Использование: углехимическая и нефтеперерабатывающая отрасли промышленности. Крекинг и гидрогенизацию исходного сырья
в присутствии водорододонорного растворителя осуществляют в условиях нестационарного течения двухфазной системы "исходное сырье - водорододонорный растворитель" в реакционном роторном аппарате с
модуляцией (прерыванием) потока. В качестве водорододонорного растворителя используют воду и смесь фракции с температурой кипения 35-100oС с рециркулирующим остатком после фракционирования
с температурой кипения 450-600oС и застывающим при 20oС. Проведение способа позволяет упростить технологию процесса, повысить выход жидких продуктов лучшего качества, которые
можно использовать в качестве моторного топлива. 1 ил.
Способ получения жидких углеводородов из
твердого топлива путем термомеханического крекинга и гидрогенизации, отличающийся тем, что термомеханический крекинг и гидрогенизацию осуществляют в условиях нестационарного течения - в реакционных
роторных аппаратах с модуляцией (прерыванием) потока обрабатываемой среды - двухфазной системы "исходное сырье - водорододонорный растворитель", при этом в качестве водорододонорного растворителя
используют воду и смесь фракции с пределом кипения 35-110oС с рециркулирующим остатком после фракционирования с температурой застывания 20oС, имеющим пределы кипения 450-600oС.
Изобретение
относится к способам получения жидких углеводородов из твердого топлива (торф, горючие сланцы, лигниты, бурые и каменные угли) и углеродистого материала промышленных отходов (отходы углеобогащения,
нефтепереработки, лигнины, пластические массы, резины и др.) и может быть использовано в углехимической и нефтеперерабатывающей отраслях промышленности. Известные способы
термохимической переработки угля - ожижение заключаются в проведении процесса гидрогенизации и крекинга с использованием различных водорододонорных растворителей и катализаторов путем нагрева под
давлением. Известен, например, способ гидрогенизации угля под давлением водорода 50-100 атм с органическим растворителем и катализатором гидрирования, содержащим Мо и Fe, при
температуре 400-425oС (SU авт.св. 355867, кл. C 10 G 1/06). Известен способ сжижения угля в присутствии атомарного водорода, образующегося при воздействии ультразвука на
молекулярный водород (JP патент 58-35247, кл. С 10 G 1/06). Известно использование в качестве водорододонорного растворителя легкой углеводородной фракции, выделенной из полученных
продуктов гидрогенизации угля и имеющей точку кипения в интервале 35-200oС (GB заявка 2085913, кл. C 10 G 1/06, 1982). Известен способ превращения угля в жидкие продукты
путем смешивания угля с растворителем, являющимся смесью термически стабильных гидроароматических углеводородов при повышенном давлении и температуре (US патент 4081351, кл. 208-8, 1978). Известен способ термомеханического крекинга и гидрогенизации угля, который требует высокой температуры и высокого давления для его осуществления (US патент 4250015, 1981). К
недостаткам этих известных способов относится многостадийность, сложность технологии, связанная с необходимостью использования специфических катализаторов, применением высоких температур и давления,
значительная энергоемкость и повышенная себестоимость получаемых продуктов. Наиболее близким по технической сущности к предлагаемому способу является способ термомеханического крекинга
и гидрогенизации углеводородов в присутствии высвобождающих водород химикалий, осуществляемый в механически установленном псевдоожиженном слое тонко измельченных частиц. При этом механическое
воздействие в псевдоожиженном слое генерирует тепло, участвующее в крекинге в дополнение к механическому воздействию на вещество, вследствие чего крекинг в кавитационных микропузырьках и
гидрогенизацию осуществляют в реакторе с общими температурой и давлением более низкими, чем в других известных процессах крекинга и гидрогенизации (RU патент 2131903, кл. C 10 G 1/06, 47/30, 1995). К недостаткам этого способа относится слабое воздействие фрикционных растирающих элементов, в частности стальных шаров, на твердые частицы углеродистого материала для их ультратонкого
измельчения, что приводит к неполному раскрытию зерен углеродистого материала и, как следствие, неполному вовлечению углерода в процесс гидрогенизации и недостаточно высокому выходу требуемых фракций
продуктов ожижения. Другим недостатком известного способа является необходимость использования значительного объема воды для высвобождения требуемого количества водорода, участвующего
в гидрогенизации, достаточно высокое содержание пара в продуктах крекинга и, как следствие, значительное наличие воды в легких фракциях продукта. Задачей изобретения является создание
способа, позволяющего интенсифицировать процесс ультратонкого измельчения твердых частиц обрабатываемого материала и тепломассообменные процессы в условиях кавитационного режима течения обрабатываемой
среды, повысить выход бензиновой фракции с температурой кипения 100-200oС и дизельной фракции с температурой кипения 200-450oС. Поставленная задача решается
предложенным способом, в котором жидкие углеводороды получают из твердого топлива и углеродистого материала термомеханическим крекингом и гидрогенизацией углерода в условиях нестационарного течения
двухфазной системы "исходное сырье - водорододонорный растворитель". При этом в качестве реакционного аппарата используют аппараты с прерыванием обрабатываемой среды и, в частности,
наиболее эффектные из них роторные аппараты с модуляцией (прерыванием) потока. В качестве водорододонорного растворителя используют воду и смесь фракции с пределом кипения 35-100oС с рециркулирующим остатком после фракционирования с температурой застывания 20oС и имеющим пределы кипения 450-600oС. Устройство и принцип работы
реакционных роторных аппаратов с модуляцией (прерыванием) потока обрабатываемой среды позволяют воздействовать на последнюю таким мощным интенсифицирующим фактором, как кавитация.
Кавитация является сложным нестационарным гидромеханическим процессом, сопровождаемым вторичными физико-химическими процессами, такими, как люминесценция, искрообразование; ударные волны давления,
скорости и температуры; микропотоки и кумулятивные микроструйки; нагревание и ионизация газа в кавитационном пузырьке. Такое обилие вторичных эффектов позволяет успешно использовать
кавитацию в процессе крекинга и гидрогенизации. Возникновение и развитие кавитации в порах, трещинах и межзерновых пространствах твердых частиц способствует их интенсивному разрушению.
Давление, генерируемое захлопывающимися кавитационными пузырьками, достигает величин порядка 108 Па. Это обеспечивает достаточно высокую степень измельчения, рост удельной поверхности
твердых частиц и их реакционную способность. Ускорение процесса происходит благодаря дискретному распределению энергии в большом числе малых объемов (центров кавитации). В этом случае энергия
концентрируется в объемах порядка размеров кавитационных пузырьков (0,001-0,01 мм), что резко интенсифицирует процесс. Отличительной особенностью работы роторного аппарата с модуляцией
(прерыванием) потока является то, что кавитация и многочисленные кавитационные вторичные эффекты возникают в сильно турбулизированной среде: частицы дисперсной фазы, движущиеся с большими скоростями,
подвергаются, кроме того, воздействию огромных ускорений, достигающих 105 м/с2, что на четыре порядка превышает ускорение свободного падения g. Сдвиговые напряжения и колебания
дополняют перечень интенсифицирующих факторов, благоприятно влияющих на процесс термохимического разложения воды с образованием атомарного водорода и крекинговые процессы, в которых тяжелые
углеводороды и радикалы разбиваются на более мелкие, низкокипящие молекулы. Способ осуществляется по схеме, представленной на чертеже, следующим образом. Измельченное
предварительно твердое исходное сырье по линии 1 вместе с водой по линии 15, фракцией, кипящей при 35-100oС, по линии 11 и рециркулирующим остатком с температурой застывания 20oС
и кипящим при 450-600oС по линии 14 подают в смеситель 2. Приготовленную суспензию по линии 3 подают в реакционный аппарат 4 на термомеханический крекинг и гидрогенизацию. Твердые частицы,
включая золу, по линии 5 поступают в накопитель (не показано). Продукты реакции по линии 6 подают в сепаратор 7, в котором отделяют твердые частицы, включая золу, отводимые в накопитель по линии 8.
Далее, очищенные продукты реакции по линии 9 отводят в ректификационную колонну 10, из которой по линии 11 отводят в смеситель 2 фракцию, кипящую при 35-100oС, по линии 12 - бензиновую
фракцию, кипящую при 100-200oС, по линии 13 - дизельную фракцию с температурой кипения 200-450oС и по линии 14 - фракцию, кипящую при 450-600oС, затвердевающую при
20oС, часть которой подают в смеситель 2. Пример 1. Сырой торф влажностью 80% с содержанием углерода 49% на абсолютно сухое вещество и водорододонорный
растворитель непрерывно подают через шнековый смеситель в роторный реактор с частотой вращения ротора 2500 об./мин на переработку. В рабочей камере ротора в результате кавитационных процессов
происходят реакции механического разрушения твердых частиц, торфа, термохимического выделения водорода из воды и соединения (гидрогенизации) углерода с водородом. На выходе из реактора получают
газообразную углеводородную смесь с температурой более 350oС, которую после сепарирования направляют на разделение и фракционирование. Выход жидких продуктов средних фракций 160-400oС составляет 17% от исходной массы торца. В качестве водорододонорного растворителя используют воду и смесь фракции с пределом кипения 35-100oС с рециркулирующим
остатком после фракционирования с температурой застывания 20oС и имеющим пределы кипения 450-600oС. Пример 2. Способ проводят по примеру 1.
Используют бурый уголь влажностью 55% с содержанием углерода 72% на абсолютно сухое вещество и добавлением в шнековый смеситель воды для получения влажности угля около 80%. Выход жидких углеводородных
продуктов средних фракций 160-400oС составляет 22% от исходной массы угля.