Авиационный безводильный тягач (АБТ) относится к наземному оборудованию для транспортировки и обслуживания воздушных судов (ВС), в частности к безводильным устройствам для буксировки ВС различного типа в условиях как аэродромов, так и ограниченного пространства цехов и ангаров. АБТ выполнен в виде колесного шасси, содержащего: силовую установку, состоящую из источника питания и электродвигателей; трансмиссию с полным приводом на все колеса; бортовой компьютер; два рабочих места (водителя и оператора); автопилот и систему дистанционного управления, а также подъемную платформу, оборудованную захватным устройством с возможностью установки и фиксации передней стойки ВС на подъемной платформе. Отличия заявленной полезной модели состоят в том, что источник питания силовой установки выполнен в виде литий-железо-фосфатной аккумуляторной батареи, имеющей возможность быстрого заряда, в том числе от аэродромной сети, и обеспечивающей требуемый суточный пробег; трансмиссия выполнена в виде 4 редукторов, соединяющих 4 вентильных (синхронных) электродвигателя силовой установки с каждым колесом шасси, рабочее место водителя имеет возможность разворота на 180° вместе с рулем управления и многофункциональным индикатором, а бортовой компьютер включает систему дифференциального управления поворотом АБТ, антиблокировочную и антипробуксовочную системы. 2 з.п. ф-лы, 8 ил.
1. Авиационный безводильный тягач (АБТ), выполненный в виде колесного шасси, содержащего: силовую установку, состоящую из источника питания и электродвигателей; трансмиссию с полным приводом на все колеса; бортовой компьютер; два рабочих места водителя и оператора с возможностью поворота на 180°; автопилот и систему дистанционного управления, а также подъемную платформу, оборудованную захватным устройством с возможностью установки и фиксации передней стойки ВС на подъемной платформе, отличающийся тем, что источник питания силовой установки выполнен в виде литий-железо-фосфатной аккумуляторной батареи, имеющей возможность быстрого заряда, в том числе от аэродромной сети, и обеспечивающей требуемый суточный пробег; трансмиссия выполнена в виде 4 редукторов, соединяющих 4 вентильных (синхронных) электродвигателя силовой установки с каждым колесом шасси, рабочее место водителя имеет возможность разворота на 180° вместе с рулем управления и многофункциональным индикатором, а бортовой компьютер включает систему дифференциального управления поворотом АБТ, антиблокировочную и антипробуксовочную системы. 2. Авиационный безводильный тягач по п. 1, отличающийся тем, что АБТ оснащен двумя управляемыми осями. 3. Авиационный безводильный тягач по п. 1, отличающийся тем, что привод АБТ выполнен в виде мотор-колес.
Полезная модель относится к области наземного оборудования для обслуживания воздушных судов (ВС), в частности к безводильным устройствам для буксировки ВС. Уровень техники Известно устройство для буксировки ВС, выполненное в виде колесного шасси, на котором установлена дизельная силовая установка, гидромеханическая трансмиссия с приводом на управляемый мост, подвижная грузовая платформа, снабженная захватным устройством с механизмами подъема и фиксации передней стойки шасси ВС (Аэродромный безводильный тягач Douglas TBL180). Рассмотренное устройство имеет следующие недостатки: невозможность использования в закрытых помещениях (ангарах, цехах) в связи с применением в качестве силовой установки двигателя внутреннего сгорания, низкая проходимость из-за отсутствия привода на все колеса, низкая маневренность из-за выполнения поворота только за счет управляемой передней оси. Наиболее близким к заявляемой полезной модели устройством (прототипом) является аэродромный безводильный тягач (АБТ) LEKTRO AP8950SDB фирмы Lektro, США (http://www.lektro.com), содержащий колесное шасси, на котором смонтированы двигатель постоянного тока, свинцовые аккумуляторные батареи, трансмиссия с приводом на одну ось, механизм поворота задних колес, отсек оператора с двумя креслами, подвижная грузовая платформа с захватным устройством передней стойки шасси ВС (http://www.lektro.com/products/ap8950sdb/). Недостатками прототипа являются: низкая маневренность из-за выполнения поворота только за счет управляемой оси, низкая проходимость из-за возможной пробуксовки в следствие отсутствия антипробуксовочной системы и отсутствия привода на все колеса, а также необходимость подзаряда свинцовой аккумуляторной батареи в процессе эксплуатации, так как емкость такой батареи недостаточна для обеспечения полноценной работы в течение полной рабочей смены в связи низкой удельной энергоемкостью свинцовой АКБ. Ухудшение эксплуатационных качеств тягача при количественном наращивании емкости АКБ до требуемой величины из-за неизбежного увеличения его габаритных размеров, отсутствие возможности заряда батареи от сети аэродромного питания 115/200 В 400 Гц, значительные потери времени на процесс заряда АКБ вследствие того, что допустимый ток заряда свинцовых АКБ значительно меньше тока разряда. Технической проблемой, решаемой с помощью заявляемой полезной модели, является создание универсального тягача, обеспечивающего безопасную транспортировку ВС различного типа в условиях как аэродромов, так и ограниченного пространства цехов и ангаров. Раскрытие сущности полезной модели. Техническим результатом, получаемым при использовании заявляемой полезной модели,является: - повышение маневренности при выполнении буксировки и парковки ВС; - обеспечение работы тягача в закрытых помещениях без вредного воздействия на окружающую среду; - повышение проходимости, в том числе в условиях, связанных с плохим качеством покрытия и тяжелыми погодными условиями; - обеспечение блоком аккумуляторов (БА) непрерывной работы тягача в течение рабочей смены; - обеспечение быстрого заряда БА силовой установки как от сети 380В, так и от аэродромной трехфазной сети 115/200 В 400 Гц; - обеспечение электропитания систем ВС от БА силовой установки в отсутствии стационарного или подвижного аэродромного источника питания. Указанный технический результат достигается тем, что авиационный безводильный тягач (АБТ) выполнен в виде колесного шасси, содержащего: силовую установку, состоящую из источника питания в виде блока литий-железо-фосфатных аккумуляторных батарей и 4-х вентильных (синхронных) электродвигателей; трансмиссию с полным приводом на все колеса; бортовой компьютер; рабочее место водителя и рабочее место оператора; а также подвижную грузовую платформу, оборудованную захватным устройством передней стойки шасси ВС. Источник питания силовой установки, имеющий возможность заряда от аэродромной сети 115/200В, 400 Гц, обеспечивает требуемый суточный пробег за счет использования литий-железо-фосфатных аккумуляторных батарей, имеющих более высокую удельную энергоемкость и возможность заряда за время в 5…8 раз меньше по сравнению со свинцовыми батареями [Химические источники тока: Справочник / Под редакцией Н.В. Коровина и A.M. Скундина. - М.: Издательство МЭИ, 2003. - 740 с] Силовая установка АБТ оснащена преобразователем напряжения аккумуляторной батареи в напряжение постоянного и переменного тока аэродромного стандарта (в соответствии с ГОСТ Р 54073-2010) для питания бортовой сети и пуска двигателей ВС в отсутствии стационарного или подвижного аэродромного источника питания. АБТ оснащен автопилотом, системой дистанционного управления и бортовым компьютером, включающим систему дифференциального управления поворотом шасси, электронные антипробуксовочную и антиблокировочную системы, что позволяет обеспечить повышение проходимости в условиях, связанных с плохим качеством покрытия и тяжелыми погодными условиями, а также повышение маневренности при выполнении буксировки и парковки ВС. Силовая установка выполнена в виде вентильных (синхронных) электродвигателей, соединенных редукторами с каждым колесом шасси. Особенностью данных электродвигателей является способность в пиковом режиме обеспечивать мощность и крутящий момент, превышающие в 2 раза соответствующие номинальные параметры, что необходимо при начале движения и разгоне ВС, при этом буксировка с постоянной скоростью происходит в номинальном режиме двигателей без дополнительных затрат электроэнергии. Захватное устройство обеспечивает возможность установки и фиксации передней стойки шасси ВС на подъемной платформе. Рабочие места водителя и оператора имеют возможность поворота на 180°, при этом рабочее место водителя эргономично разворачивается вместе с рулем управления и многофункциональным индикатором, что способствует повышению маневренности и безопасности при выполнении буксировки и парковки ВС. Краткое описание чертежей. Устройство заявляемой полезной модели и его работа поясняется нижеследующим описанием и прилагаемыми иллюстрациями, на которых показано: фиг. 1 - общий вид АБТ, вид сверху-справа; фиг. 2 - вид (спереди-справа) на подвижную грузовую платформу; фиг. 3 - вид (сзади-справа) на рабочее место водителя - оператора; фиг. 4 - схема системы управления поворотом и движением АБТ; фиг. 5 - подведение тягача к носовой стойке шасси ВС; фиг. 6 - освобождение захватного устройства; фиг. 7 - захват передней стойки ВС; фиг. 8 - подъем передней стойки шасси ВС. Авиационный безводильный тягач содержит колесное шасси, на котором установлены: блок аккумуляторной батареи 1, четыре вентильных (синхронных) электродвигателя 2, соединенные с помощью редукторов 3 с ведущими колесами, подвижная грузовая платформа 4, соединенная с захватным устройством 5, кресла водителя и оператора 6 и руль управления движением АБТ 7 с расположенным за ним многофункциональным индикатором 8, бортового компьютера (располагается в боковом отсеке корпуса АБТ, на иллюстрациях не показан). Рабочие места водителя и оператора с целью обеспечения оптимального обзора рабочей зоны оснащены креслами, имеющими возможность поворота на 180°. Бортовой компьютер управляет движением АБТ, захватным устройством, светосигнальной аппаратурой и другими системами тягача, в том числе реализует алгоритм работы системы дифференциального управления (СДУ) поворотом АБТ, электронных антипробуксовочной и антиблокировочной систем и автопилота, с помощью которого обеспечивает возможность движения АБТ по программируемой траектории. Бортовой компьютер также обеспечивает работу дистанционного управления и осуществляет функционирование системы защит, обеспечивающей безопасность эксплуатации, в частности ограничивает превышение допустимых нагрузок на переднюю стойку ВС. Система управления поворотом и движением АБТ, схема которой приведена на фиг. 4, включает: датчик положения педали акселератора 9, селектор режима работы тягача 10, датчик угла поворота управляемых колес 11, датчик положения педали торможения 12, электронно-вычислительный блок (ЭВБ) 13 СДУ, исполнительные устройства в виде контроллеров 14 управления электродвигателями и датчиков 15 скорости вращения колес. В состав ЭВБ входят: формирователь скорости движения АБТ 16; блок ограничения скорости движения тягача 17; формирователи сигналов управления передним левым 18 и передним правым 19 двигателями; формирователь сигнала корректировки скорости передних колес 22; формирователи сигналов управления задним левым 20 и задним правым 21 двигателями; формирователь сигнала корректировки скорости задних колес 23 и системный блок 24, включающий антипробуксовочную и антиблокировочную системы и систему курсовой устойчивости. Осуществление полезной модели. Работа АБТ и его управление осуществляются следующим образом. Тягач подводится к передней стойке шасси со стороны носовой части ВС (фиг. 5). Платформа с захватным устройством 5 выдвигается в направлении передней стойки шасси ВС, замок освобождает захватное устройство, которое поворачивается в крайнее открытое положение (фиг. 6). Тягач подводится до соприкосновения с пневматиками передней стойки шасси ВС и с пульта управления включается режим захвата передней стойки шасси ВС (фиг. 7). Подвижная платформа с захватным устройством задвигается, фиксируя переднюю стойку шасси ВС. Осуществляется подъем передней стойки шасси ВС на платформе захватного устройства (фиг. 8). ВС состыковано с тягачом и готово к буксированию. В процессе буксировки ВС управление движением и поворотом АБТ происходит следующим образом. Скорость вращения каждого колеса рассчитывается ЭВБ СДУ в зависимости от подаваемых на вход ЭВБ значений следующих параметров: сигнала, получаемого от датчика положения педали акселератора 9, положения селектора режима работы тягача 10, величины угла поворота управляемых колес, передаваемого датчиком 11, и сигнала датчика положения педали торможения 12. Сигнал от датчика положения педали акселератора 9 поступает на формирователь сигнала скорости движения тягача 16 и системный блок 24. Далее сигнал с формирователя скорости движения тягача 16 поступает на блок ограничения скорости движения АБТ 17, который осуществляет контроль максимальной скорости движения в зависимости от режима работы тягача. Выбор режима работы осуществляется водителем - оператором с помощью селектора режима работы тягача 10. Сигнал с блока ограничения скорости движения тягача 17 поступает на формирователи сигналов управления двигателями 18, 19, 20, 21. Сигнал с выхода датчика угла поворота управляемых колес 11 поступает на формирователь сигнала корректировки скорости передних колес 22, формирователь сигнала корректировки скорости задних колес 23 и системный блок 24. Сигнал с формирователя сигнала корректировки скорости передних колес 22 поступает на формирователи сигналов управления передними двигателями 18 и 19. Сигнал с формирователя сигнала корректировки скорости задних колес 23 поступает на формирователи сигналов управления задними двигателями 20 и 21. С выходов формирователей сигналов управления двигателями 18, 19, 20 и 21 сигналы управления поступают на контроллеры 14 управления электродвигателями 2. При осуществлении поворота АБТ формирователи сигнала корректировки скорости 22 и 23 в зависимости от направления поворота выдают сигналы увеличения скорости вращения внешних колес и уменьшения скорости вращения внутренних колес при повороте тягача, в зависимости от величины угла поворота управляемых колес. При работе антипробуксовочной системы сигналы с датчиков скорости вращения 15, установленных на каждом колесе, поступают на системный блок 24. Антипробуксовочная система сравнивает фактическую скорость вращения колес с заданной при разгоне тягача, и передает сигналы снижения тяги электродвигателей на формирователи сигналов управления двигателями 18, 19, 20, 21. Антиблокировочная система предотвращает блокирование колес при торможении тягача путем отключения сигнала торможения при нулевой скорости вращения. Таким образом, совокупность существенных признаков, присущих заявляемому техническому решению позволяет решить задачу создания универсального авиационного тягача, позволяющего производить буксировку ВС различного типа в различных условиях аэродромного поля и в ограниченном пространстве цехов и ангаров.