патент
№ RU 2135924
МПК F41A23/00

ЗЕНИТНАЯ САМОХОДНАЯ УСТАНОВКА

Авторы:
Шипунов А.Г. Поваров В.А. Давыдов А.М.
Все (7)
Номер заявки
98118362/02
Дата подачи заявки
07.10.1998
Опубликовано
27.08.1999
Страна
RU
Как управлять
интеллектуальной собственностью
Чертежи 
1
Реферат

[19]

Изобретение относится к области вооружения и может быть использовано в войсках противовоздушной обороны. Технический результат - повышение помехозащищенности канала визирования ракеты. В состав зенитной самоходной установки входит башенная установка с пушечным и ракетным вооружением, радиолокационная станция сопровождения целей, оптический прицел и цифровая вычислительная система. Повышение помехозащищенности канала визирования ракеты достигается путем введения импульсного оптического ответчика и импульсного оптического канала визирования ракеты, состоящего из блока выделения координат и устройства съема координат, выход которого соединен с входом цифровой вычислительной системы, при этом импульсный оптический ответчик установлен на ракете, а устройство съема координат и блок выделения координат ракеты размещены в башенной установке. 2 ил.

Формула изобретения

Зенитная самоходная установка, содержащая башенную установку с пушечным и ракетным вооружением, радиолокационную станцию сопровождения целей, оптический прицел и цифровую вычислительную систему, отличающаяся тем, что в нее введены импульсный оптический ответчик и импульсный оптический канал визирования ракеты, состоящий из блока выделения координат и устройства съема координат, выход которого соединен с входом цифровой вычислительной системы, при этом импульсный оптический ответчик установлен на ракете, а устройство съема координат и блок выделения координат ракеты размещены в башенной установке.

Описание

[1]

Изобретение относится к области вооружения и может быть использовано в войсках противовоздушной обороны.

[2]

Известно, что средства воздушного нападения (СВН) постоянно совершенствуются в направлении оснащения самолетов и вертолетов средствами радиоэлектронного и оптического противодействия, применения малоразмерных беспилотных и пилотируемых СВН, оснащенных новейшей радиоэлектронной аппаратурой разведки, подавления каналов сопровождения цели и визирования ракеты. Все это предъявляет постоянно растущие требования к средствам противовоздушной обороны.

[3]

Известны зарубежные пушечные комплексы типа "Гепард" (Германия), а также ракетные комплексы типа "Роланд" (Германия, Франция) с радиолокационными и оптическими каналами сопровождения цели и визирования ракеты. Основным недостатком этих комплексов является то, что они имеют только один вид вооружения, а этого недостаточно для эффективной борьбы с массированными налетами СВН. Известен также отечественный комплекс "Тунгуска". В боевой машине (БМ) комплекса "Тунгуска" реализована идея объединения двух видов вооружения - ракетного и пушечного. Комплекс "Тунгуска" и его модификация "Тунгуска-М" находятся на вооружении Российской Армии.

[4]

Наиболее близкой по технической сущности к заявленному изобретению является БМ комплекса "Тунгуска-М" (1).

[5]

Боевая машина комплекса "Тунгуска-М" содержит самоходное шасси, башенную установку с пушечным и ракетным вооружением, приводы вооружения, радиолокационную станцию обнаружения целей (СОЦ), радиолокационную станцию сопровождения целей (ССЦ), оптический прицел (ОП) с приводами наведения и стабилизации, аппаратуру выделения координат (АВК) ракеты и цифровую вычислительную систему (ЦВС).

[6]

Боевая работа происходит следующим образом:
станция обнаружения целей осуществляет круговой обзор пространства, при появлении "чужой" отметки от цели на экране кругового обзора, оператор совмещает маркер целеуказания с отметкой от цели, при этом ЦВС вырабатывает сигналы управления по азимуту и дальности и передает их на приводы наведения и стабилизации и на систему измерения дальности радиолокационной станции сопровождения цели. После захвата цели и взятия ее на автосопровождение, ЦВС вырабатывает сигналы, которые поступают в систему наведения и стабилизации оптического прицела для обеспечения подслеживания ОП за антенной ССЦ. В этом случае в зависимости от помеховой обстановки, возможен переход на сопровождение цели по угловым координатам оптическим прицелом. При этом с выхода датчика команд снимаются сигналы, пропорциональные угловым координатам цели, которые поступают в ЦВС. После входа цели в зону поражения зенитной управляемой ракеты (ЗУР) производится пуск ЗУР. При попадании факела двигателя, а после отделения двигателя - трассера ракеты в поле зрения АВК, в АВК вырабатываются сигналы о захвате ракеты, пропорциональные угловым координатам ракеты относительно линии визирования оптического прицела, которые поступают в ЦВС, а из ЦВС - в шифратор команд управления, где кодируются и через передатчик ССЦ передаются на борт ракеты. На ракете сигналы управления декодируются и преобразовываются в сигналы управления рулями ракеты и ракета выводится на линию визирования цели. В процессе всего времени полета ракеты марка ОП должна удерживаться на цели независимо от положения ракеты в поле зрения оптического прицела. После захвата АВК ракеты ЦВС вырабатывает сигналы управления антенной ССЦ, обеспечивая ее наведение на цель. При подлете ракеты к цели на расстояние 1000 м с ЦВС на ракету передается команда на взведение боевой части и включение неконтактного датчика цели (НДЦ). НДЦ вырабатывает сигнал на подрыв боевой части (БЧ) ракеты. При попадании ракеты в цель срабатывает контактный взрыватель, детонирующий боевую часть, вызывая тем самым ее подрыв.

[7]

Недостатком ЗСУ комплекса "Тунгуска-М" является низкая помехозащищенность оптического канала визирования ракеты.

[8]

Задачей предлагаемого изобретения является устранение вышеуказанного недостатка.

[9]

Поставленная задача достигается тем, что в ЗСУ, содержащей башенную установку с пушечным и ракетным вооружением, РЛС сопровождения, оптическим прицелом и цифровой вычислительной системой введены импульсный оптический ответчик и импульсный оптический канал визирования ракеты, состоящий из блока выделения координат и устройства съема координат, выход которого соединен с входом цифровой вычислительной системы, при этом импульсный оптический ответчик установлен на ракете, а устройство съема координат и блок выделения координат ракеты размещены в башенной установке.

[10]

Импульсный оптический ответчик, представляющий собой емкостной накопитель и собственно лампу-фару, на каждый тактовый импульс команды управления формирует световые импульсы, используемые импульсным оптическим каналом визирования ракеты для измерения ее угловых координат.

[11]

На чертеже приведена функциональная схема импульсного оптического канала визирования ракеты.

[12]

Импульсный оптический канал визирования ракеты конструктивно состоит из двух блоков:
оптико-электронного устройства съема координат (УСК) (фиг.1) 1 и электронного блока выделения координат (БВК) (фиг.2) 2. Отличительной особенностью УСК является применение четырехгранной зеркальной пирамиды 3. Световой поток через куб-призму 4, светоразделительную пластину 5, объектив 6 и плоскопараллельные пластины 7 попадает на грани зеркальной пирамиды 3. Отразившись, световой поток поступает на четыре приемника 8 в соотношениях, определяемых величиной и направлением смещения сигналов импульсного оптического ответчика, относительно оси четырехгранной зеркальной пирамиды 3. Приемники 8 формируют сигналы (П - право, Л - лево, В - верх, Н - низ), пропорциональные перехваченному световому потоку излучения импульсного оптического ответчика, которые поступают на четырехканальное фотоприемное устройство (ФПУ) 9. Для формирования пеленгационной характеристики сигналы в ФПУ попарно суммируются и усиливаются. Сигналы с выхода ФПУ поступают на блоки формирователей 10, которые управляются импульсными сигналами, вырабатываемыми блоком стробирования 11 и обеспечивающими стробирование, считывание и запоминание информации. С выходов формирователей сигналы В, Н, П, Л поступают в блок управления 12, где формируются сигналы по углу места (ε) и по азимуту (β) в результате вычитания сигналов В и Н, П и Л соответственно. Сигналы ε и β характеризуют величину углового смещения импульсного оптического ответчика относительно оси импульсного оптического канала визирования ракеты в двух взаимно перпендикулярных плоскостях. С выхода блока управления 12 сигналы ε и β поступают на усилители мощности 13 и далее - на привода плоскопараллельных пластин УСК. Приводы 14, 15 поворачивая плоско-параллельные пластины совмещают сигналы импульсного оптического ответчика с осью четырехгранной зеркальной пирамиды, направляя тем самым ось импульсного оптического канала визирования ракеты на импульсный оптический ответчик, осуществляя режим сопровождения. Сигналы с датчиков углов поворота 16, 17 плоскопараллельных пластин, пропорциональные угловым координатам импульсного оптического ответчика, поступают в ЦВС 18.

[13]

Боевая работа ЗСУ происходит аналогично работе ЗСУ "Тунгуска-М", за исключением того, что после отделения двигательной установки импульсный оптический канал визирования ракеты работает по импульсам бортового оптического ответчика.

[14]

Помехозащищенность импульсного оптического канала визирования ракеты обеспечивается за счет стробирования канала на время приема импульсов от бортового оптического ответчика на определенном участке дальности (текущая дальность до ракеты - баллистическая).

[15]

Таким образом, введение в состав ЗСУ импульсного оптического ответчика и импульсного оптического канала визирования ракеты обеспечивает более высокую помехозащищенность канала визирования ракеты, повышая тем самым боевую эффективность ЗСУ в 1,2 - 1,3 раза по сравнению с ЗСУ "Тунгуска-М".

[16]

На предлагаемое изобретение разработана документация, изготовлены образцы и проведены государственные испытания. В настоящее время решается вопрос о принятии ЗСУ "Тунгуска-М1" на вооружение Российской Армии.

[17]

Источники информации
1. Зенитные самоходные пушечно-ракетные комплексы. Прототип. Журнал "Техника и оружие" N 5, 1996 г., стр. 7-11 М.: Издатель АО "АвиаКосмос".

[18]

2. Аналоги. Jane & Land-Based Air Defence, 1997-98, pp. 57-59, 116-120.

Как компенсировать расходы
на инновационную разработку
Похожие патенты