The disclosure relates to outer membrane vesicles from Francisella and Piscirickettsia, and their use in vaccine compositions. In particular, the present disclosure relates to compositions and methods useful in inducing protective immunity against francisellosis or salmon rickettsial septicaemia (SRS) in fish.
1. A method for providing immunity in a fish against a microorganism comprising:
administering a composition comprising an outer membrane vesicle of the microorganism to a fish. 2. The method of 3. The method of 4. The method of 5. The method of 6. The method of 7. The method of 8. The method of 9. A vaccine for providing immunity in a fish against microorganisms comprising:
a protective amount of a purified preparation of outer membrane vesicles of a microorganism and a physiologically acceptable carrier for a fish. 10. The vaccine of 11. The vaccine of 12. The vaccine of 13. The vaccine of 14. The vaccine of 15. The vaccine of 16. The vaccine of 17-24. (canceled)
The disclosure relates to outer membrane vesicles from microorganisms, and their use in vaccine compositions. In particular the disclosure relates to outer membrane vesicles from Aquaculture is able to prevent outbreaks of many bacterial infections that presented huge problems for the industry in its youth, by the use of vaccines composed of inactivated in vitro cultured whole-cell bacterial preparations (bacterins) supplemented with adjuvants (reviewed by Brudeseth et al., 2013). As a consequence of this, the use of antimicrobials in Norwegian aquaculture has declined enormously despite a large increase in the amount of fish produced (reviewed by Sommerset et al., 2005). No commercial vaccine for fish francisellosis is currently available (reviewed by Colquhoun & Duodu, 2011; reviewed by Brudeseth et al., 2013), as attempts at using whole-cell preparations of When constructing vaccines for immunization of Atlantic cod there are certain peculiarities of the cod immune system that should be addressed. Vaccination results in production of lower levels of specific antibodies and less variety in the utilization of immunoglobulin heavy chain types, but despite this Atlantic cod develop protective immunity after vaccination with most bacterial pathogens (reviewed by Samuelsen et al., 2006). The reason for this was for a long time unclear, however difficulties with identifying MHC class II and associated genes indicated changes in how Atlantic cod process classical MHC class II dependent antigens. Recently whole-genome sequencing revealed that the genome of Atlantic cod lack MHC class II and Invariant chain (Ii), and that CD4 is only present as a truncated pseudogene (Star et al., 2011). This would render the MHC class II antigen presenting pathway (Mantegazza et al., 2013) non-functional, and would explain the lack of specific antigen-responses when vaccinating with bacterins. Atlantic cod has expanded its repertoire of MHC class I antigens which might facilitate cross-presentation of traditional MHC class II antigens by MHC class I molecules, and there is evidence that Atlantic cod might be compensating for the loss of CD4+ T-cells as well by having different subsets of CD8+ T-cells (Star et al., 2011). Atlantic cod also has high levels of natural antibodies compared to other fish species (reviewed by Pilström et al., 2005), which might compensate for a strong specific antibody response on encounter with a pathogen. However, there are reports of Atlantic cod producing specific antibodies in response to vaccination with The production of membrane vesicles by cells is a conserved mechanism occurring throughout all domains of life, both prokaryotic and eukaryotic (reviewed by Deatherage & Cookson, 2012). In bacteria, these vesicles are usually called Outer Membrane Vesicles (OMVs) and are formed by budding from the outer bacterial membrane (from Gram negative bacteria). They are 10-300 nm in diameter and spherical, containing outer membrane and periplasmic proteins, and recent data indicates that they might contain inner membrane and cytoplasmic proteins as well, and in some cases DNA (Pèrez-Cruz et al., 2013+++). The protein content of OMVs show specific packaging, as some proteins are enriched and some are excluded (e.g. Galka et al., 2011; Haurat et al., 2011 og mange flere). The exact sorting mechanism responsible for enrichment or exclusion of proteins from OMVs is not currently known. Many pathogenic bacteria incorporate virulence factors, including toxins, into their OMVs, turning the vesicles into bacterial-derived bombs (Kuehn & Kesty, 2005; Galka et al., 2011; Haurat et al., and etec+salmonella as well). OMVs have recently received renewed focus in the field of vaccinology (reviewed by Collins, 2011), as they present antigens in their native conformation and does not require adjuvants to be immunogenic. Immunization of humans using OMVs have been performed with great success against Systems and methods for protecting fish against infection by infectious agents are needed. The disclosure relates to outer membrane vesicles from microorganisms, and their use in vaccine compositions in fish. In particular the disclosure relates to outer membrane vesicles from Accordingly, in some embodiments, the present invention provides methods and uses of inducing immunity against francisellosis (e.g., preventing or treating francisellosis disease and/or SRS) in a fish, comprising: administering a composition comprising an outer membrane vesicle of a Additional embodiments are described herein. As used herein, the term “under conditions such that said subject generates an immune response” refers to any qualitative or quantitative induction, generation, and/or stimulation of an immune response (e.g., innate or acquired). A used herein, the term “immune response” refers to a response by the immune system of a subject. For example, immune responses include, but are not limited to, a detectable alteration (e.g., increase) in Toll receptor activation, lymphokine (e.g., cytokine (e.g., Th1 or Th2 type cytokines) or chemokine) expression and/or secretion, macrophage activation, dendritic cell activation, T cell activation (e.g., CD4+ or CD8+ T cells), NK cell activation, and/or B cell activation (e.g., antibody generation and/or secretion). Additional examples of immune responses include binding of an immunogen (e.g., antigen (e.g., immunogenic polypeptide)) to an MHC molecule and inducing a cytotoxic T lymphocyte (“CTL”) response, inducing a B cell response (e.g., antibody production), and/or T-helper lymphocyte response, and/or a delayed type hypersensitivity (DTH) response against the antigen from which the immunogenic polypeptide is derived, expansion (e.g., growth of a population of cells) of cells of the immune system (e.g., T cells, B cells (e.g., of any stage of development (e.g., plasma cells), and increased processing and presentation of antigen by antigen presenting cells. An immune response may be to immunogens that the subject's immune system recognizes as foreign (e.g., non-self antigens from microorganisms (e.g., pathogens), or self-antigens recognized as foreign). Thus, it is to be understood that, as used herein, “immune response” refers to any type of immune response, including, but not limited to, innate immune responses (e.g., activation of Toll receptor signaling cascade) cell-mediated immune responses (e.g., responses mediated by T cells (e.g., antigen-specific T cells) and non-specific cells of the immune system) and humoral immune responses (e.g., responses mediated by B cells (e.g., via generation and secretion of antibodies into the plasma, lymph, and/or tissue fluids). The term “immune response” is meant to encompass all aspects of the capability of a subject's immune system to respond to antigens and/or immunogens (e.g., both the initial response to an immunogen (e.g., a pathogen) as well as acquired (e.g., memory) responses that are a result of an adaptive immune response). As used herein, the term “immunity” refers to protection from disease (e.g., preventing or attenuating (e.g., suppression) of a sign, symptom or condition of the disease) upon exposure to a microorganism (e.g., pathogen) capable of causing the disease. Immunity can be innate (e.g., non-adaptive (e.g., non-acquired) immune responses that exist in the absence of a previous exposure to an antigen) and/or acquired (e.g., immune responses that are mediated by B and T cells following a previous exposure to antigen (e.g., that exhibit increased specificity and reactivity to the antigen)). As used herein, the term “immunogen” refers to an agent (e.g., a microorganism (e.g., bacterium, virus or fungus) and/or portion or component thereof (e.g., a protein antigen)) that is capable of eliciting an immune response in a subject. In some embodiments, immunogens elicit immunity against the immunogen (e.g., microorganism (e.g., pathogen or a pathogen product)). The term “test compound” refers to any chemical entity, pharmaceutical, drug, and the like that can be used to treat or prevent a disease, illness, sickness, or disorder of bodily function, or otherwise alter the physiological or cellular status of a sample. Test compounds comprise both known and potential therapeutic compounds. A test compound can be determined to be therapeutic by screening using the screening methods of the present invention. A “known therapeutic compound” refers to a therapeutic compound that has been shown (e.g., through animal trials or prior experience with administration to humans) to be effective in such treatment or prevention. The term “sample” as used herein is used in its broadest sense. As used herein, the term “sample” is used in its broadest sense. In one sense it can refer to a tissue sample. In another sense, it is meant to include a specimen or culture obtained from any source, as well as biological. Biological samples may be obtained from animals (including humans) and encompass fluids, solids, tissues, and gases. Biological samples include, but are not limited to blood products, such as plasma, serum and the like. These examples are not to be construed as limiting the sample types applicable to the present invention. A sample suspected of containing a human chromosome or sequences associated with a human chromosome may comprise a cell, chromosomes isolated from a cell (e.g., a spread of metaphase chromosomes), genomic DNA (in solution or bound to a solid support such as for Southern blot analysis), RNA (in solution or bound to a solid support such as for Northern blot analysis), cDNA (in solution or bound to a solid support) and the like. A sample suspected of containing a protein may comprise a cell, a portion of a tissue, an extract containing one or more proteins and the like. The disclosure relates to outer membrane vesicles from Vaccinating against intracellular pathogens has always been a challenge, especially without resorting to the use of live-attenuated vaccines (Titball, 2008). Although antibodies typically have been thought to exclusively combat pathogens in the extracellular stages of infection, new information regarding the importance of antibody-mediated immunity against intracellular pathogens question this long-standing dogma (Casadevall & Pirofsky, 2006). But even though it has been proven that It is contemplated that vaccination with OMVs can protect zebrafish against development of francisellosis. This was apparent from quantification of bacterial burden in tissues from infected fish, and also by a clear clinical improvement for vaccinated fish compared to unvaccinated fish. The infectious dose was chosen due to a desire to mimic the spontaneously occurring disease as much as possible. As francisellosis in Atlantic cod is a chronic, granulomatous disease (Nylund et al., 2006; Olsen et al., 2006), we wanted to avoid an acute model of infection. OMVs isolated from most bacteria require detergent-extraction to reduce the levels of LPS and LOS (lipo-oligo-saccharides) to be safe for parenteral delivery (Collins, 2011). Detergent-extracted OMVs, as well as OMVs induced by other chemical methods such as gentamicin treatment, differ in protein content compared to native OMVs (Collins 2011; van de Waterbeemd et al., 2013). As The present invention relates to compositions, such as vaccines, and their use to elicit immune responses against Immunogenic compositions comprise an immunologically effective amount of antigen, as well as any other compatible components, as needed. By “immunologically effective amount” is meant that the administration of that amount to an subject, such as a fish, either in a single dose or as part of a series, is effective for treatment or prevention. This amount varies depending upon the health and physical condition of the subject to be treated, age, the taxonomic group or subject to be treated (e.g., fish, etc.), the capacity of the individual's immune system to synthesize antibodies, the degree of protection desired, the formulation of the vaccine, and other relevant factors. It is expected that the amount will fall in a relatively broad range that can be determined through routine trials. Dosage treatment may be a single dose schedule or a multiple dose schedule (e.g., including booster doses). The vaccine may be administered in conjunction with other immunoregulatory agents. Accordingly, embodiments of the present invention provide compositions and methods for immunizing fish against francisellosis. In some embodiments, the present invention provides OMV isolated from a variety of species of It should be noted that there are many synonyms for these species and they have been isolated from ornamental fish to fish from marine, fresh, brackish, warm and cold water (See e.g., Colquhoun D J, Duodu S. In some embodiments, the present disclosure provides OMV isolated from In some embodiments, the present invention provides vaccine compositions comprising an OMV isolated from The vaccines of the present invention are preferably administered to fish to prevent, e.g., francisellosis or Salmon Rickettsial Septicaemia (SRS), anytime before or after hatching. The term “fish” is defined to include but not be limited to fish species including trout, salmon, carp, perch, pike, eels, and char as well as mollusks and crustaceans. The vaccine may be provided in a sterile container in unit form or in other amounts. It is preferably stored frozen, below −20.degree. C., and more preferably below −70.degree. C. It is thawed prior to use, and may be refrozen immediately thereafter. In some embodiments, vaccine compositions comprise one or more additional agents including but are not limited to, adjuvants, surfactants, additives, buffers, solubilizers, chelators, oils, salts, therapeutic agents, drugs, bioactive agents, antibacterials, and antimicrobial agents (e.g., antibiotics, antivirals, etc.). In some embodiments, a vaccine composition comprises an agent and/or co-factor that enhance the ability of the immunogen to induce an immune response (e.g., an adjuvant). In some preferred embodiments, the presence of one or more co-factors or agents reduces the amount of immunogen required for induction of an immune response (e.g., a protective immune respone (e.g., protective immunization)). In some embodiments, the presence of one or more co-factors or agents can be used to skew the immune response towards a cellular (e.g., T cell mediated) or humoral (e.g., antibody mediated) immune response. The present invention is not limited by the type of co-factor or agent used in a therapeutic agent of the present invention. Adjuvants are described in general in Vaccine Design—the Subunit and Adjuvant Approach, edited by Powell and Newman, Plenum Press, New York, 1995. The present invention is not limited by the type of adjuvant utilized (e.g., for use in a composition (e.g., pharmaceutical composition). For example, in some embodiments, suitable adjuvants include an aluminium salt such as aluminium hydroxide gel (alum) or aluminium phosphate. In some embodiments, an adjuvant may be a salt of calcium, iron or zinc, or may be an insoluble suspension of acylated tyrosine, or acylated sugars, cationically or anionically derivatised polysaccharides, or polyphosphazenes. In some embodiments, adjuvants are mineral oil or Montanide ISA711. In general, an immune response is generated to an antigen through the interaction of the antigen with the cells of the immune system. Immune responses may be broadly categorized into two categories: humoral and cell mediated immune responses (e.g., traditionally characterized by antibody and cellular effector mechanisms of protection, respectively). These categories of response have been termed Th1-type responses (cell-mediated response), and Th2-type immune responses (humoral response). Stimulation of an immune response can result from a direct or indirect response of a cell or component of the immune system to an intervention (e.g., exposure to an immunogen). Immune responses can be measured in many ways including activation, proliferation or differentiation of cells of the immune system (e.g., B cells, T cells, dendritic cells, APCs, macrophages, NK cells, NKT cells etc.); up-regulated or down-regulated expression of markers and cytokines; stimulation of IgA, IgM, or IgG titer; splenomegaly (including increased spleen cellularity); hyperplasia and mixed cellular infiltrates in various organs. Other responses, cells, and components of the immune system that can be assessed with respect to immune stimulation are known in the art. In some embodiments, an immunogenic oligonucleotide containing unmethylated CpG dinucleotides (“CpG”) is used as an adjuvant. CpG is an abbreviation for cytosine-guanosine dinucleotide motifs present in DNA. CpG is known in the art as being an adjuvant when administered by both systemic and mucosal routes (See, e.g., WO 96/02555, EP 468520, Davis et al., J. Immunol, 1998, 160(2):870-876; McCluskie and Davis, J. Immunol., 1998, 161(9):4463-6; and U.S. Pat. App. No. 20050238660, each of which is hereby incorporated by reference in its entirety). For example, in some embodiments, the immunostimulatory sequence is Purine-Purine-C-G-pyrimidine-pyrimidine; wherein the CG motif is not methylated. In some embodiments, adjuvants such as Complete Freunds Adjuvant and Incomplete Freunds Adjuvant, cytokines (e.g., interleukins (e.g., IL-2, IFN-γ, IL-4, etc.), macrophage colony stimulating factor, tumor necrosis factor, etc.), detoxified mutants of a bacterial ADP-ribosylating toxin such as a cholera toxin (CT), a pertussis toxin (PT), or an Additional examples of adjuvants that find use in the present invention include poly(di(carboxylatophenoxy)phosphazene (PCPP polymer; Virus Research Institute, USA); derivatives of lipopolysaccharides such as monophosphoryl lipid A (MPL; Ribi ImmunoChem Research, Inc., Hamilton, Mont.), muramyl dipeptide (MDP; Ribi) and threonyl-muramyl dipeptide (t-MDP; Ribi); OM-174 (a glucosamine disaccharide related to lipid A; OM Pharma SA, Meyrin, Switzerland); and Leishmania elongation factor (a purified Leishmania protein; Corixa Corporation, Seattle, Wash.). Adjuvants may be added to a composition comprising an immunogen, or, the adjuvant may be formulated with carriers, for example liposomes, or metallic salts (e.g., aluminium salts (e.g., aluminium hydroxide)) prior to combining with or co-administration with a composition. In some embodiments, a composition comprising an immunogen comprises a single adjuvant. In other embodiments, a composition comprises two or more adjuvants (See, e.g., WO 94/00153; WO 95/17210; WO 96/33739; WO 98/56414; WO 99/12565; WO 99/11241; and WO 94/00153, each of which is hereby incorporated by reference in its entirety). In some embodiments, a composition of the present invention may comprise sterile aqueous preparations. Acceptable vehicles and solvents include, but are not limited to, water, Ringer's solution, phosphate buffered saline and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose any bland fixed mineral or non-mineral oil may be employed including synthetic mono-ordi-glycerides. In addition, fatty acids such as oleic acid find use in the preparation of injectables. Carrier formulations suitable for mucosal, subcutaneous, intramuscular, intraperitoneal, intravenous, or administration via other routes may be found in Remington's Pharmaceutical Sciences, Mack Publishing Company, Easton, Pa. A composition comprising an immunogen of the present invention can be used therapeutically (e.g., to enhance an immune response) or as a prophylactic (e.g., for immunization (e.g., to prevent signs or symptoms of disease)). A composition comprising an immunogen of the present invention can be administered to a subject via a number of different delivery routes and methods. For example, the compositions of the present invention can be administered to a subject (e.g., injection, orally, bath, or dip) by multiple methods, including, but not limited to, those described herein. In some embodiments, a composition comprising an immunogen of the present invention may be used to protect or treat a fish susceptible to, or suffering from, disease by means of administering a composition of the present invention via a mucosal route (e.g., an oral route). Thus, the vaccine can be administered by any suitable known method of inoculating fish including but not limited to immersion, oral administration, spraying and injection. Preferably, the vaccine is administered by mass administration techniques such as immersion as conducted by a standardized immersion protocol described by McAllister and Owens (1986), the contents of which are hereby incorporated by reference herein in its entirety. When administered by injection, the vaccines are preferably administered parenterally. Parenteral administration as used herein means administration by intravenous, subcutaneous, intramuscular, or intraperitoneal injection. Further administration may be accomplished by sonification or electroporation. Thus, in some embodiments, a composition comprising an immunogen of the present invention may be used to protect and/or treat a subject susceptible to, or suffering from, a disease by means of administering the composition by mucosal, intramuscular, intraperitoneal, intradermal, transdermal, pulmonary, intravenous, subcutaneous or other route of administration described herein. Methods of systemic administration of the vaccine preparations may include conventional syringes and needles, or devices designed for ballistic delivery of solid vaccines (See, e.g., WO 99/27961, hereby incorporated by reference), or needleless pressure liquid jet device (See, e.g., U.S. Pat. No. 4,596,556; U.S. Pat. No. 5,993,412, each of which are hereby incorporated by reference), or transdermal patches (See, e.g., WO 97/48440; WO 98/28037, each of which are hereby incorporated by reference). The present invention may also be used to enhance the immunogenicity of antigens applied to the skin (transdermal or transcutaneous delivery, See, e.g., WO 98/20734; WO 98/28037, each of which are hereby incorporated by reference). Thus, in some embodiments, the present invention provides a delivery device for systemic administration, pre-filled with the vaccine composition of the present invention. In some embodiments, vaccine compositions are co-administered with one or more antibiotics. For example, one or more antibiotics may be administered with, before and/or after administration of the composition. The present invention is not limited by the type of antibiotic co-administered. Indeed, a variety of antibiotics may be co-administered including, but not limited to, β-lactam antibiotics, penicillins (such as natural penicillins, aminopenicillins, penicillinase-resistant penicillins, carboxy penicillins, ureido penicillins), cephalosporins (first generation, second generation, and third generation cephalosporins), and other β-lactams (such as imipenem, monobactams,), β-lactamase inhibitors, vancomycin, aminoglycosides and spectinomycin, tetracyclines, chloramphenicol, erythromycin, lincomycin, clindamycin, rifampin, metronidazole, polymyxins, doxycycline, quinolones (e.g., ciprofloxacin), sulfonamides, trimethoprim, and quinolines. There are an enormous amount of antimicrobial agents currently available for use in treating bacterial, fungal and viral infections. For a comprehensive treatise on the general classes of such drugs and their mechanisms of action, the skilled artisan is referred to Goodman & Gilman's “The Pharmacological Basis of Therapeutics” Eds. Hardman et al., 9th Edition, Pub. McGraw Hill, chapters 43 through 50, 1996, (herein incorporated by reference in its entirety). Generally, these agents include agents that inhibit cell wall synthesis (e.g., penicillins, cephalosporins, cycloserine, vancomycin, bacitracin); and the imidazole antifungal agents (e.g., miconazole, ketoconazole and clotrimazole); agents that act directly to disrupt the cell membrane of the microorganism (e.g., detergents such as polmyxin and colistimethate and the antifungals nystatin and amphotericin B); agents that affect the ribosomal subunits to inhibit protein synthesis (e.g., chloramphenicol, the tetracyclines, erthromycin and clindamycin); agents that alter protein synthesis and lead to cell death (e.g., aminoglycosides); agents that affect nucleic acid metabolism (e.g., the rifamycins and the quinolones); the antimetabolites (e.g., trimethoprim and sulfonamides); and the nucleic acid analogues such as zidovudine, gangcyclovir, vidarabine, and acyclovir which act to inhibit viral enzymes essential for DNA synthesis. Various combinations of antimicrobials may be employed. In some embodiments, a vaccine composition of the present invention is formulated in a concentrated dose that can be diluted prior to administration to a fish. For example, dilutions of a concentrated composition may be administered to a subject such that the subject receives any one or more of the specific dosages provided herein. In some embodiments, dilution of a concentrated composition may be made such that a fish is administered (e.g., in a single dose) a composition comprising 0.5-50% of the amount present in the concentrated composition. In some embodiments, a composition comprising an immunogen of the present invention (e.g., a concentrated composition) is stable at room temperature for more than 1 week, in some embodiments for more than 2 weeks, in some embodiments for more than 3 weeks, in some embodiments for more than 4 weeks, in some embodiments for more than 5 weeks, and in some embodiments for more than 6 weeks. In some embodiments, following an initial administration of a composition of the present invention (e.g., an initial vaccination), a fish may receive one or more boost administrations (e.g., around 2 weeks, around 3 weeks, around 4 weeks, around 5 weeks, around 6 weeks, around 7 weeks, around 8 weeks, around 10 weeks, around 3 months, around 4 months, around 6 months, around 9 months, around 1 year, around 2 years, around 3 years, around 5 years, around 10 years) subsequent to a first, second, third, fourth, fifth, sixth, seventh, eighth, ninth, tenth, and/or more than tenth administration. Dosage units may be proportionately increased or decreased based on several factors including, but not limited to, the weight of the fish and the life cycle of the fish. In addition, dosage units may be increased or decreased for subsequent administrations (e.g., boost administrations). The vaccine may be stored in a sealed vial, ampule or the like. The present vaccine can generally be administered in the form of a spray for intranasal administration, or by nose drops, inhalants, swabs on tonsils, or a capsule, liquid, suspension or elixirs for oral administration. In the case where the vaccine is in a dried form, the vaccine is preferably dissolved or suspended in sterilized distilled water before administration. Any inert carrier is preferably used, such as saline, phosphate buffered saline, or any such carrier which the vaccine has suitable solubility. The compositions of the invention can be administered to subjects in a biologically compatible form suitable for pharmaceutical administration in vivo. By “biologically compatible form suitable for administration in vivo” is meant a form of the composition to be administered in which any toxic effects are outweighed by the therapeutic effects of the membrane vesicles. The composition may be administered in a convenient manner such as by injection (subcutaneous, intravenous, etc.), oral administration inhalation, transdermal application, or rectal administration. The pharmaceutical compositions are therefore in solid or semisolid form, for example pills, tablets, creams, gelatin capsules, capsules, suppositories, soft gelatin capsules, gels, membranes, tubelets. For parenteral and intracerebral uses, those forms for intramuscular or subcutaneous administration can be used, or forms for infusion or intravenous or intracerebral injection can be used, and can therefore be prepared as solutions of the active membrane vesicles or as powders of the vesicles to be mixed with one or more pharmaceutically acceptable excipients or diluents, suitable for the aforesaid uses and with an osmolarity which is compatible with the physiological fluids. For local use, those preparations in the form of creams or ointments for topical use, or in the form of sprays are suitable; for inhalant uses, preparations in the form of sprays, for example nose sprays, are suitable. It is contemplated that the compositions and methods of the present invention will find use in various settings, including research, aquaculture (e.g., for food), the wild, ornamental fish, etc. For example, compositions and methods of the present invention also find use in studies of the immune system of fish. In some embodiments, the vaccine compositions find use in commercial settings (e.g., commercial fish farming). The vaccines find use in immunizing a variety of species of fish. Examples include, but are not limited to, Atlantic cod, The present invention further provides kits comprising the vaccine compositions comprised herein. In some embodiments, the kit includes all of the components necessary, sufficient or useful for administering the vaccine. For example, in some embodiments, the kits comprise devices for administering the vaccine (e.g., needles or other injection devices), temperature control components (e.g., refrigeration or other cooling components), sanitation components (e.g., alcohol swabs for sanitizing the site of injection) and instructions for administering the vaccine. Strains, media and growth conditions. Isolation of OMVs. For initial experiments, 10 ml overnight cultures were used to inoculate 100 ml liquid cultures until OD600≈0.1, and grown to late-logarithmic or early stationary growth phase. The bacteria were pelleted at 15 000 g at 4° C. for 10 minutes, and the supernatant harvested. OMV-containing supernatant was sterile filtered through 0.45 μm filters, followed by a second filtration step using 0.2 μm filters to remove any contaminating cells and cell debris. 70 ml double-filtered OMV-containing supernatant was subjected to ultracentrifugation at 125 000 g at 4° C. using a Optima LE-80K Ultracentrifuge (Beckman Instruments) for 2 hours to pellet OMVs. The supernatant was removed, the pellet resuspended in 50 mM Hepes buffer pH 6.8 and OMVs were re-pelleted by a second centrifugation at 125 000 g for 30 minutes. The supernatant was removed, and the pellet resuspended in 100 μl PBS pH 7.4. Protein concentration was measured by NanoDrop. 25 μl aliquots were stored at −80° C. for long-term storage, and one aliquot streaked on an ECA plate and incubated at 20-22° C. for at least three weeks to ensure sterility. For large-scale production of OMVs, 2×350 ml culture was used, and a total volume of 420 ml double-filtered OMV containing supernatant was used for isolation. SDS-PAGE and GC-MS. Aliquots of OMVs were separated by SDS-PAGE followed by staining with Coomassie Blue. The major bands of interest were cut from the gel with a clean scalpel, and stored in individual eppendorf tubes at 4° C. until further processing. For preparation for GC-MS, the gel pieces were washed with HPLC water for 15 minutes, and washed twice with 50% acetonitrile (ACN) in HPLC water for 20 minutes each time. Thereafter, the gel pieces were dehydrated in 100% ACN overnight. The supernatant was discarded, the gel pieces rehydrated in 50 mM ammonium bicarbonate in HPLC water (Abb) with 3.0 mg/ml dithiothreitol and incubated at 56° C. for one hour to reduce intermolecular disulfide bonds in proteins. Subsequently, the supernatant was discarded and the samples rehydrated with 50 mM Abb containing 10 mg/ml iodoacetamide and incubated at room temperature in the dark for 45 minutes for alkylation of proteins to prevent the construction of new disfulfde-bonds. The supernatant was discarded, and the samples washed three times with 50% ACN in HPLC water and dehydrated in 100% ACN. Thereafter, the samples were trypsinated with 16 ng/μl Trypsin in 50 mM Abb at 37° C. overnight. Trypsinated peptides were isolated from the gel pieces by addition of 5% formic acid (FA) in HPLC water and the supernatant removed, followed by 2 treatments with 5% FA in 50% ACN and complete dehydration in 100% ACN. The recovered protein-containing supernants were dried using Techne Sample Concentrator. The samples were resuspended in 1% FA, and solid phase extraction was performed with a C18 filter to clean up the samples. Finally, the samples were again dehydrated using Techne Sample Concentrator, and stored at −20° C. until further analysis. Atomic force imaging of OMVs. For Atomic force imaging (AFM), MgCl2was added to a final concentration of 10 mM to an aliquot of isolated OMVs, and 10 μl of the suspension was applied to a freshly cleaved mica surface. The OMVs were allowed to adhere to the surface for 10 minutes before washing the surface 8 times with 100 μl MQ water. Excess water was removed, and the specimen carefully dried with N2-gas. Images were recorded in intermittent-contact mode at room temperature using a NanoWizard Microscope (JPK Instruments AG, Berlin, Germany) with a scan frequency of 1.0 Hz using ultrasharp silicon cantilevers with silicon etched probe tips, NSC35/AlBS (MikroMasch, Madrid, Spain). AFM images were analyzed using The NanoWizard® IP Image Processing Software (JPK Instruments AG). The theoretical size of the OMVs were calculated according to Pierson et al. (2011), in short we assumed that when OMVs adhere to the mica surface they assume the shape of half a sphere, calculated the volume of that half sphere based on V= 4/3πabc/2 and then use the calculated volume to determine the diameter of a perfect sphere (the correct diameter of the OMV). For calculation of nanotubes we assumed that when nanotubes adhere to mica they assume the volume of half a cylinder, calculated the volume of half a cylinder based on V=πr2h/2 and used the calculated volume to determine what size the nanotube would be as a perfect sphere. Transmission electron microscopy. Carbon-coated grids were pretreated with poly-L-lysine for 20 minutes and washed three times with MQ water. Thereafter, one aliquot of OMVs were allowed to adhere for 10 minutes before the grids were washed three times with PBS, two times with MQ water, stained for 1 minute with 4% uranylacatate and washed once with MQ water. The grids were analyzed with a microscope. Preparation of bacterial cultures for zebrafish infection. Preparation of bacterial suspensions for infection experiments and calculation of CFU was performed essentially as described previously (Brudal et al., submitted). In short, Zebrafish embryo infection trial. Infection of zebrafish embryos were performed essentially as previously described (Brudal et al., submitted). In short, 15 Zebrafish embryo AB wt were intravascularly injected with 9×10̂3 CFU of Immunization of zebrafish with OMVs. Three tanks with 10 month old zebrafish AB wt, 18 fish in each tank, were acclimatized for 2 weeks prior to immunization experiments. 2 groups were anesthetized as previously described and vaccinated i.p. with 40 μg OMVs in 25 μl PBS, while the third group was mock-vaccinated with 25 μl PBS. One month later (637 degree-days) one OMV vaccinated and the PBS mock-vaccinated group were injected i.p. with 25 μl Quantification of bacterial burden. For the dose-response experiment, three randomly chosen fish from each group were euthanized as previously described at each time point. For the vaccination experiment, the number of fish at each time point was 4. Necropsy was performed on all euthanized fish, and the spleen, heart and kidney harvested, transferred to RNAlater (Ambion) and stored at 4° C. until further processing. RNAlater was removed, and the samples transferred to 2.0 ml SafeLock Eppendorf tubes containing 100 μl lysis buffer with 20 mg/ml lysozyme (Sigma-Aldrich) and a 0.5 mm diameter stainless steel bead (QIAGEN). The tissue was homogenized by TissueLyser II at 15 Hz for 20 seconds, and genomic DNA (gDNA) extracted with the QIAGEN DNEasy Blood & Tissue Mini kit according to the manufacturers instructions. 100 gl DEPC treated H2O was used for elution of gDNA, and 10 gl of the eluate was diluted 1:10 in DEPC H2O and used as template for qPCR. The previously published diagnostically validated primer pair targeting a hypothetical protein in Statistical analysis. Statistical analysis of the data sets was performed using JMP 8.0.2. (SAS Institute Inc., Cary, NC, USA). Differences in bacterial quantification between groups were deemed statistically significant if p<0.05 using a one-tailed Student's t-test assuming unequal variance. Kaplan-Meier survival analysis (Goel et al., 2010) was used for analyzing survival, and differences between groups were deemed statistically significant if p-value <0.05 using Wilcoxon-test and Log-rank test. OMVs contain numerous proteins, some of which are associated with virulence. OMVs isolated from OMVs are isolated intact. To verify that OMVs were isolated intact, and that they were in the expected size range for OMVs, we performed AFM and TEM on isolated OMVs. Numerous OMVs of spherical shape were visible by AFM, though only a few nanotubes (McCaig et al., 2013) could be observed. The mean diameter of OMVs from OMVs are produced in vivo in infected zebrafish embryos. TEM images of zebrafish embryos infected with F.n.n.-GFP verified previous observations by fluorescence microscopy (Brudal et al.,): bacteria were present both intracellular in infected cells and in the extracellular milieu. Some host cells (macrophages) were heavily infected and were in various stages of cell death, and while we could find bacteria intracellularly in other cell types as well (such as endothelial cells) these did not appear to be dying. OMVs could be observed in the near vicinity of bacteria in infected host tissues, and in rare events OMVs could be observed budding from the bacteria. OMVs are safe for immunization of zebrafish, and protects from subsequent challenge with Quantification of bacterial burden showed approximately a 11 fold higher bacterial burden in the kidney of unvaccinated compared to vaccinated fish throughout the experiment (p-value 0.0239), while the corresponding numbers for spleen and kidney was 5-fold (p-value 0.0379) and 4-fold (p-value 0.0949) respectively. The relative amount of GE between vaccinated and unvaccinated fish in each tissue type was quite stable for all tissues regardless of time point examined, while the absolute quantification of GE was at the highest level at the first time point examined (1 week) and declined during the course of infection. Strains, media and growth conditions. OMV Isolation From 2×10 ml overnight cultures were used to inoculate 2×100 ml liquid cultures of Initial Characterization of 2-fold dilution series of OMVs isolated from Eugon broth supplemented with casamino acids supported the growth of Adult zebrafish were infected with 1×1010or 1×107CFU of Adult zebrafish were then injected with 40 ug OMV isolated from Immune responses were analyzed in the spleen, heart, kidney and gills of zebrafish infected with Injection with the isolated OMV form 1. Alaniz, R. C., B. L. Deatherage, J. C. Lara, and B. T. Cookson. 2007. Membrane vesicles are immunogenic facsimiles of Salmonella typhimurium that potently activate dendritic cells, prime B and T cell responses, and stimulate protective immunity in vivo. J. Immunol. 179:7692-7701. doi:179/11/7692 [pii]. 2. Alugupalli, K. R. 2008. A distinct role for B1b lymphocytes in T cell-independent immunity. Curr. Top. Microbiol. Immunol. 319:105-130. 3. Anthony, L. D., R. D. Burke, and F. E. Nano. 1991. Growth of 4. Avila-Calderon, E. D., A. Lopez-Merino, N. Jain, H. Peralta, E. O. Lopez-Villegas, N. Sriranganathan, S. M. Boyle, S. Witonsky, and A. Contreras-Rodriguez. 2012. Characterization of outer membrane vesicles from 5. Birkbeck, T. H., M. Bordevik, M. K. Froystad, and A. Baklien. 2007. Identification of 6. Brudeseth, B. E., R. Wiulsrod, B. N. Fredriksen, K. Lindmo, K. E. Lokling, M. Bordevik, N. Steine, A. Klevan, and K. Gravningen. 2013. Status and future perspectives of vaccines for industrialised fin-fish farming. Fish. Shellfish. Immunol. doi:S1050-4648(13)00597-4 [pii]; 10.1016/j.fsi.2013.05.029 [doi]. 7. Casadevall, A. and L. A. Pirofski. 2006. A reappraisal of humoral immunity based on mechanisms of antibody-mediated protection against intracellular pathogens. Adv. Immunol. 91:1-44. doi:S0065-2776(06)91001-3 [pii]; 10.1016/S0065-2776(06)91001-3 [doi]. 8. Cole, L. E., Y. Yang, K. L. Elkins, E. T. Fernandez, N. Qureshi, M. J. Shlomchik, L. A. Herzenberg, L. A. Herzenberg, and S. N. Vogel. 2009. Antigen-specific B-1a antibodies induced by 9. Collins, B. S. 2011. Gram-negative outer membrane vesicles in vaccine development. Discov. Med. 12:7-15. 10. Colquhoun, D. J. and S. Duodu. 2011. 11. Conlan, J. W. and P. C. Oyston. 2007. Vaccines against 12. Conlan, J. W., H. Shen, I. Golovliov, C. Zingmark, P. C. Oyston, W. Chen, R. V. House, and A. Sjostedt. 2010. Differential ability of novel attenuated targeted deletion mutants of 13. Cowley, S. C. and K. L. Elkins 2011. Immunity to francisella. Front Microbiol. 2:26. doi:10.3389/fmicb.2011.00026 [doi]. 14. Duodu, S., P. Larsson, A. Sjodin, E. Soto, M. Forsman, and D. J. Colquhoun. 2012. Real-time PCR assays targeting unique DNA sequences of fish-pathogenic 15. Forestal, C. A., M. Malik, S. V. Catlett, A. G. Savitt, J. L. Benach, T. J. Sellati, and M. B. Furie. 2007. 16. Galka, F., S. N. Wai, H. Kusch, S. Engelmann, M. Hecker, B. Schmeck, S. Hippenstiel, B. E. Uhlin, and M. Steinert. 2008. Proteomic characterization of the whole secretome of 17. Goel, M. K., P. Khanna, and J. Kishore. 2010. Understanding survival analysis: Kaplan-Meier estimate. Int. J. Ayurveda. Res. 1:274-278. doi:10.4103/0974-7788.76794 [doi]. 18. Golovliov, I., V. Baranov, Z. Krocova, H. Kovarova, and A. Sjostedt. 2003. An attenuated strain of the facultative intracellular bacterium 19. Granoff, D. M. 2010. Review of meningococcal group B vaccines. Clin. Infect. Dis. 50 Suppl 2:S54-S65. doi:10.1086/648966 [doi]. 20. Gunn, J. S. and R. K. Ernst. 2007. The structure and function of 21. Haurat, M. F., J. Aduse-Opoku, M. Rangarajan, L. Dorobantu, M. R. Gray, M. A. Curtis, and M. F. Feldman. 2011. Selective sorting of cargo proteins into bacterial membrane vesicles. J. Biol. Chem. 286:1269-1276. doi:M110.185744 [pii]; 10.1074/jbc.M110.185744 [doi]. 21b. Henriquez M, Gonzalez E, Marshall S H, Henriquez V, Gomez F A, martinez I and Altamirano C. 2013. A Novel Liquid Medium for the Efficient Growth of the Salmonid Pathogen 22. Jeffery, K. R., D. Stone, S. W. Feist, and D. W. Verner-Jeffreys. 2010. An outbreak of disease caused by 23. Jones, R. M., M. Nicas, A. Hubbard, M. D. Sylvester, and A. Reingold. 2005. The Infectious Dose of 24. Kamaishi, T., Y. Fukuda, M. Nishiyama, M. Kawakami, T. Matsuyama, T. Yoshinaga, and N. Oseko. 2005. Identification and Pathogenicity of Intracellular 25. Kamaishi, T., S. Miwa, E. Goto, T. Matsuyama, and N. Oseko. 2010. Mass mortality of giant abalone Haliotis gigantea caused by a 26. Kuehn, M. J. and N. C. Kesty. 2005. Bacterial outer membrane vesicles and the host-pathogen interaction. Genes Dev. 19:2645-2655. doi:19/22/2645 [pii];10.1101/gad.1299905 [doi]. 27. Lund, V., S. Bordal, O. Kjellsen, H. Mikkelsen, and M. B. Schroder. 2006. Comparison of antibody responses in Atlantic cod (Gadus morhua L.) to 28. Lund, V., S. Bordal, and M. B. Schroder. 2007. Specificity and durability of antibody responses in Atlantic cod (Gadus morhua L.) immunised with 29. Mantegazza, A. R., J. G. Magalhaes, S. Amigorena, and M. S. Marks. 2013. Presentation of phagocytosed antigens by MHC class I and II. Traffic. 14:135-152. doi:10.1111/tra.12026 [doi]. 29b Mauel M J and Miller D L. 2002. Piscirickettsiosis and piscirickettsiosis-like infections in fish: a review. Vet Microbiol, 87:279-289. 30. Mauel, M. J., D. L. Miller, E. Styer, D. B. Pouder, R. P. Yanong, A. E. Goodwin, and T. E. Schwedler. 2005. Occurrence of Piscirickettsiosis-like syndrome in tilapia in the continental United States. J. Vet. Diagn. Invest 17:601-605. 31. Mauel, M. J., E. Soto, J. A. Moralis, and J. Hawke. 2007. A piscirickettsiosis-like syndrome in cultured Nile tilapia in Latin America with 32. McCaig, W. D., A. Koller, and D. G. Thanassi. 2013. Production of outer membrane vesicles and outer membrane tubes by 33. Nieves, W., S. Asakrah, O. Qazi, K. A. Brown, J. Kurtz, D. P. Aucoin, J. B. McLachlan, C. J. Roy, and L. A. Morici. 2011. A naturally derived outer-membrane vesicle vaccine protects against lethal pulmonary 34. Nylund, A., K. F. Ottem, K. Watanabe, E. Karlsbakk, and B. Krossøy. 2006. 35. Olsen, A. B., J. Mikalsen, M. Rode, A. Alfjorden, E. Hoel, K. Straum-Lie, R. Haldorsen, and D. J. Colquhoun. 2006. A novel systemic granulomatous inflammatory disease in farmed Atlantic cod, Gadus morhua L., associated with a bacterium belonging to the genus 36. Pammit, M. A., E. K. Raulie, C. M. Lauriano, K. E. Klose, and B. P. Arulanandam. 2006. Intranasal vaccination with a defined attenuated 37. Park, S. B., H. B. Jang, S. W. Nho, I. S. Cha, J. Hikima, M. Ohtani, T. Aoki, and T. S. Jung. 2011. Outer membrane vesicles as a candidate vaccine against edwardsiellosis. PLoS.One. 6:e17629. doi:10.1371/journal.pone.0017629 [doi]. 38. Perez-Cruz, C., O. Carrion, L. Delgado, G. Martinez, C. Lopez-Iglesias, and E. Mercade. 2013. New type of outer membrane vesicle produced by the Gram-negative bacterium 39. Pierson, T., D. Matrakas, Y. U. Taylor, G. Manyam, V. N. Morozov, W. Zhou, and M. L. van Hoek. 2011. Proteomic characterization and functional analysis of outer membrane vesicles of 40. Pilström, L., G. W. Warr, and S. Stromberg. 2005. Why is the antibody response of Atlantic cod so poor? The search for a genetic explanation. Fisheries Science 71:961-971. doi:10.1111/j.1444-2906.2005.01052. 41. Renshaw, S. A. and N. S. Trede. 2012. A model 450 million years in the making: zebrafish and vertebrate immunity. Dis. Model. Mech. 5:38-47. doi:5/1/38 [pii]; 10.1242/dmm.007138 [doi]. 42. Romeu, B., M. Lastre, L. Garcia, B. Cedre, A. Mandariote, M. Farinas, R. Oliva, E. Rozenqvist, and O. Perez. 2013. Combined meningococcal serogroup A and W outer-membrane vesicles activate cell-mediated immunity and long-term memory responses against non-covalent capsular polysaccharide A. Immunol.Res. doi:10.1007/s12026-013-8427-6 [doi]. 43. Roy, K., D. J. Hamilton, G. P. Munson, and J. M. Fleckenstein. 2011. Outer membrane vesicles induce immune responses to virulence proteins and protect against colonization by enterotoxigenic 44. Samuelsen, O. B., A. H. Nerland, T. Jorgensen, M. B. Schroder, T. Svasand, and O. Bergh. 2006. Viral and bacterial diseases of Atlantic cod Gadus morhua, their prophylaxis and treatment: a review. Dis. Aquat. Organ 71:239-254. doi:10.3354/dao071239 [doi]. 45. Schild, S., E. J. Nelson, and A. Camilli. 2008. Immunization with Vibrio cholerae outer membrane vesicles induces protective immunity in mice. Infect. Immun. 76:4554-4563. doi:IAI.00532-08 [pii]; 10.1128/IAI.00532-08 [doi]. 46. Schrøder, M. B., T. Ellingsen, H. Mikkelsen, E. A. Norderhus, and V. Lund. 2009. Comparison of antibody responses in Atlantic cod (Gadus morhua L.) to 47. Sebastian, S., S. T. Dillon, J. G. Lynch, L. T. Blalock, E. Balon, K. T. Lee, L. E. Comstock, J. W. Conlan, E. J. Rubin, A. O. Tzianabos, and D. L. Kasper. 2007. A defined O-antigen polysaccharide mutant of 48. Sommerset, I., B. Krossoy, E. Biering, and P. Frost. 2005. Vaccines for fish in aquaculture. Expert. Rev. Vaccines. 4:89-101. doi:ERV040113 [pii]; 10.1586/14760584.4.1.89 [doi]. 49. Soto, E., D. Fernandez, and J. P. Hawke. 2009. Attenuation of the fish pathogen 50. Soto, E., J. Wiles, P. Elzer, K. Macaluso, and J. P. Hawke. 2011. Attenuated 51. Star, B., A. J. Nederbragt, S. Jentoft, U. Grimholt, M. Malmstrom, T. F. Gregers, T. B. Rounge, J. Paulsen, M. H. Solbakken, A. Sharma, O. F. Wetten, A. Lanzen, R. Winer, J. Knight, J. H. Vogel, B. Aken, O. Andersen, K. Lagesen, A. Tooming-Klunderud, R. B. Edvardsen, K. G. Tina, M. Espelund, C. Nepal, C. Previti, B. O. Karlsen, T. Moum, M. Skage, P. R. Berg, T. Gjoen, H. Kuhl, J. Thorsen, K. Malde, R. Reinhardt, L. Du, S. D. Johansen, S. Searle, S. Lien, F. Nilsen, I. Jonassen, S. W. Omholt, N. C. Stenseth, and K. S. Jakobsen. 2011. The genome sequence of Atlantic cod reveals a unique immune system. Nature 477:207-210. doi:naturel0342 [pii]; 10.1038/nature10342 [doi]. 52. Titball, R. W. 2008. Vaccines against intracellular bacterial pathogens. Drug Discov. Today 13:596-600. 53. Twine, S., M. Bystrom, W. Chen, M. Forsman, I. Golovliov, A. Johansson, J. Kelly, H. Lindgren, K. Svensson, C. Zingmark, W. Conlan, and A. Sjostedt. 2005. A mutant of 54. van de Waterbeemd, B., G. P. Mommen, J. L. Pennings, M. H. Eppink, R. H. Wijffels, L. A. van der Pol, and A. P. de Jong. 2013. Quantitative Proteomics Reveals Distinct Differences in the Protein Content of Outer Membrane Vesicle Vaccines. J. Proteome. Res. doi:10.1021/pr301208g [doi]. 54b. Wilhelm V, Miguel A, Burzio L O, Rosemblatt M, Engel E, Valenzuela S, Parada G, Valenzuela P D. 2006. A vaccine against the salmonid pathogen 54c. Yañez A J, Valenzuela K, Silva H, Retamales J, Romero A, Enriquez R, Figueroa J, Claude A, Gonzalez J, Avendaño-Herrera R, Carcamo J G. 2012. Broth mediaum for the successful culture of the fish pathogen 55. Yu, J. J., E. K. Raulie, A. K. Murthy, M. N. Guentzel, K. E. Klose, and B. P. Arulanandam. 2008. The presence of infectious extracellular All publications and patents mentioned in the above specification are herein incorporated by reference. Various modifications and variations of the described method and system of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in the relevant fields are intended to be within the scope of the following claims.FIELD OF THE INVENTION
BACKGROUND OF THE INVENTION
SUMMARY OF THE INVENTION
BRIEF DESCRIPTION OF THE DRAWINGS
DEFINITIONS
DETAILED DESCRIPTION OF THE INVENTION
EXAMPLE 1
Materials & Methods
Results
EXAMPLE 2
Liquid Culture Growth of
Materials & Methods
Results
EXAMPLE 3
Immune Response of Adult Zebrafish Against High (1×1010and Lower (1×107) Dose of
REFERENCE LIST