-лы, 1 табл.

Формула изобретения

1. Способ получения волокнообразующего полимера или сополимера акрилонитрила, включающий радиационную полимеризацию акрилонитрила или сополимеризацию акрилонитрила с сомономерами, выбранными из групп эфиров на основе акриловой и метакриловой кислоты, ненасыщенных карбоновых кислот, с долей сомономеров не более 20% в сополимере, отличающийся тем, что полимеризацию проводят в водно-дисперсионной среде, которая содержит катионоактивный или анионоактивный эмульгатор при соотношении мономерной и водной фазы в эмульсии от 5 к 95 до 20 к 80, при температуре от 5 до 60°С, при мощности дозы облучения от 0,02 до 0,2 Гр/с до степени конверсии мономеров от 80 до 95% с получением латекса с диаметром латексных частиц от 80 до 110 нм или агрегативно устойчивой дисперсии.

2. Способ по п.1, отличающийся тем, что в качестве сомономеров используют по крайне мере одно или более соединений выбранных из ряда: акриловой, метакриловой, итаконовой кислоты, метилакрилата, метилметакрилата, бутилакрилата, винилацетата.

3. Способ по п.1 или 2, отличающийся тем, что полимеризацию проводят при соотношении мономерной и водной фазы в эмульсии от 5 к 95 до 20 к 80, при температуре от 5 до 60°С, при мощности дозы облучения от 0,02 до 0,2 Гр/с до степени конверсии мономеров от 80 до 95%.

4. Способ по пп.1, или 2, или 3, отличающийся тем, что молекулярная масса сополимера регулируется соотношением мономерной и водной фазы и/или изменением мощности дозы радиационного излучения.

5. Волокнообразующий полимер или сополимер акрилонитрила с сомономерами, выбранными из групп эфиров на основе акриловой и метакриловой кислоты, ненасыщенных карбоновых кислот, полученный способом по п.1 из латекса с диаметром латексных частиц от 80 до 110 нм или агрегативно устойчивой дисперсии, со степенью конверсии мономеров не менее 90%.

Описание

[1]

Изобретение относится к технологии получения волокнообразующих полимеров на основе акрилонитрила. Более детально изобретение относится к технологии получения полиакрилонитрила как сырья для производства высокопрочных углеродных волокон и нетканого материала. Под термином «полиакрилонитрил» (ПАН) понимается как гомополимер акрилонитрила, так и его сополимер с долей сомономеров не более 20%. При этом прочность и структура полиакрилонитриль-ного волокна влияет на прочность и структуру получаемого из него углеродного волокна. Известно (С.П.Пашков. «Теоретические основы производства химических волокон», М.: Химия, 1990, с.61), что обязательным условием получения высокопрочных ПАН волокон является высокая степень ориентации макромолекул, которая возрастает с ростом молекулярной массы полимера. При термообработке ПАН волокна в углеродное наряду с реакциями конденсации протекают деструктивные процессы, прежде всего - деполимеризация. Их возможность обусловлена более слабой С-С связью в основной цепи по сравнению с прочностью связей в боковых звеньях и подтверждается идентификацией заметных количеств акрилонитрила в продуктах, выделяемых при термообработке ПАН волокна. Процесс деструкции полимерной цепи ПАН при его термообработке приводит к ухудшению свойств углеродного волокна и затрагивает в большей степени низкомолекулярную фракцию полиакрилонитрила. Низкомолекулярный полиакрилонитрил также может привести к пластификации полимера, снижению его температуры плавления и соответственно к падению прочности углеродного волокна. Поэтому для сохранения ориентированной структуры макромолекул ПАН большое значение приобретает высокая молекулярная масса полимера полиакрилонитрила. Увеличение молекулярной массы способствует росту кристаллитов в сформованном волокне, степени их ориентации и прочности волокна. Такие изменения в волокне могут быть следствием большой ассоциированности макромолекул в растворе, что, в конечном счете, приводит к более жестким условиям осаждения. Форма поперечного среза волокна меняется с круглой на бобовидную и на его поверхности появляются фибриллоподобный рельеф. Одновременно наблюдается рост прочности углеродного волокна (В.Я. Варшавский. «Углеродные волокна», Москва 2007, с.101). В Ru 2156839 показано, что если молекулярная масса полимера ПАН меньше 100 000, то ухудшаются качества формования и имеется тенденция ухудшения качества ПАН нити.

[2]

В промышленности полиакрилонитрил получают гетерогенной (в водных дисперсиях) или гомогенной (в растворе, в суспензиях, в твердой фазе) радикальной полимеризацией. Процессы синтеза гомо- и сополимеров акрилонитрила принципиально не различаются.

[3]

При гетерогенной полимеризации исходная реакционная смесь, содержащая 12-25% по массе акрилонитрила, представляет собой эмульсию, в которой капли акрилонитрила диспергированы в его водном растворе. Используют растворимые в воде инициирующие системы типа пероксодисульфат Fе(II)-пиросульфит Fe(II), но не применяют эмульгаторы. Полимеризация начинается в водном растворе и на поверхности капель акрилонитрила. Образующиеся и выпадающие в обеих фазах частицы полимера содержат захваченные и продолжающие рост макрорадикалы. Следствием этого являются самоускорение реакции (примерно до степени превращения 20%) и широкое ММР полимера. Для уменьшения разветвленности полиакрилонитрила полимеризацию заканчивают при степени конверсии 60-80%; полиакрилонитрил выделяют из суспензии (фильтрация, центрифугирование), промывают и сушат. В гомогенном процессе инициатором обычно служит 2,2'-азо-бис-изобутиронитрил. Скорость процесса и молекулярная масса полиакрилонитрила существенно зависят от природы растворителя. Так, продолжительность синтеза полиакрилонитрила в водных растворах ZnCl2 или роданида натрия, в ДМСО, ДМФА составляет соответственно 1,0-1,5 или 1,5-2,5 ч, 9-10 ч, 12-18 ч. Растворители тщательно очищают от примесей, вызывающих обрыв цепи. В ряде случаев в реакционную смесь вводят регуляторы роста цепи, например изопропиловый спирт при полимеризации в водном растворе роданида натрия. Для обеспечения высоких механических свойств волокон необходим полиакрилонитрил достаточно высокой молекулярной массы, обладающий малой разветвленностью макромолекул. С этой целью процесс проводят до степени конверсии мономеров не более 50-70%. Непрореагировавшие мономеры удаляют из раствора. По сравнению с гомогенной полимеризацией в гетерогенном процессе получают полиакрилонитрил более высокой молекулярной массы, при этом в более широком диапазоне можно варьировать составы сополимеров, создавать промышленные установки большей единичной мощности (Энциклопедия полимеров, т.1, М., 1972, с.40-50).

[4]

Наибольшее распространение получили процессы полимеризации в растворе и суспензии. Иногда используют полимеризацию в твердой фазе (В.Я.Варшавский. «Углеродные волокна», Москва, 2007, с.94).

[5]

Например, известна сополимеризация акрилонитрила в диметилсульфоксиде (в растворе). Соотношение компонентов: акрилонитрил 93%, метилакрилат 5,7%, итаконовая кислота 1,3%, при концентрации мономеров в смеси 30%. Вводимые добавки составляют (в % от массы мономеров): инициатор 0,8%, тонкодисперсная сажа 0,2%. Средневесовая молекулярная масса полимера составляет 80·103 (Ru 2122607). Известен способ получения волокнообразующих полимеров акрилонитрила путем полимеризации акрилонитрила или смеси его с винильными мономерами в водном растворе роданистого натрия в присутствии радикального инициатора 1,1-азо-бис(диметилэтиламин-2-оксим). Молекулярная масса полученного поли-акрилонитрила 1,56·106 г/моль. В качестве мономеров могут использоваться акрилонитрил, метилакрилат и итаконовая кислота (SU 927802). Известен способ получения волокнообразующих сополимеров акрилонитрила путем гомогенной сополимеризации акрилонитрила с другими винильными мономерами в водном растворе роданистого натрия в присутствии радикального инициатора и регулятора молекулярной массы диокситиомочевины (SU 519425). Известен способ получения высокомолекулярного полимера акрилонитрила для производства высокопрочного углеродного волокна (JP 4253708). Этот способ включает полимеризацию мономеров в растворе воды с органическим растворителем в присутствии передатчика цепи. Известен полимер акрилонитрила, имеющий изотактические триады и ультравысокую молекулярную массу до 8 000 000. Такой полимер может использоваться для производства высокопрочных волокон (JP 7216024).

[6]

Известно получение дисперсных частиц полиакрилонитрила размером 35-270 нм в водно-дисперсионной среде, используя инициатор персульфат калия и различные алкилсульфаты и сульфонаты как эмульгаторы («Synthesis and characterization of polyacrylonitrile nanoparticles by dispersion/emulsion polymerization process». Journal of Colloid and Interface Science, Volume 289, Issue 1, 1 September 2005, Pages 71-85).

[7]

Известна эмульсионная полимеризация акрилонитрила для получения синтетического волокна, включающая полимеризацию акрилонитрила, винилхлорида, в водно-дисперсионной среде, где в качестве инициатора используют персульфат аммония, и sodium hydrogen-sulfite, а в качестве эмульгатора натрия лаурилсульфат (US 4524193).

[8]

В этих известных способах в качестве инициаторов полимеризации используются вещественные инициаторы, поэтому нижний предел температуры процесса ограничивается температурой разложения инициатора и составляет примерно 60°С, что приводит к протеканию нежелательных процессов передачи цепи, разветвлениям и частичной сшивке полимеров. Для повышения молекулярной массы полимера ПАН необходимо понижать концентрацию инициатора, что приводит к уменьшению скорости полимеризации, что в свою очередь приводит к низкой эффективности процесса в промышленных масштабах. Например, при получении полиакрилонитрила с молекулярной массой 1,24·106, выход полимера составляет 20,9%, а скорость 17,47·10-4 моль/л·с (SU 927802). Для уменьшения разветвленности макромолекул полимеризацию проводят до конверсии мономеров не более 50-70%. Поэтому непрореагировавшие мономеры необходимо затем удалять.

[9]

Известны и способы радиационной полимеризации акрилонитрила (без использования вещественных инициаторов), например полимеризация в твердой фазе (GB 1108714). Известна радиационная полимеризации акрилонитрила в гомогенной смеси с глицерином, метиловым спиртом, толуолом. Молекулярная масса полученного полимера достигает 2·105 (GB 1134885). Известна радиационная полимеризация акрилонитрила в диметилсульфоксиде (полимеризация в растворе). Молекулярная масса полимера составляет 7,2·104 (GB 1337109). Однако эти способы обладают низкой производительностью получения полиакрилонитрила в промышленных масштабах.

[10]

Известен сополимер акрилонитрила, содержащий не менее 50% звеньев полиакрилонитрила для производства углеродного волокна, полученный методом радиационной полимеризации в твердой фазе (на безводном хлориде магния). Этот полимер содержит изотактические триады не менее 35% по отношению к доле всех триад, содержащихся в структурных акрилонитрильных цепях, скомплектованных из акрилонитрильных звеньев. Его молекулярная масса достигает 300 000. В качестве сомономеров используют соединения эфиров на основе акриловой кислоты с долей мономеров не более 20% в сополимере (WO 2004065434, TEIJIN LTD). Однако это сложный в технологическом использовании способ.

[11]

Известны различные способы получения ПАН и углеродного волокна из полимера акрилонитрила. В заявке JP 61-207622 отмечается, что ПАН волокна, сформированные из сополимеров акрилонитрила с ненасыщенными карбоновыми кислотами, с приведенной вязкостью 1,91; 2,3; 4,46 и 5,54 позволяют получать углеродное волокно с прочностью соответственно 3,83; 4,67; 4,98 и 5,03 ГПа. В US 4913870 раскрыт способ получения высокопрочного ПАН волокна с пределом прочности 1,2-2 ГПа и модулем 16-25 ГПа, полученного из раствора полиакрилонитрила с молекулярной массой около 5·105. В данном решении показано, что с ростом молекулярной массы полимера при формировании нити через гель растет прочность и модуль получаемого из него волокна. В US 5004590 раскрыт способ получения углеродного волокна с модулем до 345 ГПа и прочностью до 6,2 ГПа, полученного из исходного сополимера, состоящего из 98% акрилонитрила и 2% метакриловой кислоты. В US 6638615 раскрыт способ получения углеродного волокна с модулем до 240 ГПа и прочностью до 5,2 ГПа, полученного из исходного сополимера, состоящего из 99,4% акрилонитрила и 0,6% метакриловой кислоты. Необходимость получения сополимеров полиакрилонитрила обусловлена тем, что введение в молекулярную цепь звеньев сомономеров в количестве 2-15% позволяет сократить продолжительность и температуру термообработки при получении из ПАН волокон углеродных волокон. Присутствие звеньев сомономеров оказывает заметное влияние как на структуру и свойства ПАН волокна, так и на особенности его превращения в углеродное волокно. Так присутствие сомономерных звеньев нарушает регулярность структуры макромолекулы и поэтому изменяет внутри- и межмолекулярное взаимодействие нитрильных групп. В этих условиях затрудняется регулярная упаковка молекул и увеличивается доля неупорядоченных участков в структуре полимера ПАН. Соответственно улучшается его растворимость и снижается температура плавления. В качестве наиболее часто применяемых сомономеров полиакрилонитрила используют следующие соединения: эфиры акриловой и метакриловой кислоты, такие как метилакрилат, метилметакрилат, бутилакрилат, винилацетат; ненасыщенные карбоновые кислоты, такие как акриловая, метакриловая, малеиновая, итаконовая кислота.

[12]

Задачей данного изобретения является разработка способа получения волокнообразующего высокомолекулярного полиакрилонитрила, являющегося предшественником углеродного волокна, с возможностью более простого способа регулирования молекулярной массы полиакрилонитрила до 1,5-106 с сохранением высокой скорости полимеризации (в течение нескольких часов), со степенью конверсии мономеров не менее 90%. При этом полиакрилонитрил не должен содержать примесей (остатков инициатора, ионов металлов и проч.). Такая степень конверсии делает полимер более «чистым» от неиспользуемых мономеров и приводит к экономии сырья. Под термином «полиакрилонитрил» (ПАН) в данном изобретении понимается как гомополимер акрилонитрила, так и его сополимер с сомономерами, выбранными из групп, содержащих соединения эфиров на основе акриловой и метакриловой кислоты, ненасыщенные карбоновые кислоты, с долей сомономеров не более 20% в сополимере. Из такого сополимера известными способами можно получать ПАН волокно с прочностью более 1,5 ГПа (150 кгс/мм2), что будет, в свою очередь, соответствовать прочности, получаемого из него известными способами, углеродного волокна, более 5,0 ГПа.

[13]

Поставленная задача достигается тем, что способ получения волокнообразующего высокомолекулярного полиакрилонитрила, включает радиационную полимеризацию акрилонитрила или сополимеризацию акрилонитрила с сомономерами в водно-дисперсионной среде, которая содержит катионоактивный или анионоактивный эмульгатор. В качестве сомономеров используют соединения эфиров на основе акриловой и метакриловой кислоты, ненасыщенные карбоновые кислоты, с долей сомономеров не более 20% в сополимере, например акриловую, метакриловою и итаконовую кислоту, метилакрилат, метилметакрилат, бутилакрилат, винилацетат. Регулирование молекулярной массы полимера в процессе полимеризации акрилонитрила осуществляют путем изменения соотношения мономерной и водной фазы в эмульсии и/или изменением мощности дозы радиационного излучения. Использование радиационного инициирования полимеризации в водно-дисперсионной среде позволяет проводить полимеризацию за несколько часов (от 3 до 6 часов) с получением полимера ПАН с молекулярной массой до 1,5-106 и со степенью конверсии не менее 90%. При этом образуется либо латекс полимера по-лиакрилонитрила с диаметром латексных частиц от 80 до 110 нм, либо агрегативно устойчивая дисперсия. Наиболее предпочтительным способом по данному изобретению является способ радиационной полимеризации при соотношении мономерной и водной фазы в эмульсии от 5 к 95 до 20 к 80, при температуре от 5 до 60°С, до степени конверсии мономеров от 80 до 95%, при мощности дозы облучения от 0,02 до 0,2 Гр/с.

[14]

Предлагаемое изобретение реализуется в следующих примерах.

[15]

Пример 1.

[16]

В реактор-полимеризатор емкостью 2,5 литра загружают 1840 г 0,01%-ного водного раствора анионактивного эмульгатора Е-30 (смесь линейных алкилсульфонатов общей формулы R-SO3Na, где R соответствует углеводородной цепи со средней длиной C15), 160 г акрилонитрила и 4 г итаконовой кислоты (соотношение мономерной и водной фазы в эмульсии 8 к 92), продувают азотом и при температуре 25-30°С облучают гамма-излучением Со60 в течение 4 часов при мощности дозы 0,08 Гр/с. В результате сополимеризации получают латекс со средним диаметром латексных частиц 83 нм, степень конверсии составляет 94%. Полученный сополимер имеет характеристическую вязкость 3,7 дл/г и молекулярную массу 4,2·105.

[17]

Пример 2.

[18]

Сополимеризацию ведут по примеру 1 при температуре полимеризации 50°С. Сополимер представляет собой седиментационную неустойчивую и агрегативно устойчивую дисперсию, степень конверсии 94%. Полученный сополимер имеет характеристическую вязкость 3,6 дл/г и молекулярную массу 4,0·105.

[19]

Пример 3.

[20]

В реактор-полимеризатор емкостью 2,5 литра загружают 1760 г 0,2%-ного водного раствора анионактивного эмульгатора Е-30, 240 г акрилонитрила и 6 г итаконовой кислоты (соотношение мономерной и водной фазы в эмульсии 12 к 88), продувают азотом и при температуре 25-30°С облучают гамма-излучением Со60 в течение 5 часов при мощности дозы 0,08 Гр/с. В результате сополимеризации получают латекс, со средним диаметром латексных частиц 92 нм, степень конверсии 95%. Полученный сополимер имеет характеристическую вязкость 6,4 дл/г и молекулярную массу 8,8·105.

[21]

Пример 4.

[22]

В реактор-полимеризатор емкостью 2,5 литра загружают 1760 г 0,02%-ного водного раствора анионактивного эмульгатора Е-30, 240 г акрилонитрила и 6 г итаконовой кислоты (соотношение мономерной и водной фазы в эмульсии 2 к 88), продувают азотом и при температуре 50-55°С облучают гамма-излучением Со60 в течение 5 часов при мощности дозы 0,08 Гр/с. В результате сополимеризации получают седиментационно неустойчивую дисперсию, степень конверсии 94%. Полученный сополимер имеет характеристическую вязкость 5,4 дл/г и молекулярную массу 7,0·105.

[23]

Пример 5.

[24]

В реактор-полимеризатор емкостью 2,5 литра загружают 1680 г 0,2%-ного водного раствора анионактивного эмульгатора Е-30, 320 г акрилонитрила и 8 г итаконовой кислоты (соотношение мономерной и водной фазы в эмульсии 16 к 84), продувают азотом и при температуре 25-30°С облучают гамма-излучением Со60 в течение 5 часов при мощности дозы 0,08 Гр/с. В результате сополимеризации получают латекс со средним диаметром латексных частиц 110 нм, степень конверсии 93%. Полученный сополимер имеет характеристическую вязкость 6,3 дл/г и молекулярную массу 8,6·105.

[25]

Пример 6.

[26]

В реактор-полимеризатор емкостью 10 литров загружают 5 кг 0,1%-ного водного раствора анионактивного эмульгатора Е-30, 1200 г акрилонитрила, 40 г мети-лакрилата и 25 г итаконовой кислоты (соотношение мономерной и водной фазы в эмульсии 20 к 80), продувают азотом и при температуре 40-50°С облучают гамма-излучением Со60 в течение 6 часов при мощности дозы 0,024 Гр/с. В результате сополимеризации получают седиментационно неустойчивую дисперсию, степень конверсии 92%. Полученный сополимер имеет характеристическую вязкость 9,0 дл/г и молекулярную массу 14,2·105.

[27]

Пример 7.

[28]

В реактор-полимеризатор емкостью 0,5 литра загружают 300 г 0,5%-ного водного раствора катионоактивного эмульгатора катамина АБ, 32 г акрилонитрила и 0,8 г и итаконовой кислоты (соотношение мономерной и водной фазы в эмульсии 10 к 90), продувают азотом и при температуре 25-30°С облучают гамма-излучением Со60 в течение 3,5 часов при мощности дозы 0,08 Гр/с. В результате сополимеризации получают агрегативно устойчивую дисперсию, степень конверсии 95%. Полученный сополимер имеет характеристическую вязкость 4,9 дл/г и молекулярную массу 5,9-106.

[29]

Примеры 8-14 представлены в таблице и показывают влияние параметров процесса гомополимеризации акрилонитрила на молекулярную массу гомополимера.

[30]

Полимер из дисперсии выделяют известными способами: распылительной сушкой, коагуляцией с последующей фильтрацией и сушкой.

[31]

№ примераСодержание акрилонитрила в эмульсии, %Е-30 [%]Т, °СМощность
дозы, Гр/с
Доза, ГрСтепень конвер
сии
Вязкость, η дл/гМолекулярная масса·10-5
85,70,055-150,173060973,43,7
95,70,0540-500,171830924,65,3
105,00,0520-250,058626923,53,8
117,50,0520-250,058626924,25,0
1210,00,0520-250,058626926,18,2
1312,50,0540-500,058626927,611,0
14200,140-500,05810 0009311,018,5

Как компенсировать расходы
на инновационную разработку
Похожие патенты