патент
№ RU 2456699
МПК H01J45/00

БЛОК ТЕРМОЭЛЕКТРИЧЕСКИХ ПРЕОБРАЗОВАТЕЛЕЙ СО ЩЕЛОЧНЫМ МЕТАЛЛОМ

Авторы:
Каландаришвили Арнольд Галактионович
Номер заявки
2011112680/07
Дата подачи заявки
04.04.2011
Опубликовано
20.07.2012
Страна
RU
Как управлять
интеллектуальной собственностью
Чертежи 
1
Реферат

Изобретение предназначено для повышения эффективности работы термоэлектрического преобразователя со щелочным металлом (АМТЕС), преобразующим тепловую энергию непосредственно в электрическую энергию. Изобретение может быть использовано как в наземных, так и в космических условиях, как генератор, преобразующий различную тепловую энергию (солнечную, тепловых электростанций, ядерную и др.) с высоким КПД в электрическую энергию. Технический результат - повышение стабильности выходных электрических параметров и срока службы генератора за счет использования особенностей работы газорегулируемых тепловых труб, определенным образом вписанных в конструкцию преобразователя. Многоэлементный термоэлектрический преобразователь тепловой энергии в электрическую со щелочным металлом содержит газорегулируемую тепловую трубу с натрием и инертным газом, адиабатическая зона которой соединена патрубками с горячей частью объемов всех элементов АМТЕС, а зона испарения ГРТТ через патрубок соединена с зоной конденсации холодной части объемов всех элементов АМТЕС. 3 з.п. ф-лы, 2 ил.

Формула изобретения

1. Блок термоэлектрических преобразователей со щелочным металлом, содержащий не менее двух соединенных между собой и центрально расположенной тепловой трубой термоэлектрических преобразователей со щелочным металлом (АМТЕС), отличающийся тем, что тепловая труба выполнена газорегулируемой (ГРТТ), зона испарения ГРТТ соединена с низкотемпературной областью каждого модуля АМТЕС, а адиабатическая зона ГРТТ соединена с высокотемпературной областью каждого модуля АМТЕС.

2. Блок по п.1, отличающийся тем, что число термоэлектрических преобразователей со щелочным металлом (АМТЕС) составляет 5-8.

3. Блок по п.1, отличающийся тем, что на внешней поверхности адиабатической зоны ГРТТ установлены термопары.

4. Блок по п.1, отличающийся тем, в резервуаре с неконденсирующимся газом ГРТТ установлены геттеры из титана, или циркония, или ниобия.

Описание

[1]

Изобретение относится к области энергетики, точнее к системам, преобразующим тепловую энергию непосредственно в электрическую энергию, и может быть использовано для повышения эффективности работы одного из видов этого типа устройств, а именно, термоэлектрических преобразователей энергии (ТЭП) со щелочными металлами (далее - Alkali metal thermal to Electric Conversion (AMTEC). Изобретение может быть использовано как в наземных, так и в космических условиях, как генератор, преобразующий различную тепловую энергию (солнечную, тепловых электростанций, ядерную и др.) с высоким КПД в электрическую энергию.

[2]

Известны основополагающие работы (1. Патент США №3,458,356 1969, Thermo-Electric Generator, J.T.Kummer and N.Weber, 2.. Thermoelectric Energy Conversion with Solid Electrolytes, Science, 1983, p.915, T.Cole), в которых описаны устройство и физико-химический принцип этого метода преобразования тепловой энергии непосредственно в электрическую. Устройство представляет собой замкнутый вакуумный объем, разделенный на две части твердым электролитом для щелочных металлов (натрия, калия, лития) β″Al2O3 - далее BASE. Рабочее тело - натрий заполняет область высокого давления ТЭП, которую поддерживают при температуре Т2 в интервале 800…1300 K с помощью внешнего источника тепла. При этих температурах давление насыщенных паров натрия находится в интервале 0,05…2,5 атм. (5,0·103…2,5·105 Пa). Область низкого давления в основном содержит пар натрия и малое количество жидкого натрия и находится при температуре T1 в интервале 400…800 K, при которой давление пара натрия лежит в интервале от 10-9до 10-2 атм. (10-4 до 103 Па).

[3]

Пар натрия из области с высоким давлением, диффундируя через пористые электроды и твердый электролит, попадает в область низкого давления, конденсируясь в жидкую фазу, которая затем с помощью электромагнитного наноса по патрубку возврата жидкого натрия возвращается в высокотемпературную область для рециркуляции через твердый электролит, тем самым замыкая циркуляционный контур и заканчивая рабочий цикл процесса.

[4]

Вначале цикла пар натрия при температуре T1 из зоны конденсации, попадая в высокотемпературную область, аккумулирует тепловую энергию до тех пор, пока не достигнет температуры Т2. Температура генерирует давление (химический потенциал) для силового движения ионов натрия сквозь твердый электролит по направлению к поверхности с низким давлением. В BASE натрий диффундирует только в виде как Na+ по реакции:

[5]

[6]

Эта реакция имеет место на интерфейсе жидкий натрий (пар) - BASE, когда натрий диффундирует через твердый электролит. Символ (Na+) BASE означает, что ион натрия является проводником в β″Al2O3.

[7]

При разомкнутом контуре ионы натрия благодаря термической кинетической энергии диффундируют по направлению к поверхности BASE, находящейся при низком давлении, принося туда положительный заряд. Достаточно сильное электрическое поле возникает на BASE и существует до тех пор, пока есть движение потока ионов натрия. Напряжение разомкнутой цепи дается уравнением Нернста для концентрационной ячейки:

[8]

Vэдс=RT2F-1ln(P2/P4),

[9]

где R - газовая константа, F - число Фарадея, Р2 - давление пара натрия при температуре Т2 и P4 - давление пара натрия на пористом электроде BASE, примыкающей к низкой области давления пара натрия.

[10]

Когда плотность тока через BASE равна нулю, P4 будет зависеть от давления пара натрия поверхности конденсатора P1 выражением:

[11]

P4(i=0)=P1(T2/T1)1/2

[12]

Когда внешняя цепь замкнута, электроны проходят через нагрузку и затем нейтрализуют ионы натрия на электроде низкого давления (обратное направление реакции 1). Далее уже нейтральные атомы натрия, обладая теплотой испарения, покидают пористый электрод, движутся через паровое пространство и выделяют теплоту конденсации на поверхности конденсатора при температуре Т1.

[13]

Напряжение, которое возникает вдоль твердого электролита, является силой, которая двигает электроны через нагрузку, при которой совершается электрическая работа.

[14]

Недостатком термоэлектрического генератора со щелочным металлом (АМТЕС) является низкая стабильность тонкопленочных металлических электродов, связанная с коррозией материала из-за наличия в окружающей электроды атмосфере активных составляющих: кислорода, водорода, углеводородов и др.

[15]

Также недостатками является необходимость поддержания перепада давления пара натрия на твердом электролите, которое в горячей части связано с неконтролируемыми изменениями входной тепловой мощности, а в зоне конденсации необходимо поддерживать температуру не менее 420 K, т.е. выше точки плавления натрия (Тпл.=371 K).

[16]

К недостаткам надо отнести наличие электромагнитного насоса, используемого в АМТЕС для возврата жидкого натрия из зоны конденсации в высокотемпературную зону испарения.

[17]

Известны работы (3. Kalandarishviliy A.G.., 1996, "Working Medium Circuit for Alkali Metal Thermal-to-Electric Converters (AMTEC)", Proceedings, 31st Intersociety Energy Conversion Engineering Conference, Washington, August 11-16, Vol.2, pp.885-889. 4. Arnold G. Kalandarishvili, 1997, "Working Medium Circuit for Alkali Metal Thermal-to-Electric Converters (AMTEC)", IEEE Systems Magazine, August 1997, pp.23-27), в которых с целью непрерывной очистки остаточных газов в горячей области, ТЭП содержит газорегулируемую тепловую трубу (ГРТТ) со щелочным металлом и неконденсирующимся инертным газом, откачка которого осуществляется в результате испарения - конденсации пара натрия в один из отсеков горячей области устройства, что дает возможность проводить непрерывную очистку окружающей атмосферы вокруг тонкопленочных электродов и тем самым повысить срок службы ТЭП.

[18]

Наиболее близким прототипом является многоэлементный (5…8 элементов) блок цилиндрических ТЭП АМТЕС со средствами подвода и отвода тепла, расположенных по окружности и содержащий в центральной части автономную тепловую трубу. Зона испарения тепловой трубы соединена через капиллярную структуру с элементами сборки устройства (см статью авторов: R.K.Sievers, J.R.Rusmussen, C.A.Borkowski, T.J.Hendricks, and J.E.Pantolin. «PX-5 AMTEC Cell Development». Proceedings of the 15th Symposium on Space Nuclear Power and Propulsion. Albuquerque, NM, January 25-29, 1998. American Institute of Physics, New York, AIP Conference Proceedings 420, Part 3, pp.1479-1485 (1998). Патент США тех же авторов №5928436, 1999).

[19]

Каждый ТЭП блока представляет собой замкнутый объем, разделенный на две области твердым электролитом, у которого с обеих сторон нанесены тонкопленочные металлические покрытия - электроды, которые с помощью электрических выводов через стенку устройства подсоединены к нагрузке.

[20]

Электроды выполнены пористыми и поэтому, адсорбируя пары натрия, они действуют одновременно как капиллярные структуры для возврата жидкого натрия в зону испарения. В этом техническом решении возврат натрия и его циркуляция осуществляются только с помощью капиллярных сил без применения электромагнитного насоса.

[21]

Недостатком этого устройства является то, что стабильная работа электрода как капилляра может быть нарушена в связи с коррозией в металлических покрытиях, вызванной остаточной активной атмосферой.

[22]

Техническим результатом заявленного изобретения является увеличение срока службы термоэлектрического преобразователя со щелочным металлом и повышение стабильности при изменении и колебаниях входной тепловой мощности

[23]

Для этого предложен блок термоэлектрических преобразователей со щелочным металлом, содержащий не менее двух соединенных между собой и центрально расположенной тепловой трубой термоэлектрических преобразователей со щелочным металлом (АМТЕС), при этом тепловая труба выполнена газорегулируемой, зона испарения ГРТТ соединена с низкотемпературной областью каждого модуля АМТЕС, а адиабатическая зона ГРТТ соединена с низкотемпературной областью каждого модуля АМТЕС.

[24]

При этом число термоэлектрических преобразователей со щелочным металлом (АМТЕС) составляет 5-8.

[25]

Кроме того, на внешней поверхности адиабатической зоны ГРТТ установлены термопары.

[26]

Также в резервуаре с неконденсирующимся газом ГРТТ могут быть установлены геттеры из титана или циркония, или ниобия.

[27]

Предлагаемый многоэлементный термоэлектрический генератор со щелочным металлом содержит следующие основные узлы: (фиг.1)

[28]

1. Контур потребителя;

[29]

2. Твердый электролит - β″Al2O3;

[30]

3. Резервуар с неконденсирующимся газом;

[31]

4. Геттеры (Титан, цирконий и ниобий);

[32]

5. Граница раздела пар-газ;

[33]

6. Зона конденсации;

[34]

7. Низкотемпературная область (Температура 400…800 K);

[35]

8. Газорегулируемая тепловая труба;

[36]

9. Капиллярная пористая структура, например нержавеющая сталь;

[37]

10. Патрубок с капиллярной структурой, например нержавеющая сталь, для возврата жидкого натрия из зоны конденсации в зону испарения;

[38]

11. Низкотемпературная область модуля АМТЕС;

[39]

12. Патрубок, соединяющий адиабатическую зону газорегулируемой трубы с каждым элементом АМТЕС;

[40]

13. Тонкопленочные пористые электроды АМТЕС;

[41]

14. Высокотемпературная область модуля АМТЕС;

[42]

15. Зона испарения натрия из капиллярной структуры;

[43]

16. Высокотемпературная область (Температура 900…1300 K);

[44]

17. Отдельный модуль АМТЕС;

[45]

18. Патрубок, соединяющий модули АМТЕС между собой.

[46]

Блок ТЭП со щелочным металлом состоит из отдельных (оптимально 5-8) модулей 17, соединенных между собой патрубками 18 и расположенных по окружности, в центре которой расположена ГРТТ 8 (фиг.2).

[47]

Каждый модуль 17 представляет собой замкнутый объем, разделенный на низкотемпературную 11 и высокотемпературную 14 области твердым электролитом 2 с нанесенными на обе поверхности тонкопленочными пористыми электродами 13, например, из вольфрама, титана и др. Электроды с помощью электрических выводов через стенку модуля подсоединены к нагрузке 1.

[48]

Адиабатическая средняя часть ГРТТ соединена патрубком 12 с высокотемпературной областью 14 каждого из модулей. ГРТТ 8 представляет собой полый цилиндр с пористой структурой 9, соединенный в верхней части с резервуаром с неконденсирующимся газом 3 (в качестве которых используются, например, инертные газы, например аргон, а также СО2, азот и др.), в резервуаре 3 установлены геттеры 4 для сорбции примесей, например, из титана, циркония или ниобия. Зона испарения щелочного металла 15, например натрия, расположена в условно выделенной высокотемпературной области 16 с внешним подводом тепла.

[49]

Зона испарения 15 ГРТТ соединена патрубком 10 с низкотемпературной областью 11 каждого модуля АМТЕС для возврата жидкого натрия из зоны конденсации 6 в зону испарения. На внешней поверхности адиабатической зоны ГРТТ прикреплены хромель-алюмелевые и вольфрам-рениевые термопары (на фигуре не показаны), позволяющие по величине температуры контролировать величину давления пара натрия в элементах АМТЕС.

[50]

Технический результат достигается за счет того, что газорегулируемая тепловая труба определенным образом конструктивно соединена с отдельными термоэлектрическими преобразователями. При подаче тепловой мощности в высокотемпературную область 16 в результате нагрева происходит испарение пара натрия в сторону зоны конденсации 6, где пар конденсируется в капиллярной структуре в жидкость, затем за счет капиллярных сил возвращается в зону испарения. В результате непрерывной циркуляции весь неконденсирующийся инертный газ откачивается в резервуар неконденсирующегося газа и в зоне конденсации 6 устанавливается граница раздела пар-газ 5. При этом вдоль поверхности ГРТТ устанавливается характерный стабильный профиль температуры. При многократных изменениях входной тепловой мощности Q от внешнего источника тепла уровень температуры в адиабатической зоне (средняя область) ГРТТ сохраняется постоянным за счет автоматического перемещения границы раздела пар-газ 5, таким образом, при котором изменяется теплосброс с поверхности ГРТТ, расположенной в зоне конденсации 6. Это позволяет в процессе непрерывной работы осуществлять стабильную подачу пара натрия из адиабатической зоны ГРТТ через патрубок 12 в высокотемпературную область всех модулей многоэлементного АМТЕС, тем самым стабилизировать перепад давления пара натрия на электролите, что позволяет в процессе работы АМТЕС сохранять постоянными во времени выходные электрические параметры преобразователя.

[51]

Кроме того, происходит очистка объема от активных примесей, которые переносятся в зону конденсации и в резервуар с неконденсирующимся газом 3 и там сорбируются геттерами 4 из титана, циркония или ниобия. С помощью термопар, установленных в адиабатической зоне, можно определить величину давления пара натрия по формуле:

[52]

IgP=9.7354-5418.64/Т, где Р - давление пара натрия, Па; Т - температура, K.

[53]

Таким образом, предложенное устройство может одновременно выполнять следующие функции:

[54]

поддерживать стабильным перепад давления пара натрия на твердом электролите, что стабилизирует выходные электрические параметры,

[55]

производить непрерывную очистку рабочего объема от неконденсирующихся примесей и их утилизацию, что увеличивает срок службы устройства,

[56]

контролировать величину давления пара натрия в горячей области.

[57]

позволяет по температуре адиабатической зоны ГРТТ контролировать величину давления пара натрия в горячей области.

Как компенсировать расходы
на инновационную разработку
Похожие патенты