A solar cell includes: a first bus bar electrode disposed on a first end portion of the solar cell, and to which the wiring member is connected; a second bus bar electrode disposed on a second end portion of the solar cell, and to which the wiring member is connected; first finger electrodes disposed on the solar cell, electrically connected to the first bus bar electrode, and extending in a first direction toward the second bus bar electrode; second finger electrodes disposed on the solar cell, electrically connected to the second bus bar electrode, and extending in a second direction toward the first bus bar electrode. Each first finger electrode has a thickness which decreases as a distance to the second bus bar electrode decreases, and each second finger electrode has a thickness which decreases as a distance to the first bus bar electrode decreases.
1. A solar cell module comprising:
a plurality of solar cells each having a light receiving surface and a back surface; and a wiring member which electrically connects the plurality of solar cells, wherein each of the plurality of solar cells includes: a first bus bar electrode which is disposed on a first end portion of the back surface of the solar cell, and to which the wiring member is connected; a second bus bar electrode which is disposed on a second end portion of the back surface of the solar cell, and to which the wiring member is connected; a plurality of first finger electrodes disposed on the back surface of the solar cell, electrically connected to the first bus bar electrode, and extending in a first direction toward the second bus bar electrode; and a plurality of second finger electrodes disposed on the back surface of the solar cell, electrically connected to the second bus bar electrode, and extending in a second direction toward the first bus bar electrode, the plurality of first finger electrodes and the plurality of second finger electrodes are alternately disposed in a direction substantially perpendicular to the first direction and the second direction, each of the plurality of first finger electrodes has a thickness which decreases as a distance to the second bus bar electrode decreases, and each of the plurality of second finger electrodes has a thickness which decreases as a distance to the first bus bar electrode decreases. 2. The solar cell module according to wherein each of the first bus bar electrode, the second bus bar electrode, the plurality of first finger electrodes, and the plurality of second finger electrodes at least partially includes a plated film. 3. The solar cell module according to wherein the wiring member is connected to the first bus bar electrode and the second bus bar electrode by an adhesive layer. 4. A solar cell having a light receiving surface and a back surface, the solar cell comprising:
a first bus bar electrode disposed on a first end portion of the back surface; a second bus bar electrode disposed on a second end portion of the back surface; a plurality of first finger electrodes disposed on the back surface, electrically connected to the first bus bar electrode, and extending in a first direction toward the second bus bar electrode; and a plurality of second finger electrodes disposed on the back surface, electrically connected to the second bus bar electrode, and extending in a second direction toward the first bus bar electrode, the plurality of first finger electrodes and the plurality of second finger electrodes are alternately disposed in a direction substantially perpendicular to the first direction and the second direction, each of the plurality of first finger electrodes has a thickness which decreases as a distance to the second bus bar electrode decreases, and each of the plurality of second finger electrodes has a thickness which decreases as a distance to the first bus bar electrode decreases.
This application is a U.S. continuation application of PCT International Patent Application Number PCT/JP2014/082398 filed on Dec. 8, 2014, claiming the benefit of priority of Japanese Patent Application Number 2014-060093, filed on Mar. 24, 2014, the entire contents of which are hereby incorporated by reference. The present disclosure relates to a solar cell module and a solar cell. Since a back contact solar cell requires no electrode on the light receiving surface, high-output characteristics are expected. On the back surface of the back contact solar cell, generally, finger electrodes and bus bar electrodes connected to the finger electrodes are provided. In a solar cell module including back contact solar cells, as disclosed in International Publication No. WO2013/005475 (Patent Literature (PTL) 1), for example, different conductivity type bus bar electrodes of adjacent solar cells are electrically connected by a wiring member. The solar cell module including the back contact solar cells is requested for further improvement on the output characteristics. In proximity to the bus bar electrodes to which the wiring member is connected, the tips of the finger electrodes of different conductivity types are located. Therefore, when the wiring member is connected to the bus bar electrodes, the wiring member may contact the finger electrodes, resulting in a short circuit. An object of the present disclosure is to provide a solar cell module and a solar cell each of which is capable of improving the output characteristics of the solar cell module including back contact solar cells, and preventing, when a wiring member is connected to the bus bar electrodes, the wiring member from contacting the finger electrodes and resulting in a short circuit. The solar cell module according to an aspect of the present invention is a solar cell module including: a plurality of solar cells each having a light receiving surface and a back surface; and a wiring member which electrically connects the plurality of solar cells. Each of the plurality of solar cells includes: a first bus bar electrode which is disposed on a first end portion of the back surface of the solar cell, and to which the wiring member is connected; a second bus bar electrode which is disposed on a second end portion of the back surface of the solar cell, and to which the wiring member is connected; a plurality of first finger electrodes disposed on the back surface of the solar cell, electrically connected to the first bus bar electrode, and extending in a first direction toward the second bus bar electrode; a plurality of second finger electrodes disposed on the back surface of the solar cell, electrically connected to the second bus bar electrode, and extending in a second direction toward the first bus bar electrode. The plurality of first finger electrodes and the plurality of second finger electrodes are alternately disposed in a direction substantially perpendicular to the first direction and the second direction. Each of the plurality of first finger electrodes has a thickness which decreases as a distance to the second bus bar electrode decreases, and each of the plurality of second finger electrodes has a thickness which decreases as a distance to the first bus bar electrode decreases. The solar cell according to an aspect of the present invention is a solar cell having a light receiving surface and a back surface. The solar cell includes: a first bus bar electrode disposed on a first end portion of the back surface; a second bus bar electrode disposed on a second end portion of the back surface; a plurality of first finger electrodes disposed on the back surface, electrically connected to the first bus bar electrode, and extending in a first direction toward the second bus bar electrode; and a plurality of second finger electrodes disposed on the back surface, electrically connected to the second bus bar electrode, and extending in a second direction toward the first bus bar electrode. The plurality of first finger electrodes and the plurality of second finger electrodes are alternately disposed in a direction substantially perpendicular to the first direction and the second direction. Each of the plurality of first finger electrodes has a thickness which decreases as a distance to the second bus bar electrode decreases, and each of the plurality of second finger electrodes has a thickness which decreases as a distance to the first bus bar electrode decreases. Accordingly, it is possible to improve the output characteristics of the solar cell module, and it is also possible to prevent, when the wiring members are connected to the bus bar electrodes, the wiring members from contacting the finger electrodes and resulting in a short circuit. The figures depict one or more implementations in accordance with the present teaching, by way of examples only, not by way of limitations. In the figures, like reference numerals refer to the same or similar elements. Hereinafter, an embodiment will be described. However, the following embodiment is merely an example, and does not limit the scope of the present disclosure. Moreover, in the drawings, elements having essentially the same functions may share like reference numbers. The first protective member 3 may be made of, for example, a member having light-transmitting properties such as a glass substrate and a resin substrate. The second protective member 4 may be made of, for example, a resin sheet, resin sheets with a metal foil interposed therebetween, a glass substrate, or a resin substrate. The filler layer 5 may be made of, for example, resin such as ethylene-vinyl acetate copolymer (EVA), polyvinyl butyral (PVB), polyethylene (PE), and polyurethane (PU). In the solar cell module 1, the solar cells 10 are arranged in a y-direction. Each solar cell 10 has a light-receiving surface 10 A semiconductor layer 12 A semiconductor layer may be provided between the semiconductor layer 12 The surface of the semiconductor layer 12 A semiconductor layer 14 The semiconductor layer 14 The thickness of the semiconductor layer 14 The end portion of the semiconductor layer 14 A p-side seed layer 17 is provided on the semiconductor layer 14 On the other hand, an n-side seed layer 18 is provided on the semiconductor layer 15 As illustrated in As described above, the tapered shape can be formed by, during the electroplating, connecting a cathode to the p-side seed layer 17 in the region of the first bus bar electrode 23 and a cathode to the n-side seed layer 18 in the region of the second bus bar electrode 24. That is, such a cathode connection increases the internal resistance of the p-side seed layer 17 from the base portion 21 The wiring member 2 is bonded to the solar cells 10 by an adhesive layer 6 illustrated in In the present embodiment, the first finger electrode 21 has a tapered shape in which the thickness decreases from the base portion 21 In the present embodiment, since the thickness of the first finger electrode 21 increases from the tip portion 21 The advantageous effects of the first finger electrodes 21 have been described above. Similar advantageous effects can also be obtained for the second finger electrodes 22. As illustrated in In the present embodiment, as illustrated in The thickness of the tip portion 21 In the present disclosure, each of the first and second finger electrodes 21 and 22 and the first and second bus bar electrodes 23 and 24 may at least partially include a plated film. In the present embodiment, the first and second finger electrodes 21 and 22 and the first and second bus bar electrodes 23 and 24 include plated films comprising Cu. However, the first and second finger electrodes 21 and 22 and the first and second bus bar electrodes 23 and 24 are not limited to such examples, but each may include a stack of plated films. Specifically, for example, each of the first and second finger electrodes 21 and 22 and the first and second bus bar electrodes 23 and 24 may include a stack of a first plated film comprising Cu and a second plated film comprising Sn. The example has been described in the above embodiment where the conductivity type of the substrate 11 is an n-type, but the conductivity type of the substrate 11 may be a p-type. While the foregoing has described one or more embodiments and/or other examples, it is understood that various modifications may be made therein and that the subject matter disclosed herein may be implemented in various forms and examples, and that they may be applied in numerous applications, only some of which have been described herein. It is intended by the following claims to claim any and all modifications and variations that fall within the true scope of the present teachings.CROSS REFERENCE TO RELATED APPLICATIONS
TECHNICAL FIELD
BACKGROUND ART
SUMMARY
BRIEF DESCRIPTION OF THE DRAWINGS
[FIG. 1]
[FIG. 2]
[FIG. 3]
[FIG. 4]
[FIG. 5]
[FIG. 6]
[FIG. 7]
[FIG. 8]
DETAILED DESCRIPTION
Embodiment