патент
№ RU 2129290
МПК G01V1/16

ИНФРАНИЗКОЧАСТОТНЫЙ ТРЕХКОМПОНЕНТНЫЙ ПЬЕЗОЭЛЕКТРИЧЕСКИЙ ДАТЧИК УСКОРЕНИЙ

Авторы:
Соболев Д.М. Галузин М.Н. Григорьев Г.В.
Все (4)
Номер заявки
97107161/25
Дата подачи заявки
28.04.1997
Опубликовано
20.04.1999
Страна
RU
Как управлять
интеллектуальной собственностью
Реферат

[22]

Использование: для измерения вибрации сооружений и конструкций. Сущность изобретения: устройство содержит жидкостную инертную массу, заключенную в полости и каналах, выполненных в корпусе по трем ортогональным осям, каждая из полостей ограничена с одной стороны термокомпенсационным элементом, выполненным в виде упругой мембраны, с другой - пьезопреобразователем, выполненным в виде пьезоэлемента 7, установленного на мамбране 6, изолированной от корпуса диэлектрической прокладкой 8. Каждый пьезопреобразователь и термокомпенсатор образуют воздушный зазор с корпусом, в котором выполнено отверстие, выравнивающее давление. Полости, в которых заключена жидкостная инертная масса, связаны между собой каналами, эффективное сечение которых выбрано из условия

Изобретение позволяет повысить точность, надежность, а также расширить температурный и частотный диапазон. 1 ил.

Формула изобретения

Инфранизкочастотный трехкомпонентный пьезоэлектрический датчик ускорений, содержащий корпус, жидкостную инертную массу и пьезопреобразователи, расположенные по нормалям к трем ортогональным осям, отличающийся тем, что в него введены термокомпенсаторы, а жидкостная инертная масса заключена в отдельных полостях, выполненных в корпусе по трем ортогональным осям, причем каждая из полостей ограничена с одной стороны пьезопреобразователем, состоящим из пьезоэлемента, установленного на мембране, изолированной от корпуса диэлектрической прокладкой, а с противоположной - термокомпенсатором, выполненным в виде упругого элемента, при этом каждый пьезопреобразователь и термокомпенсатор образует воздушный зазор с корпусом, в котором выполнено отверстие, выравнивающее давление, а полости, в которых заключена жидкостная инертная масса, связаны между собой каналами, эффективное сечение которых выбраны из условия I

где ri - радиус сечения канала;
L - длина канала;
R - радиус сечения полости;
μ _ динамическая вязкость жидкости;
Wp - круговая частота резонансных колебаний;
m - масса жидкости в полости и канале;
rкап - радиус сечения капилляра канала;
K - жесткость мембраны и упругого элемента.

Описание

[1]

Изобретение относится к сейсмометрии, в частности к устройствам для преобразования сейсмических колебаний в электрические сигналы, а также может быть использовано для измерения вибрации сооружений и конструкции.

[2]

Известен трехкомпонентный пьезоэлектрический датчик, который представляет собой три однокомпонентных датчика, объединенных в одном корпусе. Это сложное дорогостоящее устройство, обладающее значительной массой и габаритами (авт. св. N 1057910, G 01 V 1/16, публ. 30.11.83 г., б. N 14).

[3]

Известен трехкомпонентный пьезоэлектрический сейсмометр, содержащий три пары пьезоэлементов, оси чувствительности которых расположены по трем взаимно-перпендикулярным направлениям, систему центровки инертной массы с толкателями и пружинами. Это устройство сложно в изготовлении и при настройке, неустойчиво в работе, имеет низкую точность измерений (авт. св. N 397868, МКИ G 01 V 1/16, публ. 17.09.73, БИ N 37).

[4]

Наиболее близким к заявляемому устройству, прототипом, является трехкомпонентный пьезоэлектрический датчик ускорений, содержащий корпус, жидкостную инертную массу, в этом устройстве пьезоэлектрические пластины расположены попарно по нормали к трем ортогональным осям, ограничивая полость, заполненную под давлением жидкостью (авт. св. N 188767, G 01 P, публ. 10.12.66 г. БИ N 22).

[5]

К недостаткам этого устройства относится низкая точность измерений вследствие отсутствия надежного механизма термокомпенсации, т.к. порядок коэффициентов объемного расширения металлического корпуса, деталей к нему примыкающих, частично выполняющих роль термокомпенсационных элементов, и жидкостной инертной массы, разный. В результате датчик работает в очень узком температурном диапазоне. Эксплуатация его в более широком диапазоне приводит к значительным нелинейным искажениям в работе пьезопреобразователей. К недостаткам следует отнести большое значение поперечной, "паразитной", чувствительности в неизмеряемых направлениях. Точность измерений снижается из-за взаимных влияний компонент вибрации по общей электрической линии, соединяющей одну из обкладок пьезоэлементов (фиг. 2 прототипа).

[6]

Острорезонансный характер АЧХ прототипа, связанный с отсутствием требуемого затухания, приводит к снижению надежности датчика и точности измерения.

[7]

Задачей заявляемого технического решения является повышение его точности и надежности, а также расширение температурного и частотного диапазона.

[8]

Поставленная задача решается следующим образом.

[9]

В инфранизкочастотном трехкомпонентном пьезоэлектрическом датчике ускорений, содержащем корпус, жидкостную инертную массу и пьезопреобразователи, расположенные по нормалям к трем ортогональным осям, введены термокомпенсаторы, а жидкостная инертная масса заключена в отдельных полостях, выполненных в корпусе по трем ортогональным осям, причем каждая из полостей ограничена с одной стороны пьезопреобразователем, состоящим из пьезоэлемента, установленного на мембране, изолированной от корпуса диэлектрической прокладкой, а с противоположной - термокомпенсатором, выполненным в виде упругого элемента, при этом каждый преобразователь и термокомпенсатор образует воздушный зазор с корпусом, в котором выполнено отверстие, выравнивающее давление, а полости, в которых заключена жидкостная инертная масса, связаны между собой каналами, эффективные сечения которых выбраны из условия

где rL - радиус сечения канала;
L - длина канала;
R - радиус сечения полости;
μ _ динамическая вязкость жидкости;
Wр - круговая частота резонансных колебаний;
m - масса жидкости в полости и канале;
rкап - радиуса сечения капилляра канала;
K - жесткость мембраны и упругого элемента.

[10]

Отличительными признаками устройства являются:
жидкостная инертная масса заключена в полостях, выполненных в корпусе по трем ортогональным осям, причем в качестве корпуса может быть выбрана любая геометрическая форма тела вращения, в которой возможно выполнить полости, если при этом не нарушается монолитность корпуса, выполненного в виде одной детали. Допускается возможность использования технологии литья корпуса, что упрощает процесс изготовления датчика;
- введение термокомпенсатора уменьшает статический температурный прогиб мембраны с пьезопреобразователем, что снижает нелинейные искажения, повышает точность измерения, расширяет рабочий температурный диапазон;
- выполнение пьезопреобразователя в виде упругой мембраны, связанной с пьезоэлементом в виде тонкой пластины, позволяет расширить диапазон рабочих частот в область инфранизких частот, увеличить его чувствительность, приблизив ее к чувствительности биоморфа;
- для защиты пьезоэлемента от акустических и электрических помех каждый пьезопреобразователь и термокомпенсатор образует воздушный зазор с корпусом, в котором выполнено отверстие, выравнивающее давление, что позволяет также исключить искажения, связанные с перепадом давления воздуха от температуры, а для исключения взаимных влияний компонент вибрации пьезопреобразователи изолированы от корпуса посредством диэлектрических прокладок;
- введение каналов, связывающих полости, выполненных с условием (1), позволяет скорректировать амплитудно-частотную характеристику в сторону ее расширения, снизить влияние резонансной частоты и частот, к ней примыкающих, на полезный регистрируемый сигнал, повысить надежность датчика, уменьшить поперечную чувствительность.

[11]

Из изученной научно-технической и патентной литературы не известно о существовании технического решения с перечисленной совокупностью признаков. Это дает основание сделать вывод о соответствии заявляемого объекта критериям изобретения.

[12]

На чертеже представлен один из вариантов общего вида инфранизкочастотного трехкомпонентного пьезоэлектрического датчика ускорения с корпусом в виде куба. В разрезе показаны две компоненты вибрации - X и Z компоненты.

[13]

В датчике на чертеже жидкостная инертная масса 1 заключена в полостях 2 и каналах 3, выполненных в корпусе 4 по трем ортогональным осям. Каждая из полостей 2 ограничена с одной стороны термокомпенсатором 5, выполненным в виде колпачковой мембраны 6 с установленным на ней пьезоэлементом 7, изолированным от корпуса 4 диэлектрической прокладкой 8. Для заполнения полостей 2 жидкостью в корпусе выполнено технологическое отверстие 9, в котором установлен винт-заглушка 10. Воздушные зазоры 11, образованные в соответствующих полостях пьезопреобразователем и термокомпенсатором, сообщаются с окружающей средой посредством отверстий 12, выполненных над ними в корпусе 4.

[14]

Работает датчик следующим образом. При перемещении корпуса 4 вместе с объектом, на котором он установлен, жидкостная инертная масса 1 в силу своих инерционных свойств начинает перемещаться относительно корпуса 4 в полостях 2 и каналах 3 и воздействует на упругие элементы термокомпенсаторов и пьезопреобразователей, заставляя их деформироваться, прогибаться. В результате на обкладках пьезоэлементов 7 образуется напряжение, определенным образом характеризующее входное воздействие. Если входной сигнал действует строго вдоль одной из компонент вибрации, то жидкость, движущаяся в канале, захватывает жидкость соседних каналов, что приводит к возникновению паразитного сигнала на пьезопреобразователях в неизмеряемых направлениях. Однако величина этого сигнала в предлагаемом устройстве меньше, чем у прототипа, и определяется малым сечением выбираемого канала и должно быть меньше сечений полостей 2, которые они соединяют, при этом радиус сечения каналов выбирается в соответствии с формулой (1).

[15]

Условия выбора сечения каналов.

[16]

Сечение каждого из каналов не может быть равно сечению капилляра материала, из которого выполнен корпус, т.к. это нарушает нормальную работу датчика. Канал препятствует перетоку жидкости, начиная с резонансной частоты Wр и выше, и не препятствует на частотах ниже WВ - верхняя граничная частота рабочего диапазона, при Wр>WВ.

[17]

При этом соотношение сил, действующих в канале, должно удовлетворять условию
Fин<Fсопр, (2)
где Fсопр - сила сопротивления, возникающая в канале на частотах выше WВ при протекании через него жидкости;
Fин - сила инерции со стороны жидкости и восстанавливающаяся сила со стороны упругих элементов, воздействующих на жидкость при их деформации.

[18]

В общем виде выражение для силы Fин может быть представлено в виде /Иориш Ю.И. "Виброметрия". - М.: Машгиз. с. 139, 1962/:
Fин = (mAW2 + KкмA)sinWt (3)
где m - масса жидкости, заключенная в полости и канале;
K - жесткость пьезопреобразователя и термокомпенсатора;
W - круговая частота;
A - амплитуда возбуждаемых колебаний;
sinWt - закон, по которому происходит смещение жидкости.

[19]

Из сил сопротивления, действующих в канале, достаточно для практических расчетов ограничиться силой вязкого сопротивления, имеющих вид /Иориш Ю.И. "Виброметрия". - М.: Машгиз. с. 142, 1962/:

где μ - динамическая вязкость жидкости;
rL - радиус сечения канала;
R - радиус сечения полости;
L - длина канала.

[20]

Подставляя выражение сил в неравенство (2) и учитывая поставленные условия (1), получим выражение, позволяющее уточнить один из наиболее важных конструктивных параметров устройства, которое является исходным для определения сечения канала:

Испытания опытного образца заявляемого устройства показали следующие результаты. При использовании в качестве пьезоэлементов тонких пластин, отличающихся большой собственной емкостью до 100 МФ и более, позволило расширить диапазон рабочих частот датчика в область инфранизких частот до 0,005 Гц.

[21]

Нелинейные искажения составили 0,1% при работе в температурном диапазоне от -30oC до +50oC, при этом поперечная чувствительность в неизмеряемых направлениях не превысила 1% по отношению к максимальной.

Как компенсировать расходы
на инновационную разработку
Похожие патенты