An apparatus is provided which comprises a full adder including magnetoelectric material and spin orbit material. In some embodiments, the adder includes: a 3-bit carry generation structure and a multi-bit sum generation structure coupled to the 3-bit carry generation structure. In some embodiments, the 3-bit carry generation structure includes at least three cells comprising magnetoelectric material and spin orbit material, wherein the 3-bit carry generation structure is to perform a minority logic operation on first, second, and third inputs to generate a carry output. In some embodiments, the multi-bit sum generation structure includes at least four cells comprising magnetoelectric material and spin orbit material, wherein the multi-bit sum generation structure is to perform a minority logic operation on the first, second, and third inputs and the carry output to generate a sum output.
1. An apparatus comprising:
a 3-bit carry generation structure including at least three cells comprising magnetoelectric material and spin orbit material, wherein the 3-bit carry generation structure is to perform a minority logic operation on first, second, and third inputs to generate a carry output; and a multi-bit sum generation structure including at least three cells comprising magnetoelectric material and spin orbit material, wherein the carry output of the 3-bit carry generation structure is received by the multi-bit sum generation structure, and wherein the multi-bit sum generation structure is to perform a minority logic operation on the first, second, and third inputs and the carry output to generate a sum output. 2. The apparatus of a magnet having a first portion and a second portion; a stack of layers, a portion of which is adjacent to the first portion of the magnet, wherein the stack of layers comprises spin orbit material; a layer adjacent to the second portion, the layer comprising a magnetoelectric material; a conductor adjacent to the layer; a first device coupled to the magnet, wherein the first device is coupled to a first power supply node and is controllable by a clock; and a second device coupled to a second supply node and to a layer of the stack of layers, wherein the second device is controllable by the clock. 3. The apparatus of a second magnet having a first portion and a second portion; a second stack of layers, a portion of which is adjacent to the first portion of the second magnet, wherein the second stack of layers comprises spin orbit material; a second layer adjacent to the second portion of the second magnet, the second layer comprising a magnetoelectric material; a second conductor adjacent to the second layer and to the a portion of the first stack of layers; a third conductor adjacent to a portion of the second stack of layers; a third device coupled to the second magnet, wherein the third device is coupled to the first power supply node and is controllable by a second clock; and a fourth device coupled to the second supply node and to a layer of the second stack of layers, wherein the third device is controllable by the second clock. 4. The apparatus of 5. The apparatus of 6. The apparatus of 7. The apparatus of 8. The apparatus of 9. The apparatus of 10. The apparatus of 11. The apparatus of 12. The apparatus of 13. The apparatus of 14. An apparatus comprising:
a first logic device including: a spin orbit material, magnetostrictive material, and at least two transistors to operate using a first clock; a second logic device including: a spin orbit coupling material, magnetostrictive material, and at least two transistors to operate using the first clock; a third logic device including: a spin orbit coupling material, magnetostrictive material, and at least two transistors to operate using a first clock; a fourth logic device coupled to the first, second and third logic devices, the fourth logic device including: a spin orbit coupling material, magnetostrictive material, and at least two transistors to operate using a second clock; and a fifth logic device coupled to the fourth logic device, the fifth logic device including: a spin orbit coupling material, magnetostrictive material, and at least two transistors to operate using a third clock, wherein the first, second, and third clocks have different phases. 15. The apparatus of 16. The apparatus of a sixth logic device to receive the first variable input, wherein the sixth logic device is coupled to the fifth device, and wherein the sixth device comprises a spin orbit material, magnetostrictive material, and at least two transistors to operate using the second clock; a seventh logic device to receive the second variable input, wherein the seventh logic device is coupled to the fifth device; and wherein the sixth device comprises a spin orbit material, magnetostrictive material, and at least two transistors to operate using the second clock; and an eighth logic device to receive the third input, wherein the eighth logic device is coupled to the fifth logic device, and wherein the eighth logic device comprises a spin orbit material, magnetostrictive material, and at least two transistors to operate using the second clock. 17. The apparatus of 18. The apparatus of 19. The apparatus of 20. A system comprising:
a memory; a processor coupled to the memory, wherein the processor includes an adder which comprises:
a 3-bit carry generation structure including at least three cells comprising magnetoelectric material and spin orbit material, wherein the 3-bit carry generation structure is to perform a minority logic operation on first, second, and third inputs to generate a carry output; and a multi-bit sum generation structure including at least four cells comprising magnetoelectric material and spin orbit material, wherein the carry output of the 3-bit carry generation structure is coupled to an input of the multi-bit sum generation structure, and wherein the multi-bit sum generation structure is to perform a minority logic operation on the first, second, and third inputs and the carry output to generate a sum output; and a wireless interface to allow the processor to communicate with another device. 21. The system of a magnet having a first portion and a second portion; a stack of layers, a portion of which is adjacent to the first portion of the magnet, wherein the stack of layers comprises spin orbit material; a layer adjacent to the second portion, the layer comprising a magnetoelectric material; a conductor adjacent to the layer; a first device coupled to the magnet, wherein the first device is coupled to a first power supply node and is controllable by a clock; and a second device coupled to a second supply node and to a layer of the stack of layers, wherein the second device is controllable by the clock. 22. The system of a second magnet having a first portion and a second portion; a second stack of layers, a portion of which is adjacent to the first portion of the second magnet, wherein the second stack of layers comprises spin orbit material; a second layer adjacent to the second portion of the second magnet, the second layer comprising a magnetoelectric material; a second conductor adjacent to the second layer and to the a portion of the first stack of layers; a third conductor adjacent to a portion of the second stack of layers; a third device coupled to the second magnet, wherein the third device is coupled to the first power supply node and is controllable by a second clock; a fourth device coupled to the second supply node and to a layer of the second stack of layers, wherein the third device is controllable by the second clock. 23. The system of
Spintronics is the study of intrinsic spin of the electron and its associated magnetic moment in solid-state devices. Spintronic logic are integrated circuit devices that use a physical variable of magnetization or spin as a computation variable. Such variables can be non-volatile (e.g., preserving a computation state when the power to an integrated circuit is switched off). Non-volatile logic can improve the power and computational efficiency by allowing architects to put a processor to un-powered sleep states more often and therefore reduce energy consumption. Existing spintronic logic generally suffer from high energy and relatively long switching times. For example, large write current (e.g., greater than 100 μA/bit) and voltage (e.g., greater than 0.7 V) are needed to switch a magnet (i.e., to write data to the magnet) in Magnetic Tunnel Junctions (MTJs). Existing Magnetic Random Access Memory (MRAM) based on MTJs also suffer from high write error rates (WERs) or low speed switching. For example, to achieve lower WERs, switching time is slowed down which degrades the performance of the MRAM. MTJ based MRAMs also suffer from reliability issues due to tunneling current in the spin filtering tunneling dielectric of the MTJs e.g., magnesium oxide (MgO). An arithmetic logic unit (ALU) is a useful block for any logic function, where a full adder (FA) is a common logic block. Conventional 1-bit Complementary Metal Oxide Semiconductor (CMOS) adder may require eight to twenty-eight transistors. Scaling the adder design in area and power is a challenge. The same challenge exists in current spintronic logic. The embodiments of the disclosure will be understood more fully from the detailed description given below and from the accompanying drawings of various embodiments of the disclosure, which, however, should not be taken to limit the disclosure to the specific embodiments, but are for explanation and understanding only. Complementary Metal Oxide Semiconductor (CMOS) majority/minority gate based logic design results in increased gate count due to the logic inefficiency using CMOS for majority/minority function. Using novel spin or quantum devices (e.g. quantum cellular automata (QCA), tunneling phase logic (TPL), and single electron tunneling (SET) has shown gate reduction compared to conventional CMOS circuits due to the retaliating of majority/minority function within a few devices. The nano-magnet based 1-bit adder uses 2 magnetic tunneling junction-nanowire (MTJ-nanowire) devices for minority gate operation but it requires additional CMOS based circuits with sixteen transistors for two sense amplifiers with additional two reference MTJs for pre-charge. The nano-magnet based 1-bit adder also uses an inverter for the carry-out to the 5-input majority gate, besides additional peripheral circuits and MTJs for the current input generation to the adder. While QCA is designed with less transistor assistance, but it requires five cells for one 3-input majority gate and over 80 devices for complete function and additional transistors for clocking signal generation. Technology scaling is an important factor of success for the semiconductor industry, where beyond CMOS (Complementary Metal Oxide Semiconductor) technology is being considered to enable future technology scaling below 5 nm technology node. One beyond CMOS technology employs Magnetoelectric (ME) effect. The ME effect has the ability to manipulate the magnetization (and the associated spin of electrons in the material) by an applied electric field. Since an estimated energy dissipation per unit area per magnet switching event through the ME effect is an order of magnitude smaller than with spin-transfer torque (STT) effect, ME materials have the capability for next-generation memory and logic applications. Magnetoelectric Spin Orbit (MESO) Logic devices/gates when cascaded with one another may suffer from back propagation of signals that may switch magnets unintentionally. Various embodiments describe a MESO Logic which is a combination of various physical phenomena for spin-to-charge and charge-to-spin conversion, where the MESO logic comprises an input magnet and stack of layers for spin-to-charge conversion. Spin-to-charge conversion is achieved via one or more layers with the inverse Rashba-Edelstein effect (or spin Hall effect) wherein a spin current injected from the input magnet produces a charge current. The sign of the charge current is determined by the direction of the injected spin and thus of magnetization. In some embodiments, charge-to-spin conversion is achieved via magnetoelectric effect in which the charge current produces a voltage on a capacitor, comprising a layer with magnetoelectric effect, leading to switching magnetization of an output magnet. In some embodiments, magnetic response of a magnet is according to an applied exchange bias from the magnetoelectric effect. In some embodiments, a multi-phase clock is used with transistors to cascade multiple MESO logic devices. For example, a 3-phase clock is used to prevent back propagation of current from the output magnet to towards the input magnet. In some embodiments, the clocks control the power supply of each MESO logic/device. For example, when clock phase is low, power supply is coupled to the magnet of the MESO logic/device. In some embodiments, merely two series connected MESO devices conduct while other MESO devices in the cascaded logic are prevented from conducting. As such, unidirectionality for signal propagation is achieved in the cascaded MESO logic. Further, backward propagation of current and leakage current is prevented by the transistors controlled by the multi-phase clock. MESO logic gate is used to build MESO logic function as well as MESO based computing systems (since a computing system design requires complex logic functions). Some embodiments describe a MESO based full adder design which uses one 3-input MESO gate for 1-bit carry generation and one 5-input MESO gate for 1-bit sum generation. A 3-phase clocking is used for the input stage synchronization using n-type transistors (e.g., NMOS). Some embodiments use three or four MESO devices per bit generation in ripple carry adder design and use two n-type transistors per gate for clocking (e.g., for synchronized operation). There are many technical effects of various embodiments. For example, high speed operation of the logic (e.g., 100 picoseconds (ps)) is achieved via the use of magnetoelectric switching operating on semi-insulating nanomagnets. In some examples, switching energy is reduced (e.g., 1-10 attojoules (aJ)) because the current needs to be “on” for a shorter time (e.g., approximately 3 ps) in order to charge the capacitor. In some examples, in contrast to the spin current, here charge current does not attenuate when it flows through an interconnect. Compared to traditional CMOS full adders, the MESO based 1-bit adder design of various embodiments uses MESO minority gates and shows gate count reduction. Also, since all MESO logic is non-volatile, it can additionally be employed as non-volatile logic to achieve ultra-low idle power consumption and efficient power management in integrated circuits. Moreover, MESO is a low voltage device which can operate at 100 mV with aJ class switching energy, offering promising path for future technology scaling and energy efficiency benefits. Other technical effects will be evident from various embodiments and figures. In the following description, numerous details are discussed to provide a more thorough explanation of embodiments of the present disclosure. It will be apparent, however, to one skilled in the art, that embodiments of the present disclosure may be practiced without these specific details. In other instances, well-known structures and devices are shown in block diagram form, rather than in detail, in order to avoid obscuring embodiments of the present disclosure. Note that in the corresponding drawings of the embodiments, signals are represented with lines. Some lines may be thicker, to indicate more constituent signal paths, and/or have arrows at one or more ends, to indicate primary information flow direction. Such indications are not intended to be limiting. Rather, the lines are used in connection with one or more exemplary embodiments to facilitate easier understanding of a circuit or a logical unit. Any represented signal, as dictated by design needs or preferences, may actually comprise one or more signals that may travel in either direction and may be implemented with any suitable type of signal scheme. The term “free” or “unfixed” here with reference to a magnet refers to a magnet whose magnetization direction can change along its easy axis upon application of an external field or force (e.g., Oersted field, spin torque, etc.). Conversely, the term “fixed” or “pinned” here with reference to a magnet refers to a magnet whose magnetization direction is pinned or fixed along an axis and which may not change due to application of an external field (e.g., electrical field, Oersted field, spin torque,). Here, perpendicularly magnetized magnet (or perpendicular magnet, or magnet with perpendicular magnetic anisotropy (PMA)) refers to a magnet having a magnetization which is substantially perpendicular to a plane of the magnet or a device. For example, a magnet with a magnetization which is in a z-direction in a range of 90 (or 270) degrees+/−20 degrees relative to an x-y plane of a device. Here, an in-plane magnet refers to a magnet that has magnetization in a direction substantially along the plane of the magnet. For example, a magnet with a magnetization which is in an x or y direction and is in a range of 0 (or 180 degrees)+/−20 degrees relative to an x-y plane of a device. The term “device” may generally refer to an apparatus according to the context of the usage of that term. For example, a device may refer to a stack of layers or structures, a single structure or layer, a connection of various structures having active and/or passive elements, etc. Generally, a device is a three-dimensional structure with a plane along the x-y direction and a height along the z direction of an x-y-z Cartesian coordinate system. The plane of the device may also be the plane of an apparatus which comprises the device. Throughout the specification, and in the claims, the term “connected” means a direct connection, such as electrical, mechanical, or magnetic connection between the things that are connected, without any intermediary devices. The term “coupled” means a direct or indirect connection, such as a direct electrical, mechanical, or magnetic connection between the things that are connected or an indirect connection, through one or more passive or active intermediary devices. The term “adjacent” here generally refers to a position of a thing being next to (e.g., immediately next to or close to with one or more things between them) or adjoining another thing (e.g., abutting it). The term “circuit” or “module” may refer to one or more passive and/or active components that are arranged to cooperate with one another to provide a desired function. The term “signal” may refer to at least one current signal, voltage signal, magnetic signal, or data/clock signal. The meaning of “a,” “an,” and “the” include plural references. The meaning of “in” includes “in” and “on.” The term “scaling” generally refers to converting a design (schematic and layout) from one process technology to another process technology and subsequently being reduced in layout area. The term “scaling” generally also refers to downsizing layout and devices within the same technology node. The term “scaling” may also refer to adjusting (e.g., slowing down or speeding up—i.e. scaling down, or scaling up respectively) of a signal frequency relative to another parameter, for example, power supply level. The terms “substantially,” “close,” “approximately,” “near,” and “about,” generally refer to being within +/−10% of a target value. For example, unless otherwise specified in the explicit context of their use, the terms “substantially equal,” “about equal” and “approximately equal” mean that there is no more than incidental variation between among things so described. In the art, such variation is typically no more than +/−10% of a predetermined target value. Unless otherwise specified the use of the ordinal adjectives “first,” “second,” and “third,” etc., to describe a common object, merely indicate that different instances of like objects are being referred to, and are not intended to imply that the objects so described must be in a given sequence, either temporally, spatially, in ranking or in any other manner. For the purposes of the present disclosure, phrases “A and/or B” and “A or B” mean (A), (B), or (A and B). For the purposes of the present disclosure, the phrase “A, B, and/or C” means (A), (B), (C), (A and B), (A and C), (B and C), or (A, B and C). The terms “left,” “right,” “front,” “back,” “top,” “bottom,” “over,” “under,” and the like in the description and in the claims, if any, are used for descriptive purposes and not necessarily for describing permanent relative positions. For example, the terms “over,” “under,” “front side,” “back side,” “top,” “bottom,” “over,” “under,” and “on” as used herein refer to a relative position of one component, structure, or material with respect to other referenced components, structures or materials within a device, where such physical relationships are noteworthy. These terms are employed herein for descriptive purposes only and predominantly within the context of a device z-axis and therefore may be relative to an orientation of a device. Hence, a first material “over” a second material in the context of a figure provided herein may also be “under” the second material if the device is oriented upside-down relative to the context of the figure provided. In the context of materials, one material disposed over or under another may be directly in contact or may have one or more intervening materials. Moreover, one material disposed between two materials may be directly in contact with the two layers or may have one or more intervening layers. In contrast, a first material “on” a second material is in direct contact with that second material. Similar distinctions are to be made in the context of component assemblies. The term “between” may be employed in the context of the z-axis, x-axis or y-axis of a device. A material that is between two other materials may be in contact with one or both of those materials, or it may be separated from both of the other two materials by one or more intervening materials. A material “between” two other materials may therefore be in contact with either of the other two materials, or it may be coupled to the other two materials through an intervening material. A device that is between two other devices may be directly connected to one or both of those devices, or it may be separated from both of the other two devices by one or more intervening devices. Here, multiple non-silicon semiconductor material layers may be stacked within a single fin structure. The multiple non-silicon semiconductor material layers may include one or more “P-type” layers that are suitable (e.g., offer higher hole mobility than silicon) for P-type transistors. The multiple non-silicon semiconductor material layers may further include one or more “N-type” layers that are suitable (e.g., offer higher electron mobility than silicon) for N-type transistors. The multiple non-silicon semiconductor material layers may further include one or more intervening layers separating the N-type from the P-type layers. The intervening layers may be at least partially sacrificial, for example to allow one or more of a gate, source, or drain to wrap completely around a channel region of one or more of the N-type and P-type transistors. The multiple non-silicon semiconductor material layers may be fabricated, at least in part, with self-aligned techniques such that a stacked CMOS device may include both a high-mobility N-type and P-type transistor with a footprint of a single finFET. Here, the term “backend” generally refers to a section of a die which is opposite of a “frontend” and where an IC (integrated circuit) package couples to IC die bumps. For example, high level metal layers (e.g., metal layer 6 and above in a ten-metal stack die) and corresponding vias that are closer to a die package are considered part of the backend of the die. Conversely, the term “frontend” generally refers to a section of the die that includes the active region (e.g., where transistors are fabricated) and low-level metal layers and corresponding vias that are closer to the active region (e.g., metal layer 5 and below in the ten-metal stack die example). For the purposes of present disclosure, the terms “spin” and “magnetic moment” are used equivalently. More rigorously, the direction of the spin is opposite to that of the magnetic moment, and the charge of the particle is negative (such as in the case of electron). It is pointed out that those elements of the figures having the same reference numbers (or names) as the elements of any other figure can operate or function in any manner similar to that described, but are not limited to such. In some embodiments, FM 101 is formed of CFGG (i.e., Cobalt (Co), Iron (Fe), Germanium (Ge), or Gallium (Ga) or a combination of them). In some embodiments, FM 101 comprises one or more of Co, Fe, Ni alloys and multilayer hetro-structures, various oxide ferromagnets, garnets, or Heusler alloys. Heusler alloys are ferromagnetic metal alloys based on a Heusler phase. Heusler phases are intermetallic with certain composition and face-centered cubic crystal structure. The ferromagnetic property of the Heusler alloys are a result of a double-exchange mechanism between neighboring magnetic ions. In some embodiments, the Heusler alloy includes one of: Cu2MnAl, Cu2MnIn, Cu2MnSn, Ni2MnAl, Ni2MnIn, Ni2MnSn, Ni2MnSb, Ni2MnGa Co2MnAl, Co2MnSi, Co2MnGa, Co2MnGe, Pd2MnAl, Pd2MnIn, Pd2MnSn, Pd2MnSb, Co2FeSi, Co2FeAl, Fe2VA1, Mn2VGa, Co2FeGe, MnGa, or MnGaRu. In some embodiments, paramagnet 121 comprises a material which includes one or more of: Platinum(Pt), Palladium (Pd), Tungsten (W), Cerium (Ce), Aluminum (Al), Lithium (Li), Magnesium (Mg), Sodium (Na), Cr2O3(chromium oxide), CoO (cobalt oxide), Dysprosium (Dy), Dy2O (dysprosium oxide), Erbium (Er), Er2O3(Erbium oxide), Europium (Eu), Eu2O3(Europium oxide), Gadolinium (Gd), Gadolinium oxide (Gd2O3), FeO and Fe2O3(Iron oxide), Neodymium (Nd), Nd2O3(Neodymium oxide), KO2(potassium superoxide), praseodymium (Pr), Samarium (Sm), Sm2O3(samarium oxide), Terbium (Tb), Tb2O3(Terbium oxide), Thulium (Tm), Tm2O3(Thulium oxide), or V2O3(Vanadium oxide). In some embodiments, paramagnet 121 comprises dopants which include one or more of: Ce, Cr, Mn, Nb, Mo, Tc, Re, Nd, Gd, Tb, Dy, Ho, Er, Tm, or Yb. In various embodiments, the magnet can be either a FM or a paramagnet. In some embodiments, MESO logic 200 comprises a first magnet 201, a stack of layers (e.g., layers 202, 203, and 204, also labeled as 202 In some embodiments, the first and second magnets 201 and 207, respectively, have in-plane magnetic anisotropy. In some embodiments, first magnet 201 comprises first and second portions, wherein the first portion of first magnet 201 is adjacent to the stack of layers (e.g., layers 202 In some embodiments, conductor 205 (or charge interconnect) is coupled to at least a portion of the stack of layers (e.g., one of layers 202 In some embodiments, the stack of layers (e.g., layers 202 In some embodiments, the charge current Iccharges the capacitor around ME layer 206 In this example, the length of first magnet 201 is Lm, the width of conductor 205 is We, the length of conductor 205 from the interface of layer 204 In some embodiments, the input and output charge conductors (211 In some embodiments, an output interconnect 211 In some embodiments, ME layer 206 In some embodiments, first magnet 201 injects a spin polarized current into the high spin-orbit coupling (SOC) material stack (e.g., layers 202 In some embodiments, the stack comprises i) an interface 203 Here, sufficiently matched atomistic crystalline layers refer to matching of the lattice constant ‘a’ within a threshold level above which atoms exhibit dislocation which is harmful to the device (for instance, the number and character of dislocations lead to a significant (e.g., greater than 10%) probability of spin flip while an electron traverses the interface layer). For example, the threshold level is within 5% (i.e., threshold levels in the range of 0% to 5% of the relative difference of the lattice constants). As the matching improves (i.e., matching gets closer to perfect matching), spin injection efficiency from spin transfer from first magnet 201 to first ISHE/ISOC stacked layer increases. Poor matching (e.g., matching worse than 5%) implies dislocation of atoms that is harmful for the device. Table 1 summarizes transduction mechanisms for converting magnetization to charge current and charge current to magnetization for bulk materials and interfaces. In some embodiments, a transistor (e.g., n-type transistor MN1) is coupled to first contact 209 In some embodiments, along with the n-type transistor MN1 connected to Vdd, an n-type transistor MN2 is provided which couples layer 203 In some embodiments, n-type transistor MN3 is provided which is operable to couple power supply Vddto second contact 209 In some embodiments, along with the n-type transistor MN4 connected to Vdd, an n-type transistor MN4 is provided which couples layer 204 For purposes of explaining MESO logic device 200, MESO logic device can be considered to have two portions or sections. The first portion/section (or MESO input cell) comprises components/layers from 211 In some embodiments, transistors MN1 and MN2 of the first section are in series with the nanomagnet 201 and SOC stack (202 In this example, in the first MESO section, IIN(or Icharge(IN)) from input conductor 211 The following section describes the spin to charge and charge to spin dynamics. In some embodiments, the spin-orbit mechanism responsible for spin-to-charge conversion is described by the inverse Rashba-Edelstein effect in 2D electron gases. The Hamiltonian (energy) of spin-orbit coupling electrons in a 2D electron gas is: where αRis the Rashba-Edelstein coefficient, ‘k’ is the operator of momentum of electrons, 2 is a unit vector perpendicular to the 2D electron gas, and {grave over (σ)} is the operator of spin of electrons. The spin polarized electrons with direction of polarization in-plane (e.g., in the xy-plane) experience an effective magnetic field dependent on the spin direction: where μBis the Bohr magneton This results in the generation of a charge current Icin interconnect 205 proportional to the spin current Is(or Js). The spin-orbit interaction by Ag and Bi interface layers 202 and 204 (e.g., the Inverse Rashba-Edelstein Effect (IREE)) produces a charge current Icin the horizontal direction given as: where wmis width of the input magnet 201, and λIREEis the IREE constant (with units of length) proportional to αR. Alternatively, the Inverse Spin Hall Effect in Ta, W, or Pt layer 203 Both IREE and ISHE effects produce spin-to-charge current conversion around 0.1 with existing materials at 10 nm (nanometers) magnet width. For scaled nanomagnets (e.g., 5 nm wide magnets) and exploratory SHE materials such as Bi2Se3, the spin-to-charge conversion efficiency can be between 1 and 2.5. The net conversion of the drive charge current Idriveto magnetization dependent charge current is given as: where ‘P’ is the dimensionless spin polarization. For this estimate, the drive current Idriveand the charge current Ic=Id=100 μA is set. As such, when estimating the resistance of the ISHE interface to be equal to R=100Ω, then the induced voltage is equal to VISHE=10 mV. The charge current Ic, carried by interconnect 205, produces a voltage on the capacitor of ME layer 206 For the following parameters of the magnetoelectric capacitor: thickness tME=5 nm, dielectric constant ε=500, area A=60 nm×20 nm. Then the capacitance is given as: Demonstrated values of the magnetoelectric coefficient is αME˜10/c, where the speed of light is c. This translates to the effective magnetic field exerted on second semi-insulating magnet 207, which is expressed as: This is a strong field sufficient to switch magnetization. The charge on the capacitor of ME layer 206 and the time to fully charge it to the induced voltage is (with the account of decreased voltage difference as the capacitor charges). If the driving voltage is Vd=100 mV, then the energy Eswto switch is expressed as: which is comparable to the switching energy of CMOS transistors. Note that the time to switch tswmagnetization remains much longer than the charging time and is determined by the magnetization precession rate. The micro-magnetic simulations predict this time to be tsw˜100 ps, for example. In some embodiments, materials for first and second magnets 201 and 207 have saturated magnetization Msand effective anisotropy field Hk. Saturated magnetization Msis generally the state reached when an increase in applied external magnetic field H cannot increase the magnetization of the material. Anisotropy Hk generally refers material properties that are highly directionally dependent. In some embodiments, materials for first and second magnets 201 and 207, respectively, are non-ferromagnetic elements with strong paramagnetism which have a high number of unpaired spins but are not room temperature ferromagnets. A paramagnet, as opposed to a ferromagnet, exhibits magnetization when a magnetic field is applied to it. Paramagnets generally have magnetic permeability greater or equal to one and hence are attracted to magnetic fields. In some embodiments, magnets 209 In some embodiments, first and second magnets 201 and 207, respectively, are ferromagnets. In some embodiments, first and second magnets 201 and 207, respectively, comprise one or a combination of materials which includes one or more of: a Heusler alloy, Co, Fe, Ni, Gd, B, Ge, Ga, permalloy, or Yttrium Iron Garnet (YIG), and wherein the Heusler alloy is a material which includes one or more of: Cu, Mn, Al, In, Sn, Ni, Sb, Ga, Co, Fe, Si, Pd, Sb, V, Ru, Cu2MnAl, Cu2MnIn, Cu2MnSn, Ni2MnAl, Ni2MnIn, Ni2MnSn, Ni2MnSb, Ni2MnGa Co2MnAl, Co2MnSi, Co2MnGa, Co2MnGe, Pd2MnAl, Pd2MnIn, Pd2MnSn, Pd2MnSb, Co2FeSi, Co2FeAl, Fe2VAl, Mn2VGa, Co2FeGe, MnGa, MnGaRu, or Mn3X, where ‘X’ is one of Ga or Ge. In some embodiments, the stack of layers providing spin orbit coupling comprises: a first layer 202 ME materials may be divided into three categories. The first category of materials provide polarization and anti-ferromagnetization. These materials include Bismuth ferrite (BFO), Lithium Iron Oxide (LFO) super lattice. The second category of materials also provide polarization and anti-ferromagnetization, but at low temperatures. These materials include TbMnO3and similar multiferroic materials. The third category of materials are magnetoelectric para-electrics. These magnetoelectric para-electrics materials lack polarization, but provide anti-ferromagnetization. The magnetoelectric para-electrics materials include chromia (Cr2O3). In some embodiments, ME layer 206 In some embodiments, first contact 209 In some embodiments, first semi-insulating magnet 209 In some embodiments, first and second semi-insulating magnets 209 In some embodiments, the magnetization of first semi-insulating magnet 209 While various embodiments are illustrated with n-type transistors MN1, MN2, MN3, and MN4, p-type transistors can be used instead and the switching gate signals can be logically inversed. In some embodiments, a combination of n-type and p-type transistors are used. For example, the transistors coupled to power supply Vdd are p-type transistors while the transistors coupled to ground are n-type transistors. Appropriate logic change can be made to the driving gate signals to achieve the same technical effect (e.g., unidirectionality) as achieved by the n-type transistors MN1, MN2, MN3, and MN4. In some embodiments, a combination of n-type and p-type devices (e.g., transmission gates) can be used instead of n-type transistors MN1, MN2, MN3, and MN4. LK model 400 illustrates a circuit that provides ferroelectric voltage VFEand comprises capacitor CO in parallel with a series coupled resistance ρ and internal capacitance CF(QFE) that provides internal voltage Vint. Here, ‘A’ is the area of capacitor CO, ‘d’ is the distance between the plates of capacitor C0, and E0 is the dielectric constant. Plot 420 shows the capacitance behavior of a ferroelectric capacitor (FE-Cap) when connected with a load capacitor. Here, the x-axis is the internal voltage Vintin volts, while the y-axis is the charge from the ferroelectric capacitor when connected with a load capacitor. The dotted region in plot 420 represents the negative capacitance region between the coercive voltage bounds. When a voltage source drives the FE-Cap connected with a load capacitor, the operating region of a FE-cap is biased by the load capacitance. When the FE-Cap is biased at the negative capacitance region (e.g., charge on FE-cap is positive while the voltage across the FE-cap is negative, and vice versa), the voltage across the load capacitance can be higher than the input voltage, owning to the ferroelectric polarity charge induced voltage amplification effect. On the other hand, when the FE-Cap is biased at the positive capacitance region, it operates as a regular capacitor. The negative capacitance effect has been mainly utilized for transistor gate stack enhancement (e.g., negative capacitance FETs) for low-voltage transistors. Some embodiments use the concept of negative capacitance to a MESO logic to enhance the switching of magnets via the magnetoelectric layer. In some embodiments, Vclk3is applied to control the input drivers (gates of transistors MN1 and MN2) of MESO stage 501. In some embodiments, the input driver provides a positive current IN to the first ferroelectric capacitor 206 During time t0 (e.g., 5 ns to 7 ns), Vclk1=Vclk3=1, Vclk2=0, ISUPPLYof MESO stage 501 is on while ISUPPLYof MESO stage 502 is off. The ferroelectric 206 During time t1 (e.g., 7 ns to 9 ns), Vclk3=Vclk2=0, Vclk1=1, ferroelectrics 206 The adder function by architecture 900 is performed using three clocks-VCLK1, VCLK2, and VCLK3, where VCLK1, VCLK2, and VCLK3have different phases. Between time points t0 and t1 (e.g., VCLK1is high and VCLK2is low), the three input MESO cells of 3-bit carry generation structure 901 receives the three inputs (A, B, and Cin), and magnetizations of first magnets 201 of each MESO input cell is set according to the charge current direction of inputs A, B, and Cin, respectively. Between times points t1 and t2 (e.g., overlap time of high voltage phases of VCLK1and VCLK2), the output MESO cells of 3-bit carry generation structure 901 performs minority logic operation of inputs A, B, and Cin, and generates the carry output (Coutb) accordingly. The final sum (e.g., Sumb) is generated by the multi-bit input sum generating structure 902. In some embodiments, the multi-bit input sum generating structure 902 uses two Coutb inputs from two different output MESO cells using 3-bit carry generation structure 901 and performs a minority logic gate operation with inputs A, B, and Cin. As such, multi-bit input sum generating structure 902 includes input MESO cells to process A, B, and Cin. These input MESO cells of multi-bit sum generating structure 902 operate using VCLK2. For example, during the high phase of VCLK2, magnetizations of the magnet 201 of the input MESO cells of multi-bit sum generating structure 902 are set according to the charge directions of inputs A, B, and Cin. Note, Coutb is generated during overlap times of VCLK1and VCLK2, and that inputs A, B, and Cin are interchangeable in minority gates (e.g., {A=1, B=1, Cin=0}, {A=1, B=0, Cin=1}, and {A=0, B=1, Cin=1} result in the same carry Coutb and sum Sumb). In some embodiments, A, B and Cin shown here are the outputs from previous stage or driver circuits, which are not part of the minority gate. The output Sumb is generated by the third clock VCLK3. For example, between time points t3 and t4 (e.g., overlap time of high voltage phases of VCLK2and VCLK3), an output MESO logic cell performs minority logic operation on A, B, Cin, and two Coutb to generate Sumb. In The operation principle of the MESO minority gate 1000 is as follows. When states A and B of input MESO cell 1001 and 1002 are in State “0” (−Q) and state Cin of input MESO cell 1003 is in State “1” (+Q), the summation of the output current of MESO devices 1001, 1002, and 1003 generates a current in the same direction as input currents A or B, assuming near symmetric output current magnitude for State “1” and State “0”. The summation of the output current from conductors 2051-3then deposits positive charge in MESO device 1005 at its input node 1004, switching magnet 207 of MESO 1005 to State “1”. The resulting MESO 1005's state is the same state Cin of MESO 1003, which is the “minority” state among A, B and Cin. The truth table of the 3-input MESO minority gate is shown in For example, for MESO input cell 1001, the input magnet 201 is coupled to supply Vddvia contact 209 During time t0, Vclk1=1 and Vclk2=0, ISUPPLYof MESO inputs cells 1001, 1002, and 1003 is on while ISUPPLYof MESO output cell stage 1305 is off. The ferroelectric 206 During time t1 after t0, Vclk1=0 and Vclk2=1, a DC current path exists from Vdd of MESO stage 1005 to ground of MESO stage 1005. This allows the MESO output cell 1005 to generate ISOC current at 202 When high phases of VCLK1and VCLK2overlap, MESO input cells 1001, 1002, and 1003 drive MESO 1005 and generates an input current to MESO 1005 based on the summation of output currents on interconnect 1004. The minority function is completed by MESO output cell 1005, where its state follows the minority among states of MESO input cells 1001, 1002, and 1003. In some embodiments, all MESO devices are in the interconnect metal layer of a die, whereas the n-type transistors (for signaling) are in the transistor layer or active region of the die. For example, all MESO devices are formed in the backend of the die while the transistors are formed in the frontend of the die. While two clocks are shown for MESO device 1000, more than two clocks may be used. For example, each MESO input cell may operate on its own clock such that there is small overlap between the clocks of the MESO input cells. To enable proper minority logic gate function for the 5-input MESO gate for sum generation 1300 and to avoid backward propagation of charge from output MESO cell 1307 to the input MESO cells 1301, 1302, 1303, 10051, and 10052a two-phase clocking scheme is employed as described with reference to For example, for MESO input cell 1301, the input magnet 201 is coupled to supply Vdd via contact 209 The other input MESO cells are 10051and 10052are output cells of the 3-input MESO carry generation structure 1000/1200. As discussed herein, MESO cell 10051(e.g., 1005 of For MESO output cell 1307, the output magnet 207 is coupled to supply Vddvia contact 209 During time t0, Vclk2=1 and Vclk3=0, ISUPPLYof MESO inputs cells 1301, 1302, and 1303, and cells 10051and 10052is on while ISUPPLYof MESO output cell stage 1307 is off. The ferroelectric 206 Note, depending on the direction of input charge current on conductors 211 During time t1 after t0, Vclk3=0 and Vclk2=1, a transient current path exists from Vddof MESO stage 1307 to ground of MESO stage 1307. This allows the MESO output cell 1307 to provide the minority logic function output Sumb to the next MESO stage. When phases of VCLK2and VCLK3overlap, MESO cells 1301, 1302, 1303, 10051and 10052drive MESO 1307 and generates an input current to MESO 1307 based on the summation of output currents on interconnect 1306 While two clocks are shown for MESO device 1300, more than two clocks may be used. For example, each MESO input cell may operate on its own clock such that there is small overlap between the clocks of the MESO input cells. Compared to MESO gate 1300, here, one of two MESO devices 10051-2is removed. As such, the remaining MESO device of the two MESO devices 10051-2is coupled to driving transistors that provide twice as much current than just transistors MN3 and MN4 of Depending on the supply current direction, the output current of MESO cell can be the same or the opposite direction of the input current. As such, by changing the Vddand ground connection of the transistors for a certain MESO device or cell, either minority or majority gate function can be achieved. In some embodiments, in carry and sum generation operations, either Coutb and Sumb (Vddand ground is the same as the previous stage) or Cout and Sum (Vddand ground connection is altered comparing to the previous MESO stage). The 1-bit full adder provides Cout and Sum (instead of Coutb and Sumb) when the corresponding output minority gates have Vdd and ground connections altered or have negative Vdd. The generated Cout from the first stage and the input from the second stage (A1, B1) form the three inputs of the second bit full adder (the first bit Coutb has a metal connection to the input of the second bit 5-input minority gate which is not shown in the figure). Therefore, a ripple carry adder operation is obtained by cascading the 1-bit full adder and expanding to a 4-bit design or multi-bit design. For proper ripple carry operation and to avoid backward propagation, six clocks VCLK1, VCLK2, VCLK3, VCLK4, VCLK5, and VCLK6are used for the various cascaded stages of MESO devices. In various embodiments, clocks VCLK1, VCLK2, VCLK3, VCLK4, VCLK5, and VCLK6have different phases. In some embodiments, phases of clocks VCLK1and VCLK2have a portion of overlapping phases, phases of clocks VCLK2 andVCLK3have a portion of overlapping phases, phases of clocks VCLK3and VCLK4have a portion of overlapping phases, phases of clocks VCLK4and VCLK5have a portion of overlapping phases, and phases of clocks VCLK5and VCLK6have a portion of overlapping phases. As such, Cout0 (or Coutb0) is generated upon assertion of VCLK2, Sum0 (or Sumb0) is generated upon assertion of VCLK3, Cout1 (or Coutb1) is generated upon assertion of VCLK3, Sum1 (or Sumb1) is generated upon assertion of VCLK4, Cout2 (or Coutb2) is generated upon assertion of VCLK4, Sum2 (or Sumb2) is generated upon assertion of VCLK5, Cout3 (or Coutb3) is generated upon assertion of VCLK5, and Sum3 (or Sumb3) is generated upon assertion of VCLK6. Also, VCLK4, VCLK5, and VCLK6can be the same as VCLK1, VCLK2and VCLK3, respectively, since 3-phase clock can provide isolation between MESO stages to prevent backpropagation effect. In that case, only 3 clocks are used for multiple adder stages. At block 2002, a multi-bit sum generation structure (e.g., 902, 1300, 1500) including at least three cells (e.g., 1301, 1302, and 1303, 10051-2or 1504, where 10051-2or 1504 can be part of 3-bit carry generation structure 1200) comprising magnetoelectric material and spin orbit material, wherein the carry output of the 3-bit carry generation structure is coupled to an input of the multi-bit sum generation structure, and wherein the multi-bit sum generation structure is to perform a minority logic operation on the first, second, and third inputs and the carry output to generate a sum output. Here, a 1-bit adder is formed by blocks 2001 and 2002 together. To form multiple bit adders (e.g., N-bit adder), blocks 2001 and 2002 are repeated and MESO cells coupled together as described with reference to In some embodiments, computing device 2100 includes first processor 2110 with MESO full adder, according to some embodiments discussed. Other blocks of the computing device 2100 may also include a MESO full adder, according to some embodiments. The various embodiments of the present disclosure may also comprise a network interface within 2170 such as a wireless interface so that a system embodiment may be incorporated into a wireless device, for example, cell phone or personal digital assistant. In some embodiments, processor 2110 can include one or more physical devices, such as microprocessors, application processors, microcontrollers, programmable logic devices, or other processing means. The processing operations performed by processor 2110 include the execution of an operating platform or operating system on which applications and/or device functions are executed. The processing operations include operations related to I/O (input/output) with a human user or with other devices, operations related to power management, and/or operations related to connecting the computing device 2100 to another device. The processing operations may also include operations related to audio I/O and/or display I/O. In some embodiments, computing device 2100 includes audio subsystem 2120, which represents hardware (e.g., audio hardware and audio circuits) and software (e.g., drivers, codecs) components associated with providing audio functions to the computing device. Audio functions can include speaker and/or headphone output, as well as microphone input. Devices for such functions can be integrated into computing device 2100, or connected to the computing device 2100. In one embodiment, a user interacts with the computing device 2100 by providing audio commands that are received and processed by processor 2110. In some embodiments, computing device 2100 comprises display subsystem 2130. Display subsystem 2130 represents hardware (e.g., display devices) and software (e.g., drivers) components that provide a visual and/or tactile display for a user to interact with the computing device 2100. Display subsystem 2130 includes display interface 2132, which includes the particular screen or hardware device used to provide a display to a user. In one embodiment, display interface 2132 includes logic separate from processor 2110 to perform at least some processing related to the display. In one embodiment, display subsystem 2130 includes a touch screen (or touch pad) device that provides both output and input to a user. In some embodiments, computing device 2100 comprises I/O controller 2140. I/O controller 2140 represents hardware devices and software components related to interaction with a user. I/O controller 2140 is operable to manage hardware that is part of audio subsystem 2120 and/or display subsystem 2130. Additionally, I/O controller 2140 illustrates a connection point for additional devices that connect to computing device 2100 through which a user might interact with the system. For example, devices that can be attached to the computing device 2100 might include microphone devices, speaker or stereo systems, video systems or other display devices, keyboard or keypad devices, or other I/O devices for use with specific applications such as card readers or other devices. As mentioned above, I/O controller 2140 can interact with audio subsystem 2120 and/or display subsystem 2130. For example, input through a microphone or other audio device can provide input or commands for one or more applications or functions of the computing device 2100. Additionally, audio output can be provided instead of, or in addition to display output. In another example, if display subsystem 2130 includes a touch screen, the display device also acts as an input device, which can be at least partially managed by I/O controller 2140. There can also be additional buttons or switches on the computing device 2100 to provide I/O functions managed by I/O controller 2140. In some embodiments, I/O controller 2140 manages devices such as accelerometers, cameras, light sensors or other environmental sensors, or other hardware that can be included in the computing device 2100. The input can be part of direct user interaction, as well as providing environmental input to the system to influence its operations (such as filtering for noise, adjusting displays for brightness detection, applying a flash for a camera, or other features). In some embodiments, computing device 2100 includes power management 2150 that manages battery power usage, charging of the battery, and features related to power saving operation. Memory subsystem 2160 includes memory devices for storing information in computing device 2100. Memory can include nonvolatile (state does not change if power to the memory device is interrupted) and/or volatile (state is indeterminate if power to the memory device is interrupted) memory devices. Memory subsystem 2160 can store application data, user data, music, photos, documents, or other data, as well as system data (whether long-term or temporary) related to the execution of the applications and functions of the computing device 2100. Elements of embodiments are also provided as a machine-readable medium (e.g., memory 2160) for storing the computer-executable instructions (e.g., instructions to implement any other processes discussed herein). The machine-readable medium (e.g., memory 2160) may include, but is not limited to, flash memory, optical disks, CD-ROMs, DVD ROMs, RAMs, EPROMs, EEPROMs, magnetic or optical cards, phase change memory (PCM), or other types of machine-readable media suitable for storing electronic or computer-executable instructions. For example, embodiments of the disclosure may be downloaded as a computer program (e.g., BIOS) which may be transferred from a remote computer (e.g., a server) to a requesting computer (e.g., a client) by way of data signals via a communication link (e.g., a modem or network connection). In some embodiments, computing device 2100 comprises connectivity 2170. Connectivity 2170 includes hardware devices (e.g., wireless and/or wired connectors and communication hardware) and software components (e.g., drivers, protocol stacks) to enable the computing device 2100 to communicate with external devices. The computing device 2100 could be separate devices, such as other computing devices, wireless access points or base stations, as well as peripherals such as headsets, printers, or other devices. Connectivity 2170 can include multiple different types of connectivity. To generalize, the computing device 2100 is illustrated with cellular connectivity 2172 and wireless connectivity 2174. Cellular connectivity 2172 refers generally to cellular network connectivity provided by wireless carriers, such as provided via GSM (global system for mobile communications) or variations or derivatives, CDMA (code division multiple access) or variations or derivatives, TDM (time division multiplexing) or variations or derivatives, or other cellular service standards. Wireless connectivity (or wireless interface) 2174 refers to wireless connectivity that is not cellular, and can include personal area networks (such as Bluetooth, Near Field, etc.), local area networks (such as Wi-Fi), and/or wide area networks (such as WiMax), or other wireless communication. In some embodiments, computing device 2100 comprises peripheral connections 2180. Peripheral connections 2180 include hardware interfaces and connectors, as well as software components (e.g., drivers, protocol stacks) to make peripheral connections. It will be understood that the computing device 2100 could both be a peripheral device (“to” 2182) to other computing devices, as well as have peripheral devices (“from” 2184) connected to it. The computing device 2100 commonly has a “docking” connector to connect to other computing devices for purposes such as managing (e.g., downloading and/or uploading, changing, synchronizing) content on computing device 2100. Additionally, a docking connector can allow computing device 2100 to connect to certain peripherals that allow the computing device 2100 to control content output, for example, to audiovisual or other systems. In addition to a proprietary docking connector or other proprietary connection hardware, the computing device 2100 can make peripheral connections 2180 via common or standards-based connectors. Common types can include a Universal Serial Bus (USB) connector (which can include any of a number of different hardware interfaces), DisplayPort including MiniDisplayPort (MDP), High Definition Multimedia Interface (HDMI), Firewire, or other types. Reference in the specification to “an embodiment,” “one embodiment,” “some embodiments,” or “other embodiments” means that a particular feature, structure, or characteristic described in connection with the embodiments is included in at least some embodiments, but not necessarily all embodiments. The various appearances of “an embodiment,” “one embodiment,” or “some embodiments” are not necessarily all referring to the same embodiments. If the specification states a component, feature, structure, or characteristic “may,” “might,” or “could” be included, that particular component, feature, structure, or characteristic is not required to be included. If the specification or claim refers to “a” or “an” element, that does not mean there is only one of the elements. If the specification or claims refer to “an additional” element, that does not preclude there being more than one of the additional element. Furthermore, the particular features, structures, functions, or characteristics may be combined in any suitable manner in one or more embodiments. For example, a first embodiment may be combined with a second embodiment anywhere the particular features, structures, functions, or characteristics associated with the two embodiments are not mutually exclusive. While the disclosure has been described in conjunction with specific embodiments thereof, many alternatives, modifications and variations of such embodiments will be apparent to those of ordinary skill in the art in light of the foregoing description. The embodiments of the disclosure are intended to embrace all such alternatives, modifications, and variations as to fall within the broad scope of the appended claims. In addition, well known power/ground connections to integrated circuit (IC) chips and other components may or may not be shown within the presented figures, for simplicity of illustration and discussion, and so as not to obscure the disclosure. Further, arrangements may be shown in block diagram form in order to avoid obscuring the disclosure, and also in view of the fact that specifics with respect to implementation of such block diagram arrangements are highly dependent upon the platform within which the present disclosure is to be implemented (i.e., such specifics should be well within purview of one skilled in the art). Where specific details (e.g., circuits) are set forth in order to describe example embodiments of the disclosure, it should be apparent to one skilled in the art that the disclosure can be practiced without, or with variation of, these specific details. The description is thus to be regarded as illustrative instead of limiting. An abstract is provided that will allow the reader to ascertain the nature and gist of the technical disclosure. The abstract is submitted with the understanding that it will not be used to limit the scope or meaning of the claims. The following claims are hereby incorporated into the detailed description, with each claim standing on its own as a separate embodiment.BACKGROUND
BRIEF DESCRIPTION OF THE DRAWINGS
DETAILED DESCRIPTION
Transduction mechanisms for Spin to Charge and Charge to Spin Conversion Spin → Charge Charge → Spin Bulk Inverse Spin Hall Effect Magnetoelectric effect Interface Inverse Rashba-Edelstein Effect Magnetoelectric effect