Provided are defined bacterial compositions for the maintenance or restoration of a healthy microbiota in the gastrointestinal tract of a mammalian subject, and methods for populating the gastrointestinal tract of a subject. Provided also are bacterial formulations for oral or gastric administration to a mammalian subject in an effective amount for prevention or treatment of a gastrointestinal disease, disorder or condition.
1. A therapeutic composition comprising a bacterial population comprising at least three but fewer than nine bacterial strains selected from the group consisting of 2. The composition of 3. The composition of 4. The composition of 5. The composition of 6. The composition of 7. The composition of 8. The composition of 9. The composition of 10. The composition of 11. The composition of 12. The composition of 13. The composition of 14. The composition of 15. The composition of 16. The composition of 17. The composition of 18. The composition of 19. The composition of 20. A method of treating a mammalian subject suffering from or at risk of developing a gastrointestinal disease, disorder or condition, comprising the step of administering to the mammalian subject the therapeutic composition of 21.-43. (canceled)
This application is related to U.S. Provisional Application No. 61/760,584, filed on Feb. 4, 2013, and to U.S. Provisional Application No. 61/760,585, filed on Feb. 4, 2013, and to U.S. Provisional Application No. 61/760,574, filed on Feb. 4, 2013, and to U.S. Provisional Application No. 61/760,606, filed on Feb. 4, 2013, and to U.S. Provisional Application No. 61/926,928, filed on Jan. 13, 2014, which are each incorporated by reference in its entirety for all purposes. This application includes a Sequence Listing submitted electronically as a text file named 25968PCT_CRF_sequencelisting.txt, created on Feb. 4, 2014, with a size of 911,051 bytes. The sequence listing is incorporated by reference. Mammals are colonized by microbes in the gastrointestinal (GI) tract, on the skin, and in other epithelial and tissue niches such as the oral cavity, eye surface and vagina. The gastrointestinal tract harbors an abundant and diverse microbial community. It is a complex system, providing an environment or niche for a community of many different species or organisms, including diverse strains of bacteria. Hundreds of different species may form a commensal community in the GI tract in a healthy person, and this complement of organisms evolves from the time of birth to ultimately form a functionally mature microbial population by about 3 years of age. Interactions between microbial strains in these populations and between microbes and the host, e.g. the host immune system, shape the community structure, with availability of and competition for resources affecting the distribution of microbes. Such resources may be food, location and the availability of space to grow or a physical structure to which the microbe may attach. For example, host diet is involved in shaping the GI tract flora. A healthy microbiota provides the host with multiple benefits, including colonization resistance to a broad spectrum of pathogens, essential nutrient biosynthesis and absorption, and immune stimulation that maintains a healthy gut epithelium and an appropriately controlled systemic immunity. In settings of ‘dysbiosis’ or disrupted symbiosis, microbiota functions can be lost or deranged, resulting in increased susceptibility to pathogens, altered metabolic profiles, or induction of proinflammatory signals that can result in local or systemic inflammation or autoimmunity. Thus, the intestinal microbiota plays a significant role in the pathogenesis of many diseases and disorders, including a variety of pathogenic infections of the gut. For instance, subjects become more susceptible to pathogenic infections when the normal intestinal microbiota has been disturbed due to use of broad-spectrum antibiotics. Many of these diseases and disorders are chronic conditions that significantly decrease a subject's quality of life and can be ultimately fatal. Manufacturers of probiotics have asserted that their preparations of bacteria promote mammalian health by preserving the natural microflora in the GI tract and reinforcing the normal controls on aberrant immune responses. See, e.g., U.S. Pat. No. 8,034,601. Probiotics, however, have been limited to a very narrow group of genera and a correspondingly limited number of species; as such, they do not adequately replace the missing natural microflora of the GI tract in many situations. Thus, there is a need for a method of populating a subject's gastrointestinal tract with a diverse and useful selection of microbiota in order to alter a dysbiosis. In response to the need for durable, efficient, and effective compositions and methods for treatment of GI diseases by way of restoring or enhancing microbiota functions, Applicants address these and other shortcomings of the art by providing compositions and methods for treating subjects. Disclosed herein are therapeutic compositions comprising a bacterial population comprising at least three but fewer than nine bacterial strains selected from the group consisting of Also disclosed is a method of treating a mammalian subject suffering from or at risk of developing a gastrointestinal disease, disorder or condition, comprising the step of administering to the mammalian subject a therapeutic composition comprising a bacterial population as described herein, wherein the composition is formulated for oral or gastric administration. In some embodiments, the gastrointestinal disease, disorder or condition is selected from the group consisting of relapsing diarrhea caused by Also disclosed is a method of treating a mammalian subject suffering from or at risk of developing a gastrointestinal disease, disorder or condition, comprising the step of administering to the mammalian subject any therapeutic composition disclosed herein. Also disclosed is a method of treating a mammalian subject suffering from or at risk of developing a gastrointestinal disease, disorder or condition, or a metabolic disease, disorder or condition selected from the group consisting of diabetes and autism, comprising the step of administering to the mammalian subject a therapeutic composition comprising a bacterial population comprising at least three bacterial strains, wherein no greater than nine of the bacterial strains are members of a bacterial species selected from the group consisting of Also disclosed is a therapeutic composition comprising a bacterial population comprising at least three but fewer than nine bacterial strains, wherein the bacterial strains comprise 16S nucleic acid sequences at least 97% identical to reference 16S nucleic acid sequences in bacterial strains selected from the group consisting of Also disclosed is a therapeutic composition comprising a bacterial population comprising at least three but fewer than nine bacterial strains, wherein the bacterial strains comprise Also disclosed is a therapeutic composition comprising a bacterial population comprising at least three but fewer than nine bacterial strains, wherein the bacterial strains do not comprise detectable amounts of Also disclosed is a method of increasing diversity of a gastrointestinal microbiota in a mammalian subject in need thereof, comprising administering to the mammalian subject a therapeutic composition comprising a bacterial population comprising at least three but fewer than nine bacterial strains, wherein the bacterial strains comprise 16S nucleic acid sequences at least 97% identical to reference 16S nucleic acid sequences in bacterial strains selected from the group consisting of The figures depict various embodiments of the present invention for purposes of illustration only. One skilled in the art will readily recognize from the following discussion that alternative embodiments of the structures and methods illustrated herein may be employed without departing from the principles of the invention described herein. “Microbiota” refers to the community of microorganisms that occur (sustainably or transiently) in and on an animal subject, typically a mammal such as a human, including eukaryotes, archaea, bacteria, and viruses (including bacterial viruses i.e., phage). “Microbiome” refers to the genetic content of the communities of microbes that live in and on the human body, both sustainably and transiently, including eukaryotes, archaea, bacteria, and viruses (including bacterial viruses (i.e., phage)), wherein “genetic content” includes genomic DNA, RNA such as ribosomal RNA, the epigenome, plasmids, and all other types of genetic information. “Microbial Carriage” or simply “Carriage” refers to the population of microbes inhabiting a niche within or on humans. Carriage is often defined in terms of relative abundance. For example, OTU1 comprises 60% of the total microbial carriage, meaning that OTU1 has a relative abundance of 60% compared to the other OTUs in the sample from which the measurement was made. Carriage is most often based on genomic sequencing data where the relative abundance or carriage of a single OTU or group of OTUs is defined by the number of sequencing reads that are assigned to that OTU/s relative to the total number of sequencing reads for the sample. “Microbial Augmentation” or simply “augmentation” refers to the establishment or significant increase of a population of microbes that are (i) absent or undetectable (as determined by the use of standard genomic and microbiological techniques) from the administered therapeutic microbial composition, (ii) absent, undetectable, or present at low frequencies in the host niche (as example: gastrointestinal tract, skin, anterior-nares, or vagina) before the delivery of the microbial composition, and (iii) are found after the administration of the microbial composition or significantly increase, for instance 2-fold, 5-fold, 1×102, 1×103, 1×104, 1×105, 1×106, 1×107, or greater than 1×108, in cases where they were present at low frequencies. The microbes that comprise an augmented ecology can be derived from exogenous sources such as food and the environment, or grow out from micro-niches within the host where they reside at low frequency. The administration of the therapeutic microbial composition induces an environmental shift in the target niche that promotes favorable conditions for the growth of these commensal microbes. In the absence of treatment with a therapeutic microbial composition, the host can be constantly exposed to these microbes; however, sustained growth and the positive health effects associated with the stable population of increased levels of the microbes comprising the augmented ecology are not observed. “Microbial Engraftment” or simply “engraftment” refers to the establishment of OTUs comprising a therapeutic microbial composition in a target niche that are absent in the treated host prior to treatment. The microbes that comprise the engrafted ecology are found in the therapeutic microbial composition and establish as constituents of the host microbial ecology upon treatment. Engrafted OTUs can establish for a transient period of time, or demonstrate long-term stability in the microbial ecology that populates the host post treatment with a therapeutic microbial composition. The engrafted ecology can induce an environmental shift in the target niche that promotes favorable conditions for the growth of commensal microbes capable of catalyzing a shift from a dysbiotic ecology to one representative of a health state. “Ecological Niche” or simply “Niche” refers to the ecological space in which a an organism or group of organisms occupies. Niche describes how an organism or population or organisms responds to the distribution of resources, physical parameters (e.g., host tissue space) and competitors (e.g., by growing when resources are abundant, and when predators, parasites and pathogens are scarce) and how it in turn alters those same factors (e.g., limiting access to resources by other organisms, acting as a food source for predators and a consumer of prey). “Dysbiosis” refers to a state of the microbiota of the gut or other body area in a subject, including mucosal or skin surfaces in which the normal diversity and/or function of the ecological network is disrupted. This unhealthy state can be due to a decrease in diversity, the overgrowth of one or more pathogens or pathobionts, symbiotic organisms able to cause disease only when certain genetic and/or environmental conditions are present in a subject, or the shift to an ecological microbial network that no longer provides an essential function to the host subject, and therefore no longer promotes health. “Pathobionts” or “Opportunistic Pathogens” refers to symbiotic organisms able to cause disease only when certain genetic and/or environmental conditions are present in a subject. “Phylogenetic tree” refers to a graphical representation of the evolutionary relationships of one genetic sequence to another that is generated using a defined set of phylogenetic reconstruction algorithms (e.g. parsimony, maximum likelihood, or Bayesian). Nodes in the tree represent distinct ancestral sequences and the confidence of any node is provided by a bootstrap or Bayesian posterior probability, which measures branch uncertainty. “Operational taxonomic units,” “OTU” (or plural, “OTUs”) refer to a terminal leaf in a phylogenetic tree and is defined by a nucleic acid sequence, e.g., the entire genome, or a specific genetic sequence, and all sequences that share sequence identity to this nucleic acid sequence at the level of species. In some embodiments the specific genetic sequence may be the 16S sequence or a portion of the 16S sequence. In other embodiments, the entire genomes of two entities are sequenced and compared. In another embodiment, select regions such as multilocus sequence tags (MLST), specific genes, or sets of genes may be genetically compared. In 16S embodiments, OTUs that share ≧97% average nucleotide identity across the entire 16S or some variable region of the 16S are considered the same OTU (see e.g. Claesson M J, Wang Q, O'Sullivan O, Greene-Diniz R, Cole J R, Ross R P, and O'Toole P W. 2010. Comparison of two next-generation sequencing technologies for resolving highly complex microbiota composition using tandem variable 16S rRNA gene regions. Table 1 below shows a List of Operational Taxonomic Units (OTU) with taxonomic assignments made to Genus, Species, and Phylogenetic Clade. Clade membership of bacterial OTUs is based on 16S sequence data. Clades are defined based on the topology of a phylogenetic tree that is constructed from full-length 16S sequences using maximum likelihood methods familiar to individuals with ordinary skill in the art of phylogenetics. Clades are constructed to ensure that all OTUs in a given clade are: (i) within a specified number of bootstrap supported nodes from one another, and (ii) within 5% genetic similarity. OTUs that are within the same clade can be distinguished as genetically and phylogenetically distinct from OTUs in a different clade based on 16S-V4 sequence data, while OTUs falling within the same clade are closely related. OTUs falling within the same clade are evolutionarily closely related and may or may not be distinguishable from one another using 16S-V4 sequence data. Members of the same clade, due to their evolutionary relatedness, play similar functional roles in a microbial ecology such as that found in the human gut. Compositions substituting one species with another from the same clade are likely to have conserved ecological function and therefore are useful in the present invention. All OTUs are denoted as to their putative capacity to form spores and whether they are a Pathogen or Pathobiont (see Definitions for description of “Pathobiont”). NIAID Priority Pathogens are denoted as ‘Category-A’, ‘Category-B’, or ‘Category-C’, and Opportunistic Pathogens are denoted as ‘OP’. OTUs that are not pathogenic or for which their ability to exist as a pathogen is unknown are denoted as ‘N’. The ‘SEQ ID Number’ denotes the identifier of the OTU in the Sequence Listing File and ‘Public DB Accession’ denotes the identifier of the OTU in a public sequence repository. “Residual habitat products” refers to material derived from the habitat for microbiota within or on a human or animal. For example, microbiota live in feces in the gastrointestinal tract, on the skin itself, in saliva, mucus of the respiratory tract, or secretions of the genitourinary tract (i.e., biological matter associated with the microbial community). Substantially free of residual habitat products means that the bacterial composition no longer contains the biological matter associated with the microbial environment on or in the human or animal subject and is 100% free, 99% free, 98% free, 97% free, 96% free, or 95% free of any contaminating biological matter associated with the microbial community. Residual habitat products can include abiotic materials (including undigested food) or it can include unwanted microorganisms. Substantially free of residual habitat products may also mean that the bacterial composition contains no detectable cells from a human or animal and that only microbial cells are detectable. In one embodiment, substantially free of residual habitat products may also mean that the bacterial composition contains no detectable viral (including bacterial viruses (i.e., phage)), fungal, mycoplasmal contaminants. In another embodiment, it means that fewer than 1×10−2%, 1×10−3%, 1×10−4%, 1×10−5%, 1×10−6%, 1×10−7%, 1×10−8of the viable cells in the bacterial composition are human or animal, as compared to microbial cells. There are multiple ways to accomplish this degree of purity, none of which are limiting. Thus, contamination may be reduced by isolating desired constituents through multiple steps of streaking to single colonies on solid media until replicate (such as, but not limited to, two) streaks from serial single colonies have shown only a single colony morphology. Alternatively, reduction of contamination can be accomplished by multiple rounds of serial dilutions to single desired cells (e.g., a dilution of 10−8or 10−9), such as through multiple 10-fold serial dilutions. This can further be confirmed by showing that multiple isolated colonies have similar cell shapes and Gram staining behavior. Other methods for confirming adequate purity include genetic analysis (e.g. PCR, DNA sequencing), serology and antigen analysis, enzymatic and metabolic analysis, and methods using instrumentation such as flow cytometry with reagents that distinguish desired constituents from contaminants. “Clade” refers to the OTUs or members of a phylogenetic tree that are downstream of a statistically valid node in a phylogenetic tree. The clade comprises a set of terminal leaves in the phylogenetic tree that is a distinct monophyletic evolutionary unit and that share some extent of sequence similarity. 16s Sequencing, 16s, 16s-rRNA, 16s-NGS: In microbiology, “16S sequencing” or “16S-rRNA” or “16S” refers to sequence derived by characterizing the nucleotides that comprise the 16S ribosomal RNA gene(s). The bacterial 16S rDNA is approximately 1500 nucleotides in length and is used in reconstructing the evolutionary relationships and sequence similarity of one bacterial isolate to another using phylogenetic approaches. 16S sequences are used for phylogenetic reconstruction as they are in general highly conserved, but contain specific hypervariable regions that harbor sufficient nucleotide diversity to differentiate genera and species of most bacteria. The “V1-V9 regions” of the 16S rRNA refers to the first through ninth hypervariable regions of the 16S rRNA gene that are used for genetic typing of bacterial samples. These regions in bacteria are defined by nucleotides 69-99, 137-242, 433-497, 576-682, 822-879, 986-1043, 1117-1173, 1243-1294 and 1435-1465 respectively using numbering based on the The term “subject” refers to any animal subject including humans, laboratory animals (e.g., primates, rats, mice), livestock (e.g., cows, sheep, goats, pigs, turkeys, and chickens), and household pets (e.g., dogs, cats, and rodents). The subject may be suffering from a dysbiosis, including, but not limited to, an infection due to a gastrointestinal pathogen or may be at risk of developing or transmitting to others an infection due to a gastrointestinal pathogen. The term “phenotype” refers to a set of observable characteristics of an individual entity. As example an individual subject may have a phenotype of “health” or “disease”. Phenotypes describe the state of an entity and all entities within a phenotype share the same set of characteristics that describe the phenotype. The phenotype of an individual results in part, or in whole, from the interaction of the entities genome and/or microbiome with the environment. The term “Network Ecology” refers to a consortium of OTUs that co-occur in some number of subjects. As used herein, a “network” is defined mathematically by a graph delineating how specific nodes (i.e. OTUs) and edges (connections between specific OTUs) relate to one another to define the structural ecology of a consortium of OTUs. Any given Network Ecology will possess inherent phylogenetic diversity and functional properties. A Network Ecology can also be defined in terms of function where for example the nodes would be comprised of elements such as, but not limited to, enzymes, clusters of orthologous groups (COGS; http://www.ncbi.nlm.nih.gov/books/NBK21090/), or KEGG pathways (www.genome.jp/kegg/). Network Class, Core Network, Core Network Ecology: The terms “Network Class”, “Core Network” and “Core Network Ecology” refer to a group of network ecologies that in general are computationally determined to comprise ecologies with similar phylogenetic and/or functional characteristics. A Core Network therefore contains important biological features, defined either phylogenetically or functionally, of a group (i.e., a cluster) of related network ecologies. One representation of a Core Network Ecology is a designed consortium of microbes, typically non-pathogenic bacteria, that represents core features of a set of phylogenetically or functionally related network ecologies seen in many different subjects. In many occurrences, a Core Network, while designed as described herein, exists as a Network Ecology observed in one or more subjects. Core Network ecologies are useful for reversing or reducing a dysbiosis in subjects where the underlying, related Network Ecology has been disrupted. The term “Keystone OTU” refers to one or more OTUs that are common to many network ecologies and are members of networks ecologies that occur in many subjects (i.e. are pervasive). Due to the ubiquitous nature of Keystone OTUs, they are central to the function of network ecologies in healthy subjects and are often missing or at reduced levels in subjects with disease. Keystone OTUs may exist in low, moderate, or high abundance in subjects. The term “non-Keystone OTU” refers to an OTU that is observed in a Network Ecology and is not a keystone OTU. The term “Phylogenetic Diversity” refers to the biodiversity present in a given Network Ecology or Core Network Ecology based on the OTUs that comprise the network. Phylogenetic diversity is a relative term, meaning that a Network Ecology or Core Network that is comparatively more phylogenetically diverse than another network contains a greater number of unique species, genera, and taxonomic families. Uniqueness of a species, genera, or taxonomic family is generally defined using a phylogenetic tree that represents the genetic diversity all species, genera, or taxonomic families relative to one another. In another embodiment phylogenetic diversity may be measured using the total branch length or average branch length of a phylogenetic tree. “Spore” or “endospore” refers to an entity, particularly a bacterial entity, which is in a dormant, non-vegetative and non-reproductive stage. Spores are generally resistant to environmental stress such as radiation, desiccation, enzymatic treatment, temperature variation, nutrient deprivation, and chemical disinfectants. A “spore population” refers to a plurality of spores present in a composition. Synonymous terms used herein include spore composition, spore preparation, ethanol treated spore fraction and spore ecology. A spore population may be purified from a fecal donation, e.g. via ethanol or heat treatment, or a density gradient separation or any combination of methods described herein to increase the purity, potency and/or concentration of spores in a sample. Alternatively, a spore population may be derived through culture methods starting from isolated spore former species or spore former OTUs or from a mixture of such species, either in vegetative or spore form. In one embodiment, the spore preparation comprises spore forming species wherein residual non-spore forming species have been inactivated by chemical or physical treatments including ethanol, detergent, heat, sonication, and the like; or wherein the non-spore forming species have been removed from the spore preparation by various separations steps including density gradients, centrifugation, filtration and/or chromatography; or wherein inactivation and separation methods are combined to make the spore preparation. In yet another embodiment, the spore preparation comprises spore forming species that are enriched over viable non-spore formers or vegetative forms of spore formers. In this embodiment, spores are enriched by 2-fold, 5-fold, 10-fold, 50-fold, 100-fold, 1000-fold, 10,000-fold or greater than 10,000-fold ompared to all vegetative forms of bacteria. In yet another embodiment, the spores in the spore preparation undergo partial germination during processing and formulation such that the final composition comprises spores and vegetative bacteria derived from spore forming species. A “germinant” is a material or composition or physical-chemical process capable of inducing vegetative growth of a bacterium that is in a dormant spore form, or group of bacteria in the spore form, either directly or indirectly in a host organism and/or in vitro. A “sporulation induction agent” is a material or physical-chemical process that is capable of inducing sporulation in a bacterium, either directly or indirectly, in a host organism and/or in vitro. To “increase production of bacterial spores” includes an activity or a sporulation induction agent. “Production” includes conversion of vegetative bacterial cells into spores and augmentation of the rate of such conversion, as well as decreasing the germination of bacteria in spore form, decreasing the rate of spore decay in vivo, or ex vivo, or to increasing the total output of spores (e.g. via an increase in volumetric output of fecal material). The “colonization” of a host organism includes the non-transitory residence of a bacterium or other microscopic organism. As used herein, “reducing colonization” of a host subject's gastrointestinal tract (or any other microbiotal niche) by a pathogenic bacterium includes a reduction in the residence time of the pathogen in the gastrointestinal tract as well as a reduction in the number (or concentration) of the pathogen in the gastrointestinal tract or adhered to the luminal surface of the gastrointestinal tract. Measuring reductions of adherent pathogens may be demonstrated, e.g., by a biopsy sample, or reductions may be measured indirectly, e.g., by measuring the pathogenic burden in the stool of a mammalian host. A “combination” of two or more bacteria includes the physical co-existence of the two bacteria, either in the same material or product or in physically connected products, as well as the temporal co-administration or co-localization of the two bacteria. A “cytotoxic” activity or bacterium includes the ability to kill a bacterial cell, such as a pathogenic bacterial cell. A “cytostatic” activity or bacterium includes the ability to inhibit, partially or fully, growth, metabolism, and/or proliferation of a bacterial cell, such as a pathogenic bacterial cell. To be free of “non-comestible products” means that a bacterial composition or other material provided herein does not have a substantial amount of a non-comestible product, e.g., a product or material that is inedible, harmful or otherwise undesired in a product suitable for administration, e.g., oral administration, to a human subject. Non-comestible products are often found in preparations of bacteria from the prior art. As used herein the term “vitamin” is understood to include any of various fat-soluble or water-soluble organic substances (non-limiting examples include vitamin A, Vitamin B1 (thiamine), Vitamin B2 (riboflavin), Vitamin B3 (niacin or niacinamide), Vitamin B5 (pantothenic acid), Vitamin B6 (pyridoxine, pyridoxal, or pyridoxamine, or pyridoxine hydrochloride), Vitamin B7 (biotin), Vitamin B9 (folic acid), and Vitamin B12 (various cobalamins; commonly cyanocobalamin in vitamin supplements), vitamin C, vitamin D, vitamin E, vitamin K, K1 and K2 (i.e. MK-4, MK-7), folic acid and biotin) essential in minute amounts for normal growth and activity of the body and obtained naturally from plant and animal foods or synthetically made, pro-vitamins, derivatives, analogs. As used herein, the term “minerals” is understood to include boron, calcium, chromium, copper, iodine, iron, magnesium, manganese, molybdenum, nickel, phosphorus, potassium, selenium, silicon, tin, vanadium, zinc, or combinations thereof. As used herein, the term “antioxidant” is understood to include any one or more of various substances such as beta-carotene (a vitamin A precursor), vitamin C, vitamin E, and selenium) that inhibit oxidation or reactions promoted by Reactive Oxygen Species (“ROS”) and other radical and non-radical species. Additionally, antioxidants are molecules capable of slowing or preventing the oxidation of other molecules. Non-limiting examples of antioxidants include astaxanthin, carotenoids, coenzyme Q10 (“CoQ10”), flavonoids, glutathione, Goji (wolfberry), hesperidin, lactowolfberry, lignan, lutein, lycopene, polyphenols, selenium, vitamin A, vitamin C, vitamin E, zeaxanthin, or combinations thereof. Bacterial Compositions We have identified combinations of commensal bacteria of the human gut microbiota with the capacity to meaningfully provide functions of a healthy microbiota when administered to mammalian hosts. Without being limited to a specific mechanism, it is thought that such compositions inhibit the growth of a pathogen such as Preferred bacterial species include Bacterial compositions may consist essentially of no greater than a number of types of these preferred bacteria. For instance, a bacterial composition may comprise no more than 2, no more than 3, no more than 4, no more than 5, no more than 6, no more than 7, no more than 8, no more than 9, no more than 10, no more than 11, no more than 12, no more than 13, no more than 14, no more than 15, no more than 16, no more than 17, no more than 18, no more than 19, or no more than 20 types of bacteria, as defined by above species or operational taxonomic unit (OTU) encompassing such species. Bacterial compositions may consist essentially of a range of numbers of species of these preferred bacteria, but the precise number of species in a given composition is not known. For instance, a bacterial composition may consist essentially of between 2 and 10, 3 and 10, 4 and 10, 5 and 10, 6 and 10, 7 and 10, 8 and 10, or 9 and 10; or 2 and 9, 3 and 9, 4 and 9, 5 and 9, 6 and 9, 7 and 8 or 8 and 9; or 2 and 8, 3 and 8, 4 and 8, 5 and 8, 6 and 8 or 7 and 8; or 2 and 7, 3 and 7, 4 and 7, 5 and 7, or 6 and 7; or 2 and 6, 3 and 6, 4 and 6 or 5 and 6; or 2 and 5, 3 and 5 or 4 and 5; or 2 and 4 or 3 and 4; or 2 and 3, as defined by above species or operational taxonomic unit (OTU) encompassing such species. Bacterial compositions containing a plurality of species may be provided such that the relative concentration of a given species in the composition to any other species in the composition is known or unknown. Such relative concentrations of any two species, or OTUs, may be expressed as a ratio, where the ratio of a first species or OTU to a second species or OTU is 1:1 or any ratio other than 1:1, such as 1:2, 1:3, 1:4, 1:5, 1:6, 1:7, 1:8, 1:9, 1:10, 1:15, 1:20, 1:25; 1:50; 1:75, 1:100, 1:200, 1:500; 1:1000, 1:10,000, 1:100,000 or greater than 1:100,000. The ratio of bacterial strains present in a bacterial composition may be determined by the ratio of the bacterial strains in a reference mammalian subject, e.g., a healthy human not suffering from or at known risk of developing a dysbiosis. Bacterial compositions comprising a plurality of species may be provided such that the concentration of a given strain, or the aggregate of all strains, is between 1×104and 1×1015viable bacteria per gram of composition or per administered dose. For example the concentration of a given strain, or the aggregate of all strains, is e.g., 1×104, 1×105, 1×106, 1×107, 1×108, 1×109, 1×1010, 1×1011, 1×1012, 1×1013, 1×1014, 1×1015, or greater than 1×1015viable bacteria per gram of composition or per administered dose. Alternatively, the concentration of a given strain, or the aggregate of all strains, is below a given concentration e.g., below 1×104, 1×105, 1×106, 1×107, 1×108, 1×109, 1×1010, 1×1011, 1×1012, 1×1013, 1×1014, 1×1015, or below 1×1015viable bacteria per gram of composition or per administered dose. In certain embodiments, the bacterial compositions comprise a plurality of strains of the same species of bacteria. In certain embodiments, the strain of bacteria is present in amounts at least 2, 5, 10, 50, 100 or more than 100 times greater than any other strain of that species present in the composition. For example, provided are compositions containing one strain of Because pathogenic bacteria such as In one embodiment, the bacterial composition comprises at least one and preferably more than one of the following species or a species that is 97% identical based on the 16s rDNA: In one embodiment, the bacterial composition comprises at least one and preferably more than one of the following species or a species that is 97% identical based on the 16s rDNA: In one embodiment, the bacterial composition comprises at least one and preferably more than one of the following species or a species that is 97% identical based on the 16s rDNA: In one embodiment, the bacterial composition comprises at least one and preferably more than one of the following species or a species that is 97% identical based on the 16s rDNA: In one embodiment, the bacterial composition comprises at least one and preferably more than one of the following species or a species that is 97% identical based on the 16s rDNA: In one embodiment, the bacterial composition comprises at least one and preferably more than one of the following species or a species that is 97% identical based on the 16s rDNA: In one embodiment, the bacterial composition comprises at least one and preferably more than one of the following species or a species that is 97% identical based on the 16s rDNA: In one embodiment, the bacterial composition comprises at least one and preferably more than one of the following species or a species that is 97% identical based on the 16s rDNA: In one embodiment, the bacterial composition comprises at least one and preferably more than one of the following species or a species that is 97% identical based on the 16s rDNA: Bacterial Compositions Described by Operational Taxonomic Unit (OTUs) Bacterial compositions may be prepared comprising at least two types of isolated bacteria, chosen from the species in Table 1. A bacterial composition may be prepared comprising at least two types of isolated bacteria, wherein a first type is a first OTU comprising a species of OTUs can be defined either by full 16S sequencing of the rRNA gene (Table 1), by sequencing of a specific hypervariable region of this gene (i.e. V1, V2, V3, V4, V5, V6, V7, V8, or V9), or by sequencing of any combination of hypervariable regions from this gene (e.g. V1-3 or V3-5). The bacterial 16S rDNA is approximately 1500 nucleotides in length and is used in reconstructing the evolutionary relationships and sequence similarity of one bacterial isolate to another using phylogenetic approaches. 16S sequences are used for phylogenetic reconstruction as they are in general highly conserved, but contain specific hypervariable regions that harbor sufficient nucleotide diversity to differentiate genera and species of most microbes. Using well known techniques, in order to determine the full 16S sequence or the sequence of any hypervariable region of the 16S sequence, genomic DNA is extracted from a bacterial sample, the 16S rDNA (full region or specific hypervariable regions) amplified using polymerase chain reaction (PCR), the PCR products cleaned, and nucleotide sequences delineated to determine the genetic composition of 16S gene or subdomain of the gene. If full 16S sequencing is performed, the sequencing method used may be, but is not limited to, Sanger sequencing. If one or more hypervariable regions are used, such as the V4 region, the sequencing can be, but is not limited to being, performed using the Sanger method or using a next-generation sequencing method, such as an Illumina (sequencing by synthesis) method using barcoded primers allowing for multiplex reactions. OTUs can be defined by a combination of nucleotide markers or genes, in particular highly conserved genes (e.g., “house-keeping” genes), or a combination thereof, full-genome sequence, or partial genome sequence generated using amplified genetic products, or whole genome sequence (WGS). Using well defined methods DNA extracted from a bacterial sample will have specific genomic regions amplified using PCR and sequenced to determine the nucleotide sequence of the amplified products. In the whole genome shotgun (WGS) method, extracted DNA will be directly sequenced without amplification. Sequence data can be generated using any sequencing technology including, but not limited to Sanger, Illumina, 454 Life Sciences, Ion Torrent, ABI, Pacific Biosciences, and/or Oxford Nanopore. In one embodiment, the OTUs can be characterized by one or more of the variable regions of the 16S sequence (V1-V9). These regions in bacteria are defined by nucleotides 69-99, 137-242, 433-497, 576-682, 822-879, 986-1043, 1117-1173, 1243-1294 and 1435-1465 respectively using numbering based on the Inhibition of Bacterial Pathogens In some embodiments, the bacterial composition provides a protective or therapeutic effect against infection by one or more GI pathogens of interest. A list of exemplary bacterial pathogens and pathobionts is provided in Table 1. In some embodiments, the pathogenic bacterium is selected from the group consisting of In some embodiments, these pathogens include, but are not limited to, In one embodiment, the pathogen of interest is at least one pathogen chosen from Generation and Formulation of Bacterial Compositions The bacterial compositions are generally formulated for oral or gastric administration, typically to a mammalian subject. Preferably, such formulations contain or are coated by an enteric coating to protect the bacteria through the stomach and small intestine. In particular embodiments, the composition is formulated for oral administration as a solid, semi-solid, powder, gel, or liquid form, such as in the form of a pill, tablet, capsule, or lozenge. The bacterial strains may, individually or together, be substantially inactive prior to localization in the gastrointestinal tract of the mammalian subject to whom the composition is administered. The bacterial strains may be lyophilized or otherwise acted upon to increase long-term storage viability. Preferential species include The bacterial compositions may be formulated to be effective in a given mammalian subject in a single administration or over multiple administrations. For example, a single administration is substantially effective to reduce In some embodiments, the bacterial compositions comprise purified spore populations. Purified spore populations comprise one or more commensal bacteria of the human gut microbiota present in the form of a spore. Without being limited to a specific mechanism, it is thought that such compositions inhibit the growth of a pathogen such as In some embodiments, spore-forming bacteria are identified by the presence of nucleic acid sequences that modulate sporulation. In particular, signature sporulation genes are highly conserved across members of distantly related genera including Provided are bacterial compositions comprising more than one type of spore forming bacterium. As used herein, a “type” or more than one “types” of bacteria may be differentiated at the genus level, the species, level, the sub-species level, the strain level or by any other taxonomic method, as described herein and otherwise known in the art. Pharmaceutical Compositions and Formulations of the Invention Provided are formulations for administration to humans and other subjects in need thereof. Generally the bacterial compositions are combined with additional active and/or inactive materials in order to produce a final product, which may be in single dosage unit or in a multi-dose format. In some embodiments, the composition comprises at least one carbohydrate. A “carbohydrate” refers to a sugar or polymer of sugars. The terms “saccharide,” “polysaccharide,” “carbohydrate,” and “oligosaccharide” may be used interchangeably. Most carbohydrates are aldehydes or ketones with many hydroxyl groups, usually one on each carbon atom of the molecule. Carbohydrates generally have the molecular formula CnH2nOn. A carbohydrate can be a monosaccharide, a disaccharide, trisaccharide, oligosaccharide, or polysaccharide. The most basic carbohydrate is a monosaccharide, such as glucose, sucrose, galactose, mannose, ribose, arabinose, xylose, and fructose. Disaccharides are two joined monosaccharides. Exemplary disaccharides include sucrose, maltose, cellobiose, and lactose. Typically, an oligosaccharide includes between three and six monosaccharide units (e.g., raffinose, stachyose), and polysaccharides include six or more monosaccharide units. Exemplary polysaccharides include starch, glycogen, and cellulose. Carbohydrates can contain modified saccharide units, such as 2′-deoxyribose wherein a hydroxyl group is removed, 2′-fluororibose wherein a hydroxyl group is replace with a fluorine, or N-acetylglucosamine, a nitrogen-containing form of glucose (e.g., 2′-fluororibose, deoxyribose, and hexose). Carbohydrates can exist in many different forms, for example, conformers, cyclic forms, acyclic forms, stereoisomers, tautomers, anomers, and isomers. In some embodiments, the composition comprises at least one lipid. As used herein, a “lipid” includes fats, oils, triglycerides, cholesterol, phospholipids, fatty acids in any form including free fatty acids. Fats, oils and fatty acids can be saturated, unsaturated (cis or trans) or partially unsaturated (cis or trans). In some embodiments, the lipid comprises at least one fatty acid selected from lauric acid (12:0), myristic acid (14:0), palmitic acid (16:0), palmitoleic acid (16:1), margaric acid (17:0), heptadecenoic acid (17:1), stearic acid (18:0), oleic acid (18:1), linoleic acid (18:2), linolenic acid (18:3), octadecatetraenoic acid (18:4), arachidic acid (20:0), eicosenoic acid (20:1), eicosadienoic acid (20:2), eicosatetraenoic acid (20:4), eicosapentaenoic acid (20:5) (EPA), docosanoic acid (22:0), docosenoic acid (22:1), docosapentaenoic acid (22:5), docosahexaenoic acid (22:6) (DHA), and tetracosanoic acid (24:0). In other embodiments, the composition comprises at least one modified lipid, for example, a lipid that has been modified by cooking. In some embodiments, the composition comprises at least one supplemental mineral or mineral source. Examples of minerals include, without limitation: chloride, sodium, calcium, iron, chromium, copper, iodine, zinc, magnesium, manganese, molybdenum, phosphorus, potassium, and selenium. Suitable forms of any of the foregoing minerals include soluble mineral salts, slightly soluble mineral salts, insoluble mineral salts, chelated minerals, mineral complexes, non-reactive minerals such as carbonyl minerals, and reduced minerals, and combinations thereof. In certain embodiments, the composition comprises at least one supplemental vitamin. In one embodiment, at least one vitamin can be fat-soluble or water soluble vitamins. Suitable vitamins include but are not limited to vitamin C, vitamin A, vitamin E, vitamin B12, vitamin K, riboflavin, niacin, vitamin D, vitamin B6, folic acid, pyridoxine, thiamine, pantothenic acid, and biotin. Suitable forms of any of the foregoing are salts of the vitamin, derivatives of the vitamin, compounds having the same or similar activity of the vitamin, and metabolites of the vitamin. In other embodiments, the composition comprises an excipient. Non-limiting examples of suitable excipients include a buffering agent, a preservative, a stabilizer, a binder, a compaction agent, a lubricant, a dispersion enhancer, a disintegration agent, a flavoring agent, a sweetener, and a coloring agent. In another embodiment, the excipient is a buffering agent. Non-limiting examples of suitable buffering agents include sodium citrate, magnesium carbonate, magnesium bicarbonate, calcium carbonate, and calcium bicarbonate. In some embodiments, the excipient comprises a preservative. Non-limiting examples of suitable preservatives include antioxidants, such as alpha-tocopherol and ascorbate, and antimicrobials, such as parabens, chlorobutanol, and phenol. In other embodiments, the composition comprises a binder as an excipient. Non-limiting examples of suitable binders include starches, pregelatinized starches, gelatin, polyvinylpyrolidone, cellulose, methylcellulose, sodium carboxymethylcellulose, ethylcellulose, polyacrylamides, polyvinyloxoazolidone, polyvinylalcohols, C12-C18fatty acid alcohol, polyethylene glycol, polyols, saccharides, oligosaccharides, and combinations thereof. In another embodiment, the composition comprises a lubricant as an excipient. Non-limiting examples of suitable lubricants include magnesium stearate, calcium stearate, zinc stearate, hydrogenated vegetable oils, sterotex, polyoxyethylene monostearate, talc, polyethyleneglycol, sodium benzoate, sodium lauryl sulfate, magnesium lauryl sulfate, and light mineral oil. In other embodiments, the composition comprises a dispersion enhancer as an excipient. Non-limiting examples of suitable dispersants include starch, alginic acid, polyvinylpyrrolidones, guar gum, kaolin, bentonite, purified wood cellulose, sodium starch glycolate, isoamorphous silicate, and microcrystalline cellulose as high HLB emulsifier surfactants. In some embodiments, the composition comprises a disintegrant as an excipient. In other embodiments, the disintegrant is a non-effervescent disintegrant. Non-limiting examples of suitable non-effervescent disintegrants include starches such as corn starch, potato starch, pregelatinized and modified starches thereof, sweeteners, clays, such as bentonite, micro-crystalline cellulose, alginates, sodium starch glycolate, gums such as agar, guar, locust bean, karaya, pecitin, and tragacanth. In another embodiment, the disintegrant is an effervescent disintegrant. Non-limiting examples of suitable effervescent disintegrants include sodium bicarbonate in combination with citric acid, and sodium bicarbonate in combination with tartaric acid. In another embodiment, the excipient comprises a flavoring agent. Flavoring agents can be chosen from synthetic flavor oils and flavoring aromatics; natural oils; extracts from plants, leaves, flowers, and fruits; and combinations thereof. In some embodiments the flavoring agent is selected from cinnamon oils; oil of wintergreen; peppermint oils; clover oil; hay oil; anise oil; eucalyptus; vanilla; citrus oil such as lemon oil, orange oil, grape and grapefruit oil; and fruit essences including apple, peach, pear, strawberry, raspberry, cherry, plum, pineapple, and apricot. In other embodiments, the excipient comprises a sweetener. Non-limiting examples of suitable sweeteners include glucose (corn syrup), dextrose, invert sugar, fructose, and mixtures thereof (when not used as a carrier); saccharin and its various salts such as the sodium salt; dipeptide sweeteners such as aspartame; dihydrochalcone compounds, glycyrrhizin; In yet other embodiments, the composition comprises a coloring agent. Non-limiting examples of suitable color agents include food, drug and cosmetic colors (FD&C), drug and cosmetic colors (D&C), and external drug and cosmetic colors (Ext. D&C). The coloring agents can be used as dyes or their corresponding lakes. The weight fraction of the excipient or combination of excipients in the formulation is usually about 99% or less, such as about 95% or less, about 90% or less, about 85% or less, about 80% or less, about 75% or less, about 70% or less, about 65% or less, about 60% or less, about 55% or less, 50% or less, about 45% or less, about 40% or less, about 35% or less, about 30% or less, about 25% or less, about 20% or less, about 15% or less, about 10% or less, about 5% or less, about 2% or less, or about 1% or less of the total weight of the composition. The bacterial compositions disclosed herein can be formulated into a variety of forms and administered by a number of different means. The compositions can be administered orally, rectally, or parenterally, in formulations containing conventionally acceptable carriers, adjuvants, and vehicles as desired. The term “parenteral” as used herein includes subcutaneous, intravenous, intramuscular, or intrasternal injection and infusion techniques. In an exemplary embodiment, the bacterial composition is administered orally. Solid dosage forms for oral administration include capsules, tablets, caplets, pills, troches, lozenges, powders, and granules. A capsule typically comprises a core material comprising a bacterial composition and a shell wall that encapsulates the core material. In some embodiments, the core material comprises at least one of a solid, a liquid, and an emulsion. In other embodiments, the shell wall material comprises at least one of a soft gelatin, a hard gelatin, and a polymer. Suitable polymers include, but are not limited to: cellulosic polymers such as hydroxypropyl cellulose, hydroxyethyl cellulose, hydroxypropyl methyl cellulose (HPMC), methyl cellulose, ethyl cellulose, cellulose acetate, cellulose acetate phthalate, cellulose acetate trimellitate, hydroxypropylmethyl cellulose phthalate, hydroxypropylmethyl cellulose succinate and carboxymethylcellulose sodium; acrylic acid polymers and copolymers, such as those formed from acrylic acid, methacrylic acid, methyl acrylate, ammonio methylacrylate, ethyl acrylate, methyl methacrylate and/or ethyl methacrylate (e.g., those copolymers sold under the trade name “Eudragit”); vinyl polymers and copolymers such as polyvinyl pyrrolidone, polyvinyl acetate, polyvinylacetate phthalate, vinylacetate crotonic acid copolymer, and ethylene-vinyl acetate copolymers; and shellac (purified lac). In yet other embodiments, at least one polymer functions as taste-masking agents. Tablets, pills, and the like can be compressed, multiply compressed, multiply layered, and/or coated. The coating can be single or multiple. In one embodiment, the coating material comprises at least one of a saccharide, a polysaccharide, and glycoproteins extracted from at least one of a plant, a fungus, and a microbe. Non-limiting examples include corn starch, wheat starch, potato starch, tapioca starch, cellulose, hemicellulose, dextrans, maltodextrin, cyclodextrins, inulins, pectin, mannans, gum arabic, locust bean gum, mesquite gum, guar gum, gum karaya, gum ghatti, tragacanth gum, funori, carrageenans, agar, alginates, chitosans, or gellan gum. In some embodiments the coating material comprises a protein. In another embodiment, the coating material comprises at least one of a fat and an oil. In other embodiments, the at least one of a fat and an oil is high temperature melting. In yet another embodiment, the at least one of a fat and an oil is hydrogenated or partially hydrogenated. In one embodiment, the at least one of a fat and an oil is derived from a plant. In other embodiments, the at least one of a fat and an oil comprises at least one of glycerides, free fatty acids, and fatty acid esters. In some embodiments, the coating material comprises at least one edible wax. The edible wax can be derived from animals, insects, or plants. Non-limiting examples include beeswax, lanolin, bayberry wax, carnauba wax, and rice bran wax. Tablets and pills can additionally be prepared with enteric coatings. Alternatively, powders or granules embodying the bacterial compositions disclosed herein can be incorporated into a food product. In some embodiments, the food product is a drink for oral administration. Non-limiting examples of a suitable drink include fruit juice, a fruit drink, an artificially flavored drink, an artificially sweetened drink, a carbonated beverage, a sports drink, a liquid diary product, a shake, an alcoholic beverage, a caffeinated beverage, infant formula and so forth. Other suitable means for oral administration include aqueous and nonaqueous solutions, emulsions, suspensions and solutions and/or suspensions reconstituted from non-effervescent granules, containing at least one of suitable solvents, preservatives, emulsifying agents, suspending agents, diluents, sweeteners, coloring agents, and flavoring agents. In some embodiments, the food product can be a solid foodstuff. Suitable examples of a solid foodstuff include without limitation a food bar, a snack bar, a cookie, a brownie, a muffin, a cracker, an ice cream bar, a frozen yogurt bar, and the like. In other embodiments, the compositions disclosed herein are incorporated into a therapeutic food. In some embodiments, the therapeutic food is a ready-to-use food that optionally contains some or all essential macronutrients and micronutrients. In another embodiment, the compositions disclosed herein are incorporated into a supplementary food that is designed to be blended into an existing meal. In one embodiment, the supplemental food contains some or all essential macronutrients and micronutrients. In another embodiment, the bacterial compositions disclosed herein are blended with or added to an existing food to fortify the food's protein nutrition. Examples include food staples (grain, salt, sugar, cooking oil, margarine), beverages (coffee, tea, soda, beer, liquor, sports drinks), snacks, sweets and other foods. In one embodiment, the formulations are filled into gelatin capsules for oral administration. An example of an appropriate capsule is a 250 mg gelatin capsule containing from 10 (up to 100 mg) of lyophilized powder (108to 1011bacteria), 160 mg microcrystalline cellulose, 77.5 mg gelatin, and 2.5 mg magnesium stearate. In an alternative embodiment, from 105to 1012bacteria may be used, 105to 107, 106to 107, or 108to 1010, with attendant adjustments of the excipients if necessary. In an alternative embodiment, an enteric-coated capsule or tablet or with a buffering or protective composition can be used. Administration of Bacterial Compositions The bacterial compositions of the invention are suitable for administration to mammals and non-mammalian animals in need thereof. The bacterial compositions can be administered to animals, including humans, laboratory animals (e.g., primates, rats, mice), livestock (e.g., cows, sheep, goats, pigs, turkeys, chickens), and household pets (e.g., dogs, cats, rodents). In certain embodiments, the mammalian subject is a human subject who has one or more symptoms of a dysbiosis. When the mammalian subject is suffering from a disease, disorder or condition characterized by an aberrant microbiota, the bacterial compositions described herein are suitable for treatment thereof. In some embodiments, the mammalian subject has not received antibiotics in advance of treatment with the bacterial compositions. For example, the mammalian subject has not been administered at least two doses of vancomycin, metronidazole and/or or similar antibiotic compound within one week prior to administration of the therapeutic composition. In other embodiments, the mammalian subject has not previously received an antibiotic compound in the one month prior to administration of the therapeutic composition. The bacterial compositions are useful in methods of treating a mammalian subject suffering from or at risk of developing a gastrointestinal disease, disorder or condition. Therefore, a therapeutic benefit is provided by orally administering to the mammalian subject a therapeutic composition containing a bacterial population comprising at least three bacterial strains, wherein each bacterial strain is a member of a bacterial species selected from the group consisting of Also provided are methods of treating or preventing a mammalian subject suffering from or at risk of developing a metabolic disease, disorder or condition selected from the group consisting of diabetes, metabolic syndrome, obesity, and autism using the therapeutic compositions provided herein. The bacterial compositions can be administered as a complementary treatment to antibiotics when a patient is suffering from an acute infection, to reduce the risk of recurrence after an acute infection has subsided, or when a patient will be in close proximity to others with or at risk of serious gastrointestinal infections (physicians, nurses, hospital workers, family members of those who are ill or hospitalized). An In Vivo Assay Establishing that a Bacterial Composition Populates a Subject's Gastrointestinal Tract In order to determine that the bacterial composition populates the gastrointestinal tract of a subject, an animal model, such as a mouse model, may be used. The model may begin by evaluating the microbiota of the mice. Qualitative assessments may be accomplished using 16S profiling of the microbial community in the feces of normal mice. It may also be accomplished by full genome sequencing, whole genome shotgun sequencing (WGS), or traditional microbiological techniques. Quantitative assessments may be conducted using quantitative PCR (qPCR), described in section below, or by using traditional microbiological techniques and counting colony formation. Optionally, the mice may receive an antibiotic treatment to mimic the condition of dysbiosis. Antibiotic treatment can decrease the taxonomic richness, diversity, and evenness of the community, including a reduction of abundance of a significant number of bacterial taxa. Dethlefsen et al., The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing, PLoS Biology 6(11):3280 (2008). At least one antibiotic may be used and antibiotics are well known. Antibiotics may include aminoglycoside antibiotics (amikacin, arbekacin, gentamicin, kanamycin, neomycin, netilmicin, paromomycin, rhodostreptomycin, streptomycin, tobramycin, and apramycin), amoxicillin, ampicillin, Augmentin (an amoxicillin/clavulanate potassium combination), cephalosporin (cefaclor, defadroxil, cefazolin, cefixime, fefoxitin, cefprozil, ceftazimdime, cefuroxime, cephalexin), clavulanate potassium, clindamycin, colistin, gentamycin, kanamycin, metronidazole, or vancomycin. As an individual, nonlimiting specific example, the mice may be provided with drinking water containing a mixture of the antibiotics kanamycin, colistin, gentamycin, metronidazole and vancomycin at 40 mg/kg, 4.2 mg/kg, 3.5 mg/kg, 21.5 mg/kg, and 4.5 mg/kg (mg per average mouse body weight), respectively, for 7 days. Alternatively, mice may be administered ciprofloxacin at a dose of 15-20 mg/kg (mg per average mouse body weight), for 7 days. If the mice are provided with an antibiotic, a wash out period of from one day to three days may be provided with no antibiotic treatment and no bacterial composition treatment. Subsequently, the test bacterial composition is administered to the mice by oral gavage. The test bacterial composition may be administered in a volume of 0.2 ml containing 104CFUs of each type of bacteria in the bacterial composition. Dose-response may be assessed by using a range of doses, including, but not limited to 102, 103, 104, 105, 106, 107, 108, 109, and/or 1010. The mice may be evaluated using 16S sequencing, full genome sequencing, whole genome shotgun sequencing (WGS), or traditional microbiological techniques to determine whether the test bacterial composition has populated the gastrointestinal tract of the mice. For example only, one day, three days, one week, two weeks, and one month after administration of the bacterial composition to the mice, 16S profiling is conducted to determine whether the test bacterial composition has populated the gastrointestinal tract of the mice. Quantitative assessments, including qPCR and traditional microbiological techniques such as colony counting, may additionally or alternatively be performed, at the same time intervals. Furthermore, the number of sequence counts that correspond exactly to those in the bacterial composition over time may be assessed to determine specifically which components of the bacterial composition reside in the gastrointestinal tract over a particular period of time. In one embodiment, the strains of the bacterial composition persist for a desired period of time; in another embodiment, the components of the bacterial composition persist for a desired period of time while also increasing the ability of other microbes (such as those present in the environment, food, etc.) to populate the gastrointestinal tract, further increasing overall diversity, as discussed below. Ability of Bacterial cCompositions to Populate Different Regions of the Gastrointestinal Tract The present bacterial compositions may also be assessed for their ability to populate different regions on the gastrointestinal tract. In one embodiment, a bacterial composition may be chosen for its ability to populate one or more than one region of the gastrointestinal tract, including, but not limited to the stomach, the small intestine (duodenum, jejunum, and ileum), the large intestine (the cecum, the colon (the ascending, transverse, descending, and sigmoid colon), and the rectum). An in vivo study may be conducted to determine which regions of the gastrointestinal tract a given bacterial composition will populate. A mouse model similar to the one described above in section II.A may be conducted, except instead of assessing the feces produced by the mice, particular regions of the gastrointestinal tract may be removed and studied individually. For example, at least one particular region of the gastrointestinal tract may be removed and a qualitative or quantitative determination may be performed on the contents of that region of the gastrointestinal tract. In another embodiment, the contents may optionally be removed and the qualitative or quantitative determination may be conducted on the tissue removed from the mouse. Methods for Testing Sensitivity of Bacterial Composition In certain embodiments, methods for testing the sensitivity of bacterial compositions in order to select for particular desirable characteristics may be employed. For example, the constituents in the bacterial composition may be tested for pH resistance, bile acid resistance, and/or antibiotic sensitivity, either individually on a constituent-by-constituent basis or collectively as a bacterial composition comprised of multiple bacterial constituents (collectively referred to in this section as bacterial composition). 1. pH Sensitivity Testing For oral administration of the bacterial compositions, optionally testing for pH resistance enhances the selection of bacterial compositions that will survive at the highest yield possible through the varying pH environments of the distinct regions of the GI tract. Understanding how the bacterial compositions react to the pH of the GI tract also assists in formulation, so that the number of bacteria in a dosage form can be increased if beneficial and/or so that the composition may be administered in an enteric-coated capsule or tablet or with a buffering composition. As the pH of the stomach can drop to a pH of 1 to 2 after a high-protein meal for a short time before physiological mechanisms adjust it to a pH of 3 to 4 and often resides at a resting pH of 4 to 5, and as the pH of the small intestine can range from a pH of 6 to 7.4, bacterial compositions can be prepared that survive these varying pH ranges (specifically wherein at least 1%, 5%, 10%, 15%, 20%, 25%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or as much as 100% of the bacteria can survive gut transit times through various pH ranges). This may be tested by exposing the bacterial composition to varying pH ranges for the expected gut transit times through those pH ranges. Therefore, as a nonlimiting example only, 18-hour cultures of bacterial compositions may be grown in standard media, such as gut microbiota medium (“GMM”, see Goodman et al., Extensive personal human gut microbiota culture collections characterized and manipulated in gnotobiotic mice, PNAS 108(15):6252-6257 (2011)) or another animal-products-free medium, with the addition of pH adjusting agents for a pH of 1 to 2 for 30 minutes, a pH of 3 to 4 for 1 hour, a pH of 4 to 5 for 1 to 2 hours, and a pH of 6 to 7.4 for 2.5 to 3 hours. Alternatively, bacterial cells may be grown in a standard media, such as the GMM media described above, and adjusted to pH 2.5 with 1M HCl. The cells may be incubated anaerobically at 37° C. and their survival measured at intervals of 0, 30, 60, 120, 240, and/or 360 minutes. A further alternative method for testing stability to acid is described in U.S. Pat. No. 4,839,281. Survival of bacteria may be determined by culturing the bacteria and counting colonies on appropriate selective or non-selective media. 2. Bile Acid Sensitivity Testing Additionally, in some embodiments, testing for bile-acid resistance enhances the selection of bacterial compositions that will survive exposures to bile acid during transit through the GI tract. Bile acids are secreted into the small intestine and can, like pH, affect the survival of bacterial compositions. This may be tested by exposing the bacterial compositions to bile acids for the expected gut exposure time to bile acids. For example, bile acid solutions may be prepared at desired concentrations using 0.05 mM Tris at pH 9 as the solvent. After the bile acid is dissolved, the pH of the solution may be adjusted to 7.2 with 10% HCl. Bacterial compositions may be cultured in 2.2 ml of a bile acid composition mimicking the concentration and type of bile acids in the subject, 1.0 ml of 10% sterile-filtered feces media and 0.1 ml of an 18-hour culture of the given strain of bacteria. Incubations may be conducted for from 2.5 to 3 hours or longer. Survival of bacteria may be determined by culturing the bacteria and counting colonies on appropriate selective or non-selective media. As another alternative, bacterial strains may be streaked onto agar plates supplemented with porcine bile (Sigma) at 0.5%, 1%, and 5% (w/v). Plates may be incubated at 37° C. under anaerobic conditions and the growth recorded after 48 hours. Growth may be compared with control plates by an experienced observer and the growth of colonies scored as: 0=no growth, 1=hazy translucent growth (<33% control plates with 0% bile), 2=definite growth but not as good as controls (>33% but <66%), 3=growth equivalent to controls (>66%). A further alternative method for testing stability to bile acid is described in U.S. Pat. No. 4,839,281. Survival of bacteria may be determined by culturing the bacteria and counting colonies on appropriate selective or non-selective media. 3. Antibiotic Sensitivity Testing As a further optional sensitivity test, bacterial compositions may be tested for sensitivity to antibiotics. In one embodiment, bacterial compositions may be chosen so that the bacterial constituents are sensitive to antibiotics such that if necessary they can be eliminated or substantially reduced from the subject's gastrointestinal tract by at least one antibiotic targeting the bacterial composition. 4. Adherence to Gastrointestinal Cells The bacterial compositions may optionally be tested for the ability to adhere to gastrointestinal cells. Without being bound by theory, in some instances, adherence can enhance the ability to repopulate a subject's gastrointestinal tract and thus may be used as a criterion in some embodiments. As a first embodiment, this may be conducted in a tissue culture model, where gastrointestinal epithelial cells, such as but not limited to CACO-2 cells (ATCC HTB-37), are grown in tissue culture flasks to differentiation in an antibiotic containing media, grown for at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, or at least 7 days in an antibiotic-free medium, incubated with bacterial cells for 30 minutes, 60 minutes, 90 minutes, or 120 minutes, and washed three times. After washing, the number of adherent bacteria may be assessed by lysing the epithelial cells and enumerating the bacteria using the plate count method or qPCR, as described herein. As another mode, bacterial adherence may be evaluated using an engineered tissue model of the lining of the gastrointestinal tract. Viney et al., “Co-culture of Intestinal Epithelial and Stromal Cells in 3D Collagen-based Environments,” Regen Med 4(3):397-406 (2009). After preparation of the engineered tissue model, the bacterial cells may be incubated, washed, and adherence enumerated, as described above. Furthermore, bacterial adherence may be evaluated using a tissue explant from the gastrointestinal tract of a subject. Gastrointestinal tract tissue may be surgically removed from a healthy donor. Alternatively, gastrointestinal tract tissue may be surgically removed from a donor who has a gastrointestinal disease, such as from an unused portion of a biopsy. After surgical excision, the bacterial cells may be incubated, washed, and adherence enumerated, as described above. As an alternative, one technique involves the collection of the effluent from a subject with a well functioning ileostomy by saline lavage, as described in U.S. Pat. No. 4,839,281. Assessment of Microbiota Diversity Microbiota diversity, as assessed by deep 16S rRNA sequencing or metagenomic sequencing, may be evaluated at a variety of time points to assess the effect of microbial compositions on restoring microbiota diversity. Microbial diversity may optionally be assessed before administration of an antibiotic or removal of microbiota by a colon-cleansing preparation. Microbial diversity may also be assessed before administration of a microbial composition and after administration of a microbial composition at any frequency (e.g., more frequently than 1 day, 1 day, 3 days, 1 week, 2 weeks, one month, or more than one month). One may provide for any temporal resolution that has more or less frequent sampling intervals, and/or samples taken for a longer time period (e.g., at least 1 week, at least 1 month, at least three months, at least six months, at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or over more than 10 years. Diversity may be measured according to known sequencing methods, including, but not limited to Dethlefsen et al., The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing, PLoS Biology 6(11):3280 (2008). Sequence data used for diversity analysis may comprise 16S rRNA, whole genome sequence, any subset of a genome as well as whole genome shotgun metagenomic sequence (WGS). Sequence data may be generated using any sequencing technology including, but not limited to Sanger, Illumina, 454 Life Sciences, Ion Torrent, ABI, Pacific Bioscienses, and/or Oxford Nanopore. Subjects may be assessed for a variety of diversity metrics, including, but not limited to, observed taxon richness, Shannon diversity index, Shannon equitability index, alpha diversity, beta diversity, Chao1 index, Simpson diversity index, normalized abundance over time, and/or phylogenetic breadth. In another embodiment, subjects may be assessed for a variety of diversity metrics, including, but not limited to, Simpson diversity or by plotting rarefaction curve comparisons of reference OTUs for subjects before and after treatment with microbial compositions. Phylogenetic diversity may be plotted against the number of sequence reads (full 16S sequence or one or any combination of more hypervariable regions of the 16S sequence, whole genome sequence, or specific marker loci). Shahinas, et al., Toward an understanding of changes in diversity associated with fecal microbiome transplantation based on 16S rRNA Gene Deep Sequencing, mBio 3(5):e00338-12 (2012). In another embodiment, diversity may be shown by graphing a bar plot of abundance at the family level and showing an increase in either the number of families or the balance of abundance between families. In another embodiment, diversity may be shown by plotting heatmaps of the abundance of an OTU, species, genus, and/or higher taxonomic assignment showing sets of samples that are enriched or depleted for specific constituents. In another embodiment, diversity may be shown by generation of a phylogenetic tree of OTUs, species, genera, and/or higher or lower clade assignments. In this embodiment genetic distances may be computed between all OTUs, and summary statistics including, but not limited to average genetic distance and number of unique clades may be computed. In another embodiment, beta-diversity may be computed using diversity metrics familiar to those with ordinary skill in the art that include but are not limited to Bray-Curtis Dissimilarity Indices or Jaccard Distances and plotted using Principal Coordinates Analysis. Beneficial bacterial compositions may result in an increase in diversity after their administration that is 10%, 20%, 30%, 40%, or 50% higher than diversity before their administration. In another embodiment bacterial compositions may result in restoration of diversity to at least 70%, 80%, 90%, 95%, or up to 100% of the diversity either measured before administration of an antibiotic or removal of microbiota by a colon-cleansing preparation, or alternatively, as compared to the diversity of a reference mammalian subject. Methods for Preparing a Bacterial Composition for Administration to a Subject Methods for producing bacterial compositions may include three main processing steps, combined with one or more mixing steps. The steps are: organism banking, organism production, and preservation. For banking, the strains included in the bacterial composition may be (1) isolated directly from a specimen or taken from a banked stock, (2) optionally cultured on a nutrient agar or broth that supports growth to generate viable biomass, and (3) the biomass optionally preserved in multiple aliquots in long-term storage. In embodiments using a culturing step, the agar or broth may contain nutrients that provide essential elements and specific factors that enable growth. An example would be a medium composed of 20 g/L glucose, 10 g/L yeast extract, 10 g/L soy peptone, 2 g/L citric acid, 1.5 g/L sodium phosphate monobasic, 100 mg/L ferric ammonium citrate, 80 mg/L magnesium sulfate, 10 mg/L hemin chloride, 2 mg/L calcium chloride, 1 mg/L menadione. Medium can be added to the culture at the start, may be added during the culture, or may be intermittently/continuously flowed through the culture. The strains in the bacterial composition may be cultivated alone, as a subset of the bacterial composition, or as an entire collection comprising the bacterial composition. As an example, a first strain may be cultivated together with a second strain in a mixed continuous culture, at a dilution rate lower than the maximum growth rate of either cell to prevent the culture from washing out of the cultivation. The inoculated culture is incubated under favorable conditions for a time sufficient to build biomass. For bacterial compositions for human use this is often at 37° C. temperature, pH, and other parameter with values similar to the normal human niche. The environment may be actively controlled, passively controlled (e.g., via buffers), or allowed to drift. For example, for anaerobic bacterial compositions (e.g., gut applications), an anoxic/reducing environment may be employed. This can be accomplished by addition of reducing agents such as cysteine to the broth, and/or stripping it of oxygen. As an example, a culture of a bacterial composition may be grown at 37° C., pH 7, in the medium above, pre-reduced with 1 g/L cysteineŸHCl. When the culture has generated sufficient biomass, it may be preserved for banking. The organisms may be placed into a chemical milieu that protects from freezing (adding ‘cryoprotectants’), drying (‘lyoprotectants’), and/or osmotic shock (‘osmoprotectants’), dispensing into multiple (optionally identical) containers to create a uniform bank, and then treating the culture for preservation. Containers are generally impermeable and have closures that assure isolation from the environment. Cryopreservation treatment is accomplished by freezing a liquid at ultra-low temperatures (e.g., at or below −80° C.). Dried preservation removes water from the culture by evaporation (in the case of spray drying or ‘cool drying’) or by sublimation (e.g., for freeze drying, spray freeze drying). Removal of water improves long-term bacterial composition storage stability at temperatures elevated above cryogenic. Bacterial composition banking may be done by culturing and preserving the strains individually, or by mixing the strains together to create a combined bank. As an example of cryopreservation, a bacterial composition culture may be harvested by centrifugation to pellet the cells from the culture medium, the supernatant decanted and replaced with fresh culture broth containing 15% glycerol. The culture can then be aliquoted into 1 mL cryotubes, sealed, and placed at −80° C. for long-term viability retention. This procedure achieves acceptable viability upon recovery from frozen storage. Organism production may be conducted using similar culture steps to banking, including medium composition and culture conditions. It may be conducted at larger scales of operation, especially for clinical development or commercial production. At larger scales, there may be several subcultivations of the bacterial composition prior to the final cultivation. At the end of cultivation, the culture is harvested to enable further formulation into a dosage form for administration. This can involve concentration, removal of undesirable medium components, and/or introduction into a chemical milieu that preserves the bacterial composition and renders it acceptable for administration via the chosen route. For example, a bacterial composition may be cultivated to a concentration of 1010CFU/mL, then concentrated 20-fold by tangential flow microfiltration; the spent medium may be exchanged by diafiltering with a preservative medium consisting of 2% gelatin, 100 mM trehalose, and 10 mM sodium phosphate buffer. The suspension can then be freeze-dried to a powder and titrated. After drying, the powder may be blended to an appropriate potency, and mixed with other cultures and/or a ‘filler’ such as microcrystalline cellulose for consistency and ease of handling, and the bacterial composition filled into gelatin capsules for oral administration. An example of an appropriate capsule is a 250 mg gelatin capsule containing from 10 (up to 100 mg) of lyophilized powder (108to 1011bacteria), 160 mg microcrystalline cellulose, 77.5 mg gelatin, and 2.5 mg magnesium stearate. In an alternative embodiment, from 105to 1012bacteria may be used, 105to 107, 106to 107, or 108to 1010, with attendant adjustments of the excipients if necessary. In one embodiment, the number of bacteria of each type may be present in the same amount or in different amounts. For example, in a bacterial composition with two types of bacteria, the bacteria may be present in from a 1:10,000 ratio to a 1:1 ratio, from a 1:10,000 ratio to a 1:1,000 ratio, from a 1:1,000 ratio to a 1:100 ratio, from a 1:100 ratio to a 1:50 ratio, from a 1:50 ratio to a 1:20 ratio, from a 1:20 ratio to a 1:10 ratio, from a 1:10 ratio to a 1:1 ratio. For bacterial compositions comprising at least three types of bacteria, the ratio of type of bacteria may be chosen pairwise from ratios for bacterial compositions with two types of bacteria. For example, in a bacterial composition comprising bacteria A, B, and C, at least one of the ratio between bacteria A and B, the ratio between bacteria B and C, and the ratio between bacteria A and C may be chosen, independently, from the pairwise combinations above. Methods of Treating a Subject A. Overview of Method The bacterial compositions may be used to populate the gastrointestinal tract of a subject, resulting in one or more of a changed constitution of a subject's microbiota and improvement or correction of a dysbiosis. Without being bound by theory, bacterial compositions can promote mammalian health by restoring the natural microflora in the GI tract and reinforcing the normal controls on aberrant immune responses. Bacterial compositions can also improve fiber and protein digestion. Improving fiber and protein digestion is desirable as it promotes the growth of microbiota. A probiotic composition with multiple species has been shown to reduce production of toxic metabolites from protein fermentation. Rehman, Effects of Probiotics and antibiotics on intestinal homeostasis in a computer controlled model of the large intestine, BMC Microbiology 12:47 (2012). Carbohydrate fermentation is, for the most part, believed to be a beneficial process in the large gut, because the growth of saccharolytic bacteria stimulates their requirements for toxic products associated with putrefaction, for incorporation into cellular proteins, thereby protecting the host. However, as digestive materials move along the gut, carbohydrates become depleted, which may be linked to the increased prevalence of colonic disease in the distal bowel. Macfarlane, et al., Bacteria, colonic fermentation, and gastrointestinal health, J AOAC Int. 95(1):50-60 (2012). Thus, restoring microbiota, including, but not limited to, restoring microbiota in the distal bowel can provide health benefits. Fiber digestion may be determined using the method described in Vickers et al., Comparison of fermentation of selected fructooligosaccharides and other fiber substrates by canine colonic microflora, Am. J. Vet. Res. 61 (4), 609-615 (2001), with the exception that instead of inoculating using diluted fecal samples each experiment may use the bacterial compositions of interest. In one embodiment, the pathogen may be The present bacterial compositions may be useful in a variety of clinical situations. For example, the bacterial compositions may be administered as a complementary treatment to antibiotics when a subject is suffering from an acute infection, to reduce the risk of recurrence after an acute infection has subsided, or when a subject will be in close proximity to others with or at risk of serious gastrointestinal infections (physicians, nurses, hospital workers, family members of those who are ill or hospitalized). The present bacterial compositions may be administered to animals, including humans, laboratory animals (e.g., primates, rats, mice), livestock (e.g., cows, sheep, goats, pigs, turkeys, chickens), and household pets (e.g., dogs, cats, rodents). In the present method, the bacterial composition is administered enterically, in other words by a route of access to the gastrointestinal tract. This includes oral administration, rectal administration (including enema, suppository, or colonoscopy), by an oral or nasal tube (nasogastric, nasojejunal, oral gastric, or oral jejunal), as detailed more fully in the section below. B. Pretreatment Protocols Prior to administration of the bacterial composition, the subject may optionally have a pretreatment protocol to prepare the gastrointestinal tract to receive the bacterial composition. In certain embodiments, the pretreatment protocol is advisable, such as when a subject has an acute infection with a highly resilient pathogen or when the microbiota resident in the subject's gastrointestinal tract is likely to resist colonization by the bacterial composition. In other embodiments, the pretreatment protocol is entirely optional, such as when the dysbiosis is not associated with a pathogenic infection; when, if an infection is present, the pathogen causing the infection is not resilient, or when the subject has had an acute infection that has been successfully treated but where the physician is concerned that the infection may recur. In these instances, the pretreatment protocol may enhance the ability of the bacterial composition to affect the subject's microbiome. As one way of preparing the subject for administration of the microbial ecosystem, a standard colon-cleansing preparation may be administered to the subject to substantially empty the contents of the colon, such as used to prepare a subject for a colonscopy. By “substantially emptying the contents of the colon,” this application means removing at least 75%, at least 80%, at least 90%, at least 95%, or about 100% of the contents of the ordinary volume of colon contents. If a subject has received an antibiotic for treatment of an infection, or if a subject has received an antibiotic as part of a specific pretreatment protocol, in one embodiment the antibiotic should be stopped in sufficient time to allow the antibiotic to be substantially reduced in concentration in the gut before the bacterial composition is administered. In one embodiment, the antibiotic may be discontinued 1, 2, or 3 days before the administration of the bacterial composition. In one embodiment, the antibiotic may be discontinued 3, 4, 5, 6, or 7 antibiotic half-lives before administration of the bacterial composition. In another embodiment, the antibiotic may be chosen so the constituents in the bacterial composition have an MIC50 that is higher than the concentration of the antibiotic in the gut. MIC50 of a bacterial composition or the elements in the composition may be determined by methods well known in the art. Reller et al., Antimicrobial Susceptibility Testing: A Review of General Principles and Contemporary Practices, Clinical Infectious Diseases 49(11):1749-1755 (2009). In such an embodiment, the additional time between antibiotic administration and administration of the bacterial composition is not necessary. If the pretreatment protocol is part of treatment of an acute infection, the antibiotic may be chosen so that the infection is sensitive to the antibiotic, but the constituents in the bacterial composition are not sensitive to the antibiotic. C. Routes of Administration In the present method, the bacterial composition is administered enterically, in other words by a route of access to the gastrointestinal tract. This preferentially includes oral administration, or by an oral or nasal tube (including nasogastric, nasojejunal, oral gastric, or oral jejunal). In other embodiments, administration includes rectal administration (including enema, suppository, or colonoscopy). The bacterial composition may be administered to at least one region of the gastrointestinal tract, including the mouth, esophagus, stomach, small intestine, large intestine, and rectum. In some embodiments it is administered to all regions of the gastrointestinal tract. The bacterial compositions may be administered orally in the form of medicaments such as powders, capsules, tablets, gels or liquids. The bacterial compositions may also be administered in gel or liquid form by the oral route or through a nasogastric tube, or by the rectal route in a gel or liquid form, by enema or instillation through a colonoscope or by a suppository. If the composition is administered colonoscopically and, optionally, if the bacterial composition is administered by other rectal routes (such as an enema or suppository) or even if the subject has an oral administration, the subject may have a colonic-cleansing preparation. The colon-cleansing preparation can facilitate proper use of the colonoscope or other administration devices, but even when it does not serve a mechanical purpose it can also maximize the proportion of the bacterial composition relative to the other organisms previously residing in the gastrointestinal tract of the subject. Any ordinarily acceptable colonic-cleansing preparation may be used such as those typically provided when a subject undergoes a colonoscopy. D. Dosages and Schedule for Administration In one embodiment, from 108and 1011microorganisms total may be administered to the subject in a given dosage form. In one mode, an effective amount may be provided in from 1 to 500 ml or from 1 to 500 grams of the bacterial composition having from 108to 1011bacteria per ml or per gram, or a capsule, tablet or suppository having from 1 mg to 1000 mg lyophilized powder having from 108to 1015bacteria. Those receiving acute treatment may receive higher doses than those who are receiving chronic administration (such as hospital workers or those admitted into long-term care facilities). Any of the preparations described herein may be administered once on a single occasion or on multiple occasions, such as once a day for several days or more than once a day on the day of administration (including twice daily, three times daily, or up to five times daily). Or the preparation may be administered intermittently according to a set schedule, e.g., once a day, once weekly, or once monthly, or when the subject relapses from the primary illness. In another embodiment, the preparation may be administered on a long-term basis to individuals who are at risk for infection with or who may be carriers of these pathogens, including individuals who will have an invasive medical procedure (such as surgery), who will be hospitalized, who live in a long-term care or rehabilitation facility, who are exposed to pathogens by virtue of their profession (livestock and animal processing workers), or who could be carriers of pathogens (including hospital workers such as physicians, nurses, and other health care professionals). E. Subject Selection Particular bacterial compositions may be selected for individual subjects or for subjects with particular profiles. For example, 16S sequencing may be performed for a given subject to identify the bacteria present in his or her microbiota. The sequencing may either profile the subject's entire microbiome using 16S sequencing (to the family, genera, or species level), a portion of the subject's microbiome using 16S sequencing, or it may be used to detect the presence or absence of specific candidate bacteria that are biomarkers for health or a particular disease state. Based on the biomarker data, a particular composition may be selected for administration to a subject to supplement or complement a subject's microbiota in order to restore health or treat or prevent disease. The specification is most thoroughly understood in light of the teachings of the references cited within the specification. The embodiments within the specification provide an illustration of embodiments and should not be construed to limit the scope. The skilled artisan readily recognizes that many other embodiments are encompassed. All publications and patents cited in this disclosure are incorporated by reference in their entirety. To the extent the material incorporated by reference contradicts or is inconsistent with this specification, the specification will supersede any such material. The citation of any references herein is not an admission that such references are prior art. Unless otherwise indicated, all numbers expressing quantities of ingredients, reaction conditions, and so forth used in the specification, including claims, are to be understood as being modified in all instances by the term “about.” Accordingly, unless otherwise indicated to the contrary, the numerical parameters are approximations and may vary depending upon the desired properties sought to be obtained. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should be construed in light of the number of significant digits and ordinary rounding approaches. Unless otherwise indicated, the term “at least” preceding a series of elements is to be understood to refer to every element in the series. Below are examples of specific embodiments for carrying out the present invention. The examples are offered for illustrative purposes only, and are not intended to limit the scope of the present invention in any way. Efforts have been made to ensure accuracy with respect to numbers used (e.g., amounts, temperatures, etc.), but some experimental error and deviation should, of course, be allowed for. The practice of the present invention will employ, unless otherwise indicated, conventional methods of protein chemistry, biochemistry, recombinant DNA techniques and pharmacology, within the skill of the art. Such techniques are explained fully in the literature. See, e.g., T. E. Creighton, An in vivo mouse model was employed to demonstrate the protective effect of the bacterial compositions against Exemplary bacterial compositions as described herein were administered as follows. In a first demonstration, the results of which are provided in tabular form as Table 2, Treatment 1 is the vehicle control of phosphate buffered saline (PBS), Treatment 2 is a positive control of 10% fecal suspension in PBS which has total anaerobic cfu/ml of 4.5×109, Treatment 3 is a positive control of 10% fecal suspension in PBS which has total anaerobic cfu/ml of 6.2×108, Treatment 4 is a bacterial composition comprising In a second demonstration, the results of which are provided in tabular form as Table 3A, Treatment 1 is the vehicle control of phosphate buffered saline (PBS), Treatment 2 is a positive control of 10% fecal suspension in PBS which has total anaerobic cfu/ml of 5×109, Treatment 3 is a positive control of 10% fecal suspension in PBS which has total anaerobic cfu/ml of 7×108. Treatment 4 is a bacterial composition comprising In a third demonstration, the results of which are provided in tabular form as Table 3B, Treatment 1 is the vehicle control of phosphate buffered saline (PBS), Treatment 2 is a positive control of 10% fecal suspension in PBS which has total anaerobic cfu/ml of 2.3×1011, Treatment 3 is a bacterial composition comprising For each of the three demonstrations, scores for each treatment range from 0 to 9. Scores were calculated as follows. Groups of animals (N=10/group) were scored for % mortality. Mortality was normalized in a given demonstration by setting the observed mortality of the PBS vehicle control group=3. A treatment group was then scored based on the observed mortality for that group divided by the mortality of the PBS vehicle control times 3. Thus, if the mortality of the PBS vehicle group was 60% (score=3), then a treatment group with mortality of 30% would receive a score of 1.5. Similarly, mean weight loss on Day 3 was normalized to a score of 3 for the PBS vehicle control group. A score for each treatment was calculated by dividing the actual mean weight loss by the mean weight loss for the PBS vehicle control group and multiplying by 3. A similar procedure was used for the clinical scores evaluation. Finally, the individual values for mortality, mean weight loss on Day 3 and clinical scores were summed to give a final value of 0-9 for each treatment, with 0 being best (no death, no weight loss, no clinical symptoms) and 9 being equivalent to the vehicle control. The identity of the bacterial species which grew up from a complex fraction can be determined in multiple ways. First, individual colonies can be picked into liquid media in a 96 well format, grown up and saved as 15% glycerol stocks at −80C. Aliquots of the cultures can be placed into cell lysis buffer and colony PCR methods can be used to amplify and sequence the 16S rDNA gene (described below in Example 3). Alternatively, colonies may be streaked to purity in several passages on solid media. Well separated colonies are streaked onto the fresh plates of the same kind and incubated for 48-72 hours at 37 C. The process is repeated multiple times in order to ensure purity. Pure cultures can be analyzed by phenotypic- or sequence-based methods, including 16S rDNA amplification and sequencing as described in Examples 3 and 4. Sequence characterization of pure isolates or mixed communities e.g. plate scrapes and spore fractions can also include whole genome shotgun sequencing. The latter is valuable to determine the presence of genes associated with sporulation, antibiotic resistance, pathogenicity, and virulence. Colonies can also be scraped from plates en masse and sequenced using a massively parallel sequencing method as described in Examples 3 & 4 such that individual 16S signatures can be identified in a complex mixture. Optionally, the sample can be sequenced prior to germination (if appropriate DNA isolation procedures are used to lsye and release the DNA from spores) in order to compare the diversity of germinable species with the total number of species in a spore sample. As an alternative or complementary approach to 16S analysis, MALDI-TOF-mass spec can also be used for species identification (as reviewed in Anaerobe 22:123). Method for Determining 16S Sequence OTUs may be defined either by full 16S sequencing of the rRNA gene, by sequencing of a specific hypervariable region of this gene (i.e. V1, V2, V3, V4, V5, V6, V7, V8, or V9), or by sequencing of any combination of hypervariable regions from this gene (e.g. V1-3 or V3-5). The bacterial 16S rDNA is approximately 1500 nucleotides in length and is used in reconstructing the evolutionary relationships and sequence similarity of one bacterial isolate to another using phylogenetic approaches. 16S sequences are used for phylogenetic reconstruction as they are in general highly conserved, but contain specific hypervariable regions that harbor sufficient nucleotide diversity to differentiate genera and species of most microbes. Using well known techniques, in order to determine the full 16S sequence or the sequence of any hypervariable region of the 16S sequence, genomic DNA is extracted from a bacterial sample, the 16S rDNA (full region or specific hypervariable regions) amplified using polymerase chain reaction (PCR), the PCR products cleaned, and nucleotide sequences delineated to determine the genetic composition of 16S gene or subdomain of the gene. If full 16S sequencing is performed, the sequencing method used may be, but is not limited to, Sanger sequencing. If one or more hypervariable regions are used, such as the V4 region, the sequencing may be, but is not limited to being, performed using the Sanger method or using a next-generation sequencing method, such as an Illumina (sequencing by synthesis) method using barcoded primers allowing for multiplex reactions. In addition to the 16S rRNA gene, one may define an OTU by sequencing a selected set of genes that are known to be marker genes for a given species or taxonomic group of OTUs. These genes may alternatively be assayed using a PCR-based screening strategy. As example, various strains of pathogenic Genomic DNA Extraction Genomic DNA is extracted from pure microbial cultures using a hot alkaline lysis method. 1 μl of microbial culture is added to 9 μl of Lysis Buffer (25 mM NaOH, 0.2 mM EDTA) and the mixture is incubated at 95° C. for 30 minutes. Subsequently, the samples are cooled to 4° C. and neutralized by the addition of 10 μl of Neutralization Buffer (40 mM Tris-HCl) and then diluted 10-fold in Elution Buffer (10 mM Tris-HCl). Alternatively, genomic DNA is extracted from pure microbial cultures using commercially available kits such as the Mo Bio Ultraclean® Microbial DNA Isolation Kit (Mo Bio Laboratories, Carlsbad, Calif.) or by standard methods known to those skilled in the art. Amplification of 16S Sequences for Downstream Sanger Sequencing To amplify bacterial 16S rDNA ( The PCR is performed on commercially available thermocyclers such as a BioRad MyCycler™ Thermal Cycler (BioRad, Hercules, Calif.). The reactions are run at 94° C. for 2 minutes followed by 30 cycles of 94° C. for 30 seconds, 51° C. for 30 seconds, and 68° C. for 1 minute 30 seconds, followed by a 7 minute extension at 72° C. and an indefinite hold at 4° C. Following PCR, gel electrophoresis of a portion of the reaction products is used to confirm successful amplification of a ˜1.5 kb product. To remove nucleotides and oligonucleotides from the PCR products, 2 μl of HT ExoSap-IT (Affymetrix, Santa Clara, Calif.) is added to 5 μl of PCR product followed by a 15 minute incubation at 37° C. and then a 15 minute inactivation at 80° C. Amplification of 16S Sequences for Downstream Characterization by Massively Parallel Sequencing Technologies Amplification performed for downstream sequencing by short read technologies such as Illumina require amplification using primers known to those skilled in the art that additionally include a sequence-based barcoded tag. As example, to amplify the 16s hypervariable region V4 region of bacterial 16S rDNA, 2 μl of extracted gDNA is added to a 20 μl final volume PCR reaction. The PCR reaction also contains 1× HotMasterMix (5PRIME, Gaithersburg, Md.), 200 nM of V4_515 f_adapt (AATGATACGGCGACCACCGAGATCTACACTATGGTAATTGTGTGCCAGCMGCCGC GGTAA, IDT, Coralville, Iowa), and 200 nM of barcoded 806rbc (CAAGCAGAAGACGGCATACGAGAT_12bpGolayBarcode_AGTCAGTCAGCCGGACT ACHVGGGTWTCTAAT, IDT, Coralville, Iowa), with PCR Water (Mo Bio Laboratories, Carlsbad, Calif.) for the balance of the volume. These primers incorporate barcoded adapters for Illumina sequencing by synthesis. Optionally, identical replicate, triplicate, or quadruplicate reactions may be performed. Alternatively other universal bacterial primers or thermostable polymerases known to those skilled in the art are used to obtain different amplification and sequencing error rates as well as results on alternative sequencing technologies. The PCR amplification is performed on commercially available thermocyclers such as a BioRad MyCycler™ Thermal Cycler (BioRad, Hercules, Calif.). The reactions are run at 94° C. for 3 minutes followed by 25 cycles of 94° C. for 45 seconds, 50° C. for 1 minute, and 72° C. for 1 minute 30 seconds, followed by a 10 minute extension at 72° C. and a indefinite hold at 4° C. Following PCR, gel electrophoresis of a portion of the reaction products is used to confirm successful amplification of a ˜1.5 kb product. PCR cleanup is performed as specified in the previous example. Sanger Sequencing of Target Amplicons from Pure Homogeneous Samples To detect nucleic acids for each sample, two sequencing reactions are performed to generate a forward and reverse sequencing read. For full-length 16s sequencing primers 27f and 1492r are used. 40 ng of ExoSap-IT-cleaned PCR products are mixed with 25 pmol of sequencing primer and Mo Bio Molecular Biology Grade Water (Mo Bio Laboratories, Carlsbad, Calif.) to 15 μl total volume. This reaction is submitted to a commercial sequencing organization such as Genewiz (South Plainfield, N.J.) for Sanger sequencing. Massively Parallel Sequencing of Target Amplicons from Heterogeneous Samples DNA Quantification & Library Construction. The cleaned PCR amplification products are quantified using the Quant-iT™ PicoGreen® dsDNA Assay Kit (Life Technologies, Grand Island, N.Y.) according to the manufacturer's instructions. Following quantification, the barcoded cleaned PCR products are combined such that each distinct PCR product is at an equimolar ratio to create a prepared Illumina library. Nucleic Acid Detection. The prepared library is sequenced on Illumina HiSeq or MiSeq sequencers (Illumina, San Diego, Calif.) with cluster generation, template hybridization, iso-thermal amplification, linearization, blocking and denaturization and hybridization of the sequencing primers performed according to the manufacturer's instructions. 16SV4SeqFw (TATGGTAATTGTGTGCCAGCMGCCGCGGTAA), 16SV4SeqRev (AGTCAGTCAGCCGGACTACHVGGGTWTCTAAT), and 16SV4Index (ATTAGAWACCCBDGTAGTCCGGCTGACTGACT) (IDT, Coralville, Iowa) are used for sequencing. Other sequencing technologies can be used such as but not limited to 454, Pacific Biosciences, Helicos, Ion Torrent, and Nanopore using protocols that are standard to someone skilled in the art of genomic sequencing. Primary Read Annotation Nucleic acid sequences are analyzed and annotations are to define taxonomic assignments using sequence similarity and phylogenetic placement methods or a combination of the two strategies. A similar approach can be used to annotate protein names, transcription factor names, and any other classification schema for nucleic acid sequences. Sequence similarity based methods include those familiar to individuals skilled in the art including, but not limited to BLAST, BLASTx, tBLASTn, tBLASTx, RDP-classifier, DNAclust, and various implementations of these algorithms such as Qiime or Mothur. These methods rely on mapping a sequence read to a reference database and selecting the match with the best score and e-value. Common databases include, but are not limited to the Human Microbiome Project, NCBI non-redundant database, Greengenes, RDP, and Silva. Phylogenetic methods can be used in combination with sequence similarity methods to improve the calling accuracy of an annotation or taxonomic assignment. Here tree topologies and nodal structure are used to refine the resolution of the analysis. In this approach we analyze nucleic acid sequences using one of numerous sequence similarity approaches and leverage phylogenetic methods that are well known to those skilled in the art, including but not limited to maximum likelihood phylogenetic reconstruction (see e.g. Liu K, Linder C R, and Warnow T. 2011. RAxML and FastTree: Comparing Two Methods for Large-Scale Maximum Likelihood Phylogeny Estimation. PLoS ONE 6: e27731. McGuire G, Denham M C, and Balding D J. 2001. Models of sequence evolution for DNA sequences containing gaps. Mol. Biol. Evol 18: 481-490. Wróbel B. 2008. Statistical measures of uncertainty for branches in phylogenetic trees inferred from molecular sequences by using model-based methods. J. Appl. Genet. 49: 49-67.) Sequence reads are placed into a reference phylogeny comprised of appropriate reference sequences. Annotations are made based on the placement of the read in the phylogenetic tree. The certainty or significance of the OTU annotation is defined based on the OTU's sequence similarity to a reference nucleic acid sequence and the proximity of the OTU sequence relative to one or more reference sequences in the phylogeny. As an example, the specificity of a taxonomic assignment is defined with confidence at the the level of Family, Genus, Species, or Strain with the confidence determined based on the position of bootstrap supported branches in the reference phylogenetic tree relative to the placement of the OTU sequence being interrogated. Clade Assignments The ability of 16S-V4 OTU identification to assign an OTU as a specific species depends in part on the resolving power of the 16S-V4 region of the 16S gene for a particular species or group of species. Both the density of available reference 16S sequences for different regions of the tree as well as the inherent variability in the 16S gene between different species will determine the definitiveness of a taxonomic annotation. Given the topological nature of a phylogenetic tree and the fact that tree represents hierarchical relationships of OTUs to one another based on their sequence similarity and an underlying evolutionary model, taxonomic annotations of a read can be rolled up to a higher level using a clade-based assignment procedure (Table 1). Using this approach, clades are defined based on the topology of a phylogenetic tree that is constructed from full-length 16S sequences using maximum likelihood or other phylogenetic models familiar to individuals with ordinary skill in the art of phylogenetics. Clades are constructed to ensure that all OTUs in a given clade are: (i) within a specified number of bootstrap supported nodes from one another (generally, 1-5 bootstraps), and (ii) within a 5% genetic similarity. OTUs that are within the same clade can be distinguished as genetically and phylogenetically distinct from OTUs in a different clade based on 16S-V4 sequence data. OTUs falling within the same clade are evolutionarily closely related and may or may not be distinguishable from one another using 16S-V4 sequence data. The power of clade based analysis is that members of the same clade, due to their evolutionary relatedness, are likely to play similar functional roles in a microbial ecology such as that found in the human gut. Compositions substituting one species with another from the same clade are likely to have conserved ecological function and therefore are useful in the present invention. Notably, 16S sequences of isolates of a given OTU are phylogenetically placed within their respective clades, sometimes in conflict with the microbiological-based assignment of species and genus that may have preceded 16S-based assignment. Discrepancies between taxonomic assignment based on microbiological characteristics versus genetic sequencing are known to exist from the literature. Mixtures of bacteria can include species that are in spore form. Germinating a spore fraction increases the number of viable bacteria that will grow on various media types. To germinate a population of spores, the sample is moved to the anaerobic chamber, resuspended in prereduced PBS, mixed and incubated for 1 hour at 37 C to allow for germination. Germinants can include amino-acids (e.g., alanine, glycine), sugars (e.g., fructose), nucleosides (e.g., inosine), bile salts (e.g., cholate and taurocholate), metal cations (e.g., Mg2+, Ca2+), fatty acids, and long-chain alkyl amines (e.g., dodecylamine, Germination of bacterial spores with alkyl primary amines” J. Bacteriology, 1961.). Mixtures of these or more complex natural mixtures, such as rumen fluid or Oxgall, can be used to induce germination. Oxgall is dehydrated bovine bile composed of fatty acids, bile acids, inorganic salts, sulfates, bile pigments, cholesterol, mucin, lecithin, glycuronic acids, porphyrins, and urea. The germination can also be performed in a growth medium like prereduced BHIS/oxgall germination medium, in which BHIS (Brain heart infusion powder (37 g/L), yeast extract (5 g/L), L-cysteine HCl (1 g/L)) provides peptides, amino acids, inorganic ions and sugars in the complex BHI and yeast extract mixtures and Oxgall provides additional bile acid germinants. In addition, pressure may be used to germinate spores. The selection of germinants can vary with the microbe being sought. Different species require different germinants and different isolates of the same species can require different germinants for optimal germination. Finally, it is important to dilute the mixture prior to plating because some germinants are inhibitory to growth of the vegetative-state microorganisms. For instance, it has been shown that alkyl amines must be neutralized with anionic lipophiles in order to promote optimal growth. Bile acids can also inhibit growth of some organisms despite promoting their germination, and must be diluted away prior to plating for viable cells. For example, BHIS/oxgall solution is used as a germinant and contains 0.5×BHIS medium with 0.25% oxgall (dehydrated bovine bile) where 1×BHIS medium contains the following per L of solution: 6 g Brain Heart Infusion from solids, 7 g peptic digest of animal tissue, 14.5 g of pancreatic digest of casein, 5 g of yeast extract, 5 g sodium chloride, 2 g glucose, 2.5 g disodium phosphate, and 1 g cysteine. Additionally, Ca-DPA is a germinant and contains 40 mM CaCl2, and 40 mM dipicolinic acid (DPA). Rumen fluid (Bar Diamond, Inc.) is also a germinant. Simulated gastric fluid (Ricca Chemical) is a germinant and is 0.2% (w/v) Sodium Chloride in 0.7% (v/v) Hydrochloric Acid. Mucin medium is a germinant and prepared by adding the following items to 1 L of distilled sterile water: 0.4 g KH2PO4, 0.53 g Na2HPO4, 0.3 g NH4Cl, 0.3 g NaCl, 0.1 g MgCl2×6H2O, 0.11 g CaCl2, 1 ml alkaline trace element solution, 1 ml acid trace element solution, 1 ml vitamin solution, 0.5 mg resazurin, 4 g NaHCO3, 0.25 g Na2S×9H2O. The trace element and vitamin solutions prepared as described previously (Stams et al., 1993). All compounds were autoclaved, except the vitamins, which were filter-sterilized. The basal medium was supplemented with 0.7% (v/v) clarified, sterile rumen fluid and 0.25% (v/v) commercial hog gastric mucin (Type III; Sigma), purified by ethanol precipitation as described previously (Miller & Hoskins, 1981). This medium is referred herein as mucin medium. Fetal Bovine Serum (Gibco) can be used as a germinant and contains 5% FBS heat inactivated, in Phosphate Buffered Saline (PBS, Fisher Scientific) containing 0.137M Sodium Chloride, 0.0027M Potassium Chloride, 0.0119M Phosphate Buffer. Thioglycollate is a germinant as described previously (Kamiya et al Journal of Medical Microbiology 1989) and contains 0.25M (pH10) sodium thioglycollate. Dodecylamine solution containing 1 mM dodecylamine in PBS is a germinant. A sugar solution can be used as a germinant and contains 0.2% fructose, 0.2% glucose, and 0.2% mannitol. Amino acid solution can also be used as a germinant and contains 5 mM alanine, 1 mM arginine, 1 mM histidine, 1 mM lysine, 1 mM proline, 1 mM asparagine, 1 mM aspartic acid, 1 mM phenylalanine. A germinant mixture referred to herein as Germix 3 can be a germinant and contains 5 mM alanine, 1 mM arginine, 1 mM histidine, 1 mM lysine, 1 mM proline, 1 mM asparagine, 1 mM aspartic acid, 1 mM phenylalanine, 0.2% taurocholate, 0.2% fructose, 0.2% mannitol, 0.2% glucose, 1 mM inosine, 2.5 mM Ca-DPA, and 5 mM KCl. BHIS medium+ DPA is a germinant mixture and contains BHIS medium and 2 mM Ca-DPA. It is important to select appropriate media to support growth, including preferred carbon sources. For example, some organisms prefer complex sugars such as cellobiose over simple sugars. Examples of media used in the isolation of sporulating organisms include EYA, BHI, BHIS, and GAM (see below for complete names and references). Multiple dilutions are plated out to ensure that some plates will have well isolated colonies on them for analysis, or alternatively plates with dense colonies may scraped and suspended in PBS to generate a mixed diverse community. Plates are incubated anaerobically or aerobically at 37° C. for 48-72 or more hours, targeting anaerobic or aerobic spore formers, respectively. Solid plate media include:
To purify and selectively isolate efficacious spores from fecal material a donation is first blended with saline using a homogenization device (e.g., laboratory blender) to produce a 20% slurry (w/v). 100% ethanol is added for an inactivation treatment that lasts 10 seconds to 1 hour. The final alcohol concentration can range from 30-90%, preferably 50-70%. High speed centrifugation (3200 rcf for 10 min) is performed to remove solvent and the pellet is retained and washed. Subsequently, once the washed pellet is resuspended, a low speed centrifugation step (200 rcf for 4 min) is performed to remove large particulate vegetative matter and the supernatant containing the spores is retained. High speed centrifugation (3200 rcf for 10 min) is performed on the supernatant to concentrate the spore material. The pellet is then washed and resuspended to generate a 20% slurry. This is the ethanol treated spore preparation. The concentrated slurry is then separated with a density based gradient e.g. a CsCl gradient, sucrose gradient or combination of the two generating a ethanol treated, gradient-purified spore preparation. For example, a CsCl gradient is performed by loading a 20% volume of spore suspension on top a 80% volume of a stepwise CsCl gradient (w/v) containing the steps of 64%, 50%, 40% CsCl (w/v) and centrifuging for 20 min at 3200 rcf. The spore fraction is then run on a sucrose step gradient with steps of 67%, 50%, 40%, and 30% (w/v). When centrifuged in a swinging bucket rotor for 10 min at 3200 rcf. The spores run roughly in the 30% and 40% sucrose fractions. The lower spore fraction ( Furthermore, growth of spores after treatment with a germinant can also be used to quantify a viable spore population. Briefly, samples were incubated with a germinant (Oxgall, 0.25% for up to 1 hour), diluted and plated anaerobically on BBA (Brucella Blood Agar) or similar media (e.g. see Examples 5 and 6). Individual colonies were picked and DNA isolated for full-length 16S sequencing to identify the species composition (e.g. see Examples 3 and 4). Analysis revealed that 22 species were observed in total (Table 4) with a vast majority present in both the material purified with the gradient and without the gradient, indicating no or inconsequential shift in the ecology as a result of gradient purification. Spore yield calculations demonstrate an efficient recovery of 38% of the spores from the initial fecal material as measured by germination and plating of spores on BBA or measuring DPA count in the sample. To test the therapeutic potential of the bacterial composition such as but not limited to a spore population, a prophylactic mouse model of In a naive control arm, animals were challenged with Weight loss and mortality were assessed on day 3. The negative control, treated with Previous studies with hamsters using toxigenic and nontoxigenic strains of In the relapse prevention model, hamsters are challenged with toxigenic To assess the efficacy of test articles like bacterial compositions including but not limited to a ethanol treated spore preparations (e.g. see Example 7) to treat recurrent Donor stool was frozen shortly after donation and sampled for testing. At the time of use, approximately 75 g of donor stool was thawed and resuspended in 500 mL of non-bacteriostatic normal saline and mixed in a single use glass or plastic blender. The resulting slurry was sequentially passed through sterile, disposable mesh screens that remove particles of size 600, 300 and 200 microns. The slurry was then centrifuged briefly (200 rcf for 4 min) to separate fibrous and particulate materials, and the supernatant (containing bacterial cells and spores) was transferred to a fresh container. Ethanol was added to a final concentration of 50% and the resulting ˜1500 ml slurry was incubated at room temperature for 1 hr with continuous mixing to inactivate vegetative bacterial cells. Midway through inactivation the slurry was transferred to a new bottle to ensure complete contact with the ethanol. The solid matter was pelleted in a centrifuge and washed 3 times with normal saline to remove residual ethanol. The final pellet was resuspended in 100% sterile, USP glycerol at a minimum volume, and filled into approximately 30 size 0 delayed release capsules (hypromellose DRcaps, Capsugel, Inc.) at 0.65 mL suspension each. The capsules were immediately capped and placed onto an aluminum freezing block held at −80° C. via dry ice to freeze. The frozen capsules were in turn over-capsulated with size 00 DRcaps to enhance capsule stability, labeled, and placed into <−65° C. storage immediately. The final product was stored at <−65° C. until the day and time of use. Encapsulated product may be stored for indefinitely at <−65° C. On the day of dosing capsules were warmed on wet ice for 1 to 2 hours to improve tolerability, and were then dosed with water ad libitium. Patient 1 is a 45-year old woman with a history of Patient 2 is an 81-year old female who has experienced recurrent 24 hours prior to starting oral treatment, CDAD antibiotic therapy was discontinued. Each patient received a colon preparation procedure intended to reduce the competing microbial burden in the gastrointestinal tract and to facilitate repopulation by the spore forming organisms in the investigational product. On the morning of the first treatment day, the patients received a dose of delayed release capsules containing the investigational product with water ad libitum. Patients were requested to avoid food for 1 hour thereafter. The next day, the patient returned to the clinic to receive an additional dose. Patients were asked to avoid food for 4 hours prior to receiving their second dose and for 1 hour following dosing. Both patients were followed closely for evidence of relapse or adverse symptoms following treatment. Patients were contacted by phone on Day 2, Day 4, and Weeks 1, 2 and 4 and each was queried about her general status and the condition of her CDAD and related symptoms. Stool samples were collected at baseline and Weeks 1, 2, 4 and 8 post-treatment to assess changes in the gut microbiota via 16S sequencing and spore count with methods explained previously (e.g. see Examples AAAB and AAAC). Through 4 weeks post treatment, each patient has gradually improved with no evidence of Six other patients with recurrent The above protocol could be modified to deliver other bacterial compositions e.g. vegetative cells, spore preparations, combinations thereof. To purify individual bacterial strains, dilution plates were selected in which the density enables distinct separation of single colonies. Colonies were picked with a sterile implement (either a sterile loop or toothpick) and re-streaked to BBA or other solid media. Plates were incubated at 37° C. for 3-7 days. One or more well-isolated single colonies of the major morphology type were re-streaked. This process was repeated at least three times until a single, stable colony morphology is observed. The isolated microbe was then cultured anaerobically in liquid media for 24 hours or longer to obtain a pure culture of 106-1010cfu/ml. Liquid growth medium might include Brain Heart Infusion-based medium (Atlas, Handbook of Microbiological Media, 4th ed, ASM Press, 2010) supplemented with yeast extract, hemin, cysteine, and carbohydrates (for example, maltose, cellobiose, soluble starch) or other media described previously (e.g. see example 6). The culture was centrifuged at 10,000×g for 5 min to pellet the bacteria, the spent culture media was removed, and the bacteria were resuspended in sterile PBS. Sterile 75% glycerol was added to a final concentration of 20%. An aliquot of glycerol stock was titered by serial dilution and plating. The remainder of the stock was frozen on dry ice for 10-15 min and then placed at −80 C for long term storage. Cell banks (RCBs) of bacterial strains were prepared as follows. Bacterial strains were struck from −80° C. frozen glycerol stocks to Brucella blood agar with Hemin or Vitamin K (Atlas, Handbook of Microbiological Media, 4th ed, ASM Press, 2010), M2GSC (Atlas, Handbook of Microbiological Media, 4th ed, ASM Press, 2010) or other solid growth media and incubated for 24 to 48 h at 37° C. in an anaerobic chamber with a gas mixture of H2:CO2:N2of 10:10:80. Single colonies were then picked and used to inoculate 250 ml to 1 L of Wilkins-Chalgren broth, Brain-Heart Infusion broth, M2GSC broth or other growth media, and grown to mid to late exponential phase or into the stationary phase of growth. Alternatively, the single colonies may be used to inoculate a pilot culture of 10 ml, which were then used to inoculate a large volume culture. The growth media and the growth phase at harvest were selected to enhance cell titer, sporulation (if desired) and phenotypes that might be associated desired in vitro or in vivo. Optionally, Cultures were grown static or shaking, depending which yielded maximal cell titer. The cultures were then concentrated 10 fold or more by centrifugation at 5000 rpm for 20 min, and resuspended in sterile phosphate buffered saline (PBS) plus 15% glycerol. 1 ml aliquots were transferred into 1.8 ml cryovials which were then frozen on dry ice and stored at −80 C. The identity of a given cell bank was confirmed by PCR amplification of the 16S rDNA gene, followed by Sanger direct cycle sequencing, and comparison to a curated rDNA database to determine a taxonomic ID. Each bank was confirmed to yield colonies of a single morphology upon streaking to Brucella blood agar or M2GSC agar. When more than one morphology was observed, colonies were confirmed to be the expected species by PCR and sequencing analysis of the 16S rDNA gene. Variant colony morphologies can be observed within pure cultures, and in a variety of bacteria the mechanisms of varying colony morphologies have been well described (van der Woude, Clinical Microbiology Reviews, 17:518, 2004), including in The number of viable cells per ml was determined on the freshly harvested, washed and concentrated culture by plating serial dilutions of the RCB to Brucella blood agar or other solid media, and varied from 106 to 1010 cfu/ml. The impact of freezing on viability was determined by titering the banks after one or two freeze-thaw cycles on dry ice or at −80° C., followed by thawing in an anaerobic chamber at room temperature. Some strains displayed a 1-3 log drop in viable cfu/ml after the 1st and/or 2nd freeze thaw, while the viability of others were unaffected. Individual strains were typically thawed on ice and combined in an anaerobic chamber to create mixtures, followed by a second freeze at −80° C. to preserve the mixed samples. When making combinations of strains for in vitro or in vivo assays, the cfu in the final mixture was estimated based on the second freeze-thaw titer of the individual strains. For experiments in rodents, strains may be combined at equal counts in order to deliver between 1e4 and 1e10 per strain. Additionally, some bacteria may not grow to sufficient titer to yield cell banks that allowed the production of compositions where all bacteria were present at 1e10. For sourcing of microbial cultures and for use as a positive control in in vivo studies, fresh gut microbiome samples, e.g. fecal samples, were obtained from healthy human donors who have been screened for general good health and for the absence of infectious diseases, and meet inclusion and exclusion criteria, inclusion criteria include being in good general health, without significant medical history, physical examination findings, or clinical laboratory abnormalities, regular bowel movements with stool appearance typically Type 2, 3, 4, 5 or 6 on the Bristol Stool Scale, and having a BMI≧18 kg/m2and ≦25 kg/m2. Exclusion criteria generally included significant chronic or acute medical conditions including renal, hepatic, pulmonary, gastrointestinal, cardiovascular, genitourinary, endocrine, immunologic, metabolic, neurologic or hematological disease, a family history of, inflammatory bowel disease including Crohn's disease and ulcerative colitis, Irritable bowel syndrome, colon, stomach or other gastrointestinal malignancies, or gastrointestinal polyposis syndromes, or recent use of yogurt or commercial probiotic materials in which an organism(s) is a primary component. Samples were collected directly using a commode specimen collection system, which contains a plastic support placed on the toilet seat and a collection container that rests on the support. Gut microbiome samples e.g. feces were deposited into the container, and the lid was then placed on the container and sealed tightly. The sample was then delivered on ice within 1-4 hours for processing. Samples were mixed with a sterile disposable tool, and 2-4 g aliquots were weighed and placed into tubes and flash frozen in a dry ice/ethanol bath. Aliquots are frozen at −80 degrees Celsius until use. Optionally, the microbiome sample was suspended in a solution, and/or fibrous and/or particulate materials were removed. A frozen aliquot containing a known weight of sample was removed from storage at −80 degrees Celsius and allowed to thaw at room temperature. Sterile 1×PBS was added to create a 10% w/v suspension, and vigorous vortexing was performed to suspend the sample until the material appeared homogeneous. The sample was then left to sit for 10 minutes at room temperature to sediment fibrous and particulate matter. The suspension above the sediment was then carefully removed into a new tube and contains a purified spore population. Optionally, the suspension was then centrifuged at a low speed, e.g., 1000×g, for 5 minutes to pellet particulate matter including fibers. The pellet was discarded and the supernatant, which contained vegetative organisms and spores, was removed into a new tube. The supernatant was then centrifuged at 6000×g for 10 minutes to pellet the vegetative organisms and spores. The pellet was then resuspended in 1× PBS with vigorous vortexing until the sample material appears homogenous. Methods to assess spore concentration in complex mixtures typically require the separation and selection of spores and subsequent growth of individual species to determine the colony forming units. The art does not teach how to quantitatively germinate all the spores in a complex mixture as there are many species for which appropriate germinants have not been identified. Furthermore, sporulation is thought to be a stochastic process as a result of evolutionary selection, meaning that not all spores from a single species germinate with same response to germinant concentration, time and other environmental conditions. Alternatively, a key metabolite of bacterial spores, dipicolinic acid (DPA) has been developed to quantify spores particles in a sample and avoid interference from fecal contaminants. The assay utilizes the fact that DPA chelates Terbium 3+ to form a luminescent complex (Fichtel et al, FEMS Microbiology Ecology, 2007; Kort et al, Applied and Environmental Microbiology, 2005; Shafaat and Ponce, Applied and Environmental Microbiology, 2006; Yang and Ponce, International Journal of Food Microbiology, 2009; Hindle and Hall, Analyst, 1999). A time-resolved fluorescence assay detects terbium luminescence in the presence of DPA giving a quantitative measurement of DPA concentration in a solution. To perform the assay 1 mL of the spore standard to be measured was transferred to a 2 mL microcentrifuge tube. The samples were centrifuged at 13000 RCF for 10 min and the sample is washed in 1 mL sterile deionized H2O. Wash an additional time by repeating the centrifugation. Transfer the 1 mL solution to hungate tubes and autoclave samples on a steam cycle for 30 min at 250 C. Add 100 uL of 30 uM TbCl3solution (400 mM sodium acetate, pH 5.0, 30 μM TbCl3) to the sample. Make serial dilutions of of the autoclaved material and measure the fluorescence of each sample by exciting with 275 nm light and measuring the emission wavelength of 543 nm for an integration time of 1.25 ms and a 0.1 ms delay. Purified spores are produced as described previously (e.g. see http://www.epa.gov/pesticides/methods/MB-28-00.pdf). Serial dilutions of purified spores from The discrepancy for complex spore populations between spore counts measured by germinable spore CFU and by DPA has important implications for determining the potency of an ethanol treated spore preparation for clinical use. Table 6 shows spore content data from 3 different ethanol treated spore preparations used to successfully treat 3 patients suffering from recurrent What is immediately apparent is that spore content varies greatly per 30 capsules. As measured by germinable SCFU, spore content varies by greater than 10,000-fold. As measured by DPA, spore content varies by greater than 100-fold. In the absence of the DPA assay, it would be difficult to set a minimum dose for administration to a patient. For instance, without data from the DPA assay, one would conclude that a minimum effective dose of spores is 4×105 or less using the SCFU assay (e.g. Preparation 1, Table 7). If that SCFU dose was used to normalize dosing in a clinical setting, however, then the actual spore doses given to patients would be much lower for other ethanol treated spore preparations as measured as by the DPA assay (Table 7). It becomes immediately obvious from the variability of SCFU and DPA counts across various donations that using SCFU as the measure of potency would lead to significant underdosing in certain cases. For instance, setting a dose specification of 4×105SCFU (the apparent effective dose from donor Preparation 1) for product Preparation 3 would lead to a potential underdosing of more than 100-fold. This can be rectified only by setting potency specifications based on the DPA assay which better reflects total spore counts in an ethanol treated spore preparation. The unexpected finding of this work is that the DPA assay is uniquely suited to set potency and determine dosing for an ethanol treated spore preparation. The human body is an ecosystem in which the microbiota, and the microbiome, play a significant role in the basic healthy function of human systems (e.g. metabolic, immunological, and neurological). The microbiota and resulting microbiome comprise an ecology of microorganisms that co-exist within single subjects interacting with one another and their host (i.e., the mammalian subject) to form a dynamic unit with inherent biodiversity and functional characteristics. Within these networks of interacting microbes (i.e. ecologies), particular members can contribute more significantly than others; as such these members are also found in many different ecologies, and the loss of these microbes from the ecology can have a significant impact on the functional capabilities of the specific ecology. Robert Paine coined the concept “Keystone Species” in 1969 (see Paine R T. 1969. A note on trophic complexity and community stability. The American Naturalist 103: 91-93.) to describe the existence of such lynchpin species that are integral to a given ecosystem regardless of their abundance in the ecological community. Paine originally describe the role of the starfish Keystone OTUs and/or Functions are computationally-derived by analysis of network ecologies elucidated from a defined set of samples that share a specific phenotype. Keystone OTUs and/or Functions are defined as all Nodes within a defined set of networks that meet two or more of the following criteria. Using Criterion 1, the node is frequently observed in networks, and the networks in which the node is observed are found in a large number of individual subjects; the frequency of occurrence of these Nodes in networks and the pervasiveness of the networks in individuals indicates these Nodes perform an important biological function in many individuals. Using Criterion 2, the node is frequently observed in networks, and each the networks in which the node is observed contain a large number of Nodes—these Nodes are thus “super-connectors”, meaning that they form a nucleus of a majority of networks and as such have high biological significance with respect to their functional contributions to a given ecology. Using Criterion 3, the node is found in networks containing a large number of Nodes (i.e. they are large networks), and the networks in which the node is found occur in a large number of subjects; these networks are potentially of high interest as it is unlikely that large networks occurring in many individuals would occur by chance alone strongly suggesting biological relevance. Optionally, the required thresholds for the frequency at which a node is observed in network ecologies, the frequency at which a given network is observed across subject samples, and the size of a given network to be considered a Keystone node are defined by the 50th, 70th, 80th, or 90th percentiles of the distribution of these variables. Optionally, the required thresholds are defined by the value for a given variable that is significantly different from the mean or median value for a given variable using standard parametric or non-parametric measures of statistical significance. In another embodiment a Keystone node is defined as one that occurs in a sample phenotype of interest such as but not limited to “health” and simultaneously does not occur in a sample phenotype that is not of interest such as but not limited to “disease.” Optionally, a Keystone Node is defined as one that is shown to be significantly different from what is observed using permuted test datasets to measure significance. The emergence and spread of highly antibiotic-resistant bacteria represent a major clinical challenge (Snitkin et al Science Translational Medicine, 2012). In recent years, the numbers of infections caused by organisms such as methicillin-resistant To test prophylactic use and treatment of a bacterial composition test article, a VRE infection mouse model is used as previously described (Ubeda et al, Infectious Immunity 2013, Ubeda et al, Journal of clinical investigation, 2010). Briefly, experiments are done with 7-week-old C57BL/6 J female mice purchased from Jackson Laboratory, housed with irradiated food, and provided with acidified water. Mice are individually housed to avoid contamination between mice due to coprophagia. For experimental infections with VRE, mice are treated with ampicillin (0.5 g/liter) in their drinking water, which is changed every 3 days. In the treatment model, on day 1, mice are infected by means of oral gavage with 108 CFU of the vancomycin-resistant In the colonization model, ampicillin is administered as described above for day −7 to day 1, treatment with the test article or vehicle control is administered on day 0-2 and the VRE resistant bacteria at 108 CFU are administered on day 14. Fecal samples are taken throughout the experiment daily from −7 to day 21 and submitted for 16S sequencing as previously described (e.g. see examples 3 and 4). In both models titers of VRE in feces are used to evaluate the success of the test article versus the negative control. Furthermore, microbiota composition is assessed for the ability of the bacterial composition test article to induce a healthy microbiome. The emergence of A treatment protocol in a mouse model as previously described (e.g. Perez et al, Antimicrobial Agents Chemotherapy, 2011) is used to evaluate the bacterial composition (test article) for treating carbapenem resistant The thoroughly characterized strain of Mice (10 per group) are assigned to either a bacterial composition (test article), ethanol treated, spore preparation (e.g. see example 7), antibiotic clindamycin, piperacillin-tazobactam, tigecycline, ertapenem, cefepime, ciprofloxacin, or combination thereof or control group receiving only the vehicle. They are administered the test article daily from day −10 to day 0, On day 0, 103CFU of KPC-Kp VA-367 diluted in 0.5 ml phosphate-buffered saline (PBS) was administered by oral gavage using a stainless-steel feeding tube (Perfektum; Popper & Sons, New Hyde Park, N.Y.). Stool samples were collected 1, 4, 6, and 11 days after the administration of KPC-Kp in order to measure the concentration of carbapenem-resistant Stool samples were collected after 5 days of treatment to assess the effects of the antibiotics on the stool microflora and to measure antibiotic levels in stool. To assess the effects on the microflora, fresh stool samples as previously described (e.g. see examples AAAB and AAAC). Additional experiments are performed to examine whether the administration the bacterial composition (test article) resulted in the elimination or persistence of colonization with KPC-Kp VA-367. Mice are treated with subcutaneous clindamycin to reduce the normal intestinal flora 1 day before receiving 104 CFU of KPC-Kp VA-367 by oral gavage, and the mice continued to receive subcutaneous clindamycin every other day for 7 days. Concurrently, for 7 days after oral gavage with KPC-Kp, mice received oral gavage of normal saline (control group), or the bacterial composition as specified. An additional dose of subcutaneous clindamycin was administered 20 days after the administration of KPC-Kp VA-367 to assess whether low levels of carbapenem-resistant Construction of Binary Pairs in a High-Throughput 96-Well Format. To allow high-throughput screening of binary pairs, vials of −80° C. glycerol stock banks were thawed and diluted to 1e8 CFU/mL. Each strain was then diluted 10× (to a final concentration of 1e7 CFU/mL of each strain) into 200 uL of PBS+15% glycerol in the wells of a 96-well plate. Plates were then frozen at −80° C. When needed, plates were removed from −80° C. and thawed at room temperature under anaerobic conditions when testing in an In vitro inhibition assay with Construction of Ternary Combinations in a High-Throughput 96-Well Format To allow high-throughput screening of ternary combinations, vials of −80° C. glycerol stock banks were thawed and diluted to 1e8 CFU/mL. Each strain was then diluted 10× (to a final concentration of 1e7 CFU/mL of each strain) into 200 uL of PBS+15% glycerol in the wells of a 96-well plate. Plates were then frozen at −80° C. When needed for the assay, plates were removed from −80° C. and thawed at room temperature under anaerobic conditions when testing in an In vitro inhibition assay with Construction of an In Vitro Inhibition Assay to Screen for Ecobiotic™ Compositions Inhibitory to the Growth of An overnight culture of Construction of an In Vitro Inhibition Assay to Screen for Bacterial Compositions that Produce Diffusible Products Inhibitory to the Growth of The In vitro inhibition assay described above was modified by using a 0.22 uM filter insert (Millipore™ MultiScreen™ 96-Well Assay Plates—Item MAGVS2210) in 96-well format to physically separate Construction of an In Vitro Inhibition Assay to Screen for Bacterial Compositions Inhibitory to the Growth of The In vitro inhibition assay described above can be modified to determine final Quantification of The standard curve was generated from a well on each assay plate containing only pathogenic Genomic DNA Extraction Genomic DNA was extracted from 5 μl of each sample using a dilution, freeze/thaw, and heat lysis protocol. 5 μL of thawed samples were added to 45 μL of UltraPure water (Life Technologies, Carlsbad, Calif.) and mixed by pipetting. The plates with diluted samples were frozen at −20° C. until use for qPCR which includes a heated lysis step prior to amplification. Alternatively the genomic DNA could be isolated using the Mo Bio Powersoil®-htp 96 Well Soil DNA Isolation Kit (Mo Bio Laboratories, Carlsbad, Calif.), Mo Bio Powersoil® DNA Isolation Kit (Mo Bio Laboratories, Carlsbad, Calif.), or the QIAamp DNA Stool Mini Kit (QIAGEN, Valencia, Calif.) according to the manufacturer's instructions. qPCR Composition and Conditions The qPCR reaction mixture contained 1× SsoAdvanced Universal Probes Supermix, 900 nM of Wr-tcdB-F primer (AGCAGTTGAATATAGTGGTTTAGTTAGAGTTG, IDT, Coralville, Iowa), 900 nM of Wr-tcdB-R primer (CATGCTTTTTTAGTTTCTGGATTGAA, IDT, Coralville, Iowa), 250 nM of Wr-tcdB-P probe (6FAM-CATCCAGTCTCAATTGTATATGTTTCTCCA-MGB, Life Technologies, Grand Island, N.Y.), and Molecular Biology Grade Water (Mo Bio Laboratories, Carlsbad, Calif.) to 18 μl (Primers adapted from: Wroblewski, D. et al., Rapid Molecular Characterization of Data Analysis The Cq value for each well on the FAM channel was determined by the CFX Manager™ 3.0 software. The log10(cfu/mL) of A histogram of the range and standard deviation of each composition was plotted. Ranges or standard deviations of the log inhibitions that were distinct from the overall distribution were examined as possible outliers. If the removal of a single log inhibition datum from one of the binary pairs that were identified in the histograms would bring the range or standard deviation in line with those from the majority of the samples, that datum was removed as an outlier, and the mean log inhibition was recalculated. The pooled variance of all samples evaluated in the assay was estimated as the average of the sample variances weighted by the sample's degrees of freedom. The pooled standard error was then calculated as the square root of the pooled variance divided by the square root of the number of samples. Confidence intervals for the null hypothesis were determined by multiplying the pooled standard error to the z score corresponding to a given percentage threshold. Mean log inhibitions outside the confidence interval were considered to be inhibitory if positive or stimulatory if negative with the percent confidence corresponding to the interval used. Samples with mean log inhibition greater than the 99% confidence interval (C.I) of the null hypothesis are reported as ++++, those with a 95%<C.I. <99% as +++, those with a 90%<C.I. <95% as ++, those with a 80%<C.I. <90% as + while samples with mean log inhibition less than than the 99% confidence interval (C.I) of the null hypothesis are reported as −−−−, those with a 95%<C.I. <99% as −−−, those with a 90%<C.I. <95% as −−, those with a 80%<C.I. <90% as −. Many binary pairs inhibit Ternary combinations with mean log inhibition greater than 0.312 are reported as ++++99% confidence interval (C.I.) of the null hypothesis), those with mean log inhibition between 0.221 and 0.312 as +++(95%<C.I. <99%), those with mean log inhibition between 0.171 and 0.221 as ++(90%<C.I. <95%), those with mean log inhibition between 0.113 and 0.171 as +(80%<C.I. <90%), those with mean log inhibition between −0.113 and −0.171 as −(80%<C.I. <90%), those with mean log inhibition between −0.171 and −0.221 as −−(90%<C.I. <95%), those with mean log inhibition between −0.221 and −0.312 as −−−(95%<C.I. <99%), and those with mean log inhibition less than −0.312 as −−−−(99%<C.I.). The In vitro inhibition assay shows that many ternary combinations inhibit Unless otherwise indicated, all numbers expressing quantities of ingredients, reaction conditions, and so forth used in the specification, including claims, are to be understood as being modified in all instances by the term “about.” Accordingly, unless otherwise indicated to the contrary, the numerical parameters are approximations and may vary depending upon the desired properties sought to be obtained. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should be construed in light of the number of significant digits and ordinary rounding approaches. Unless otherwise indicated, the term “at least” preceding a series of elements is to be understood to refer to every element in the series. While the invention has been particularly shown and described with reference to a preferred embodiment and various alternate embodiments, it will be understood by persons skilled in the relevant art that various changes in form and details can be made therein without departing from the spirit and scope of the invention. All references, issued patents and patent applications cited within the body of the instant specification are hereby incorporated by reference in their entirety, for all purposes. Table 6 shows spore quantitation for ethanol treated spore preparations using spore CFU (SCFU) assay and DPA assay.RELATED APPLICATIONS
REFERENCE TO A SEQUENCE LISTING
BACKGROUND
SUMMARY OF THE INVENTION
BRIEF DESCRIPTION OF THE DRAWINGS
DETAILED DESCRIPTION
Definitions
Compositions of the Invention
Methods of the Invention
Examples
Example 1
Administration of Bacterial Compositions to Mammalian Subjects Having
Example 2
Species Identification
Example 3
16s Sequencing to Determine Operational Taxonomic Unit (OTU)
Example 4
Sequence Read Annotation
Example 5
Germinating Spores
Example 6
Selection of Media for Growth
Example 7
The Purification and Isolation of a Spore Forming Fraction from Feces
Example 8
Bacterial Compositions Prevent
Example 9
The Prophylactic and Relapse Prevention Hamster Models
Example 10
Clinical Treatment of Recurrent
Example 11
Enrichment and Purification of Bacteria
Example 12
Cell Bank Preparation
Example 13
Titer Determination
Example 14
Preparation of Bacterial Compositions
Example 15
Provision of Out Microbiome Sample Material
Example 16
Quantification of Spore Concentrations Using DPA Assay
Example 17
Identification of Keystone OTUs and Functions
Example 18
Prophylactic Use and Treatment in a Mouse Model of Vancomycin Resistant
Example 19
Prophylactic Use and Treatment of a Mouse Model of Carbapenem Resistant
Example 20
Methods of Construction and Quantification
TABLES
List of Operational Taxonomic Units (OTU) with taxonomic assignments made to Genus, Species, and Phylogenetic Clade. SEQ ID Public DB Spore Pathogen OTU Number Accession Clade Former Status 858 AB525414 clade_178 Y N 866 AY349376 clade_178 Y N Lachnospiraceae bacterium ICM62 1061 HQ616401 clade_178 Y N Lachnospiraceae bacterium 1062 HQ616384 clade_178 Y N MSX33 Lachnospiraceae bacterium oral 1063 ADDS01000069 clade_178 Y N taxon 107 122 NR_074721 clade_179 Y N 555 NR_029229 clade_223 Y N 576 FJ957863 clade_223 Y N 611 AB536771 clade_223 Y N 621 NR_041006 clade_223 Y N 837 NR_024682 clade_223 Y N 851 HF558373 clade_223 Y N 852 NR_024683 clade_223 Y N 853 NR_024684 clade_223 Y N 173 NR_074667 clade_238 Y N 196 NR_042339 clade_238 Y N 197 GQ980243 clade_238 Y N 199 NR_075005 clade_238 Y N 200 AAEN01000020 clade_238 Y Category-A 201 NR_075016 clade_238 Y OP 202 NR_036893 clade_238 Y OP 203 ABDJ01000015 clade_238 Y OP 204 AB271747 clade_238 Y OP 207 NR_025842 clade_238 Y OP 208 NR_024691 clade_238 Y OP 209 NR_025786 clade_238 Y OP 211 NR_026144 clade_238 Y OP 213 NR_042286 clade_238 Y OP 215 NR_043268 clade_238 Y OP 216 NR_040792 clade_238 Y OP 217 NC_006270 clade_238 Y OP 218 GU252124 clade_238 Y OP 219 NR_044546 clade_238 Y OP 220 NR_043334 clade_238 Y OP 221 NR_024695 clade_238 Y OP 222 NR_041377 clade_238 Y OP 223 NR_074977 clade_238 Y OP 224 JQ624766 clade_238 Y OP 225 NR_042136 clade_238 Y OP 226 NR_025130 clade_238 Y OP 227 CAET01000089 clade_238 Y OP MM10403188 230 ACWD01000095 clade_238 Y OP 228 GU252108 clade_238 Y OP 229 GU252111 clade_238 Y OP 231 FN397518 clade_238 Y OP 233 JX101689 clade_238 Y OP 234 EU362173 clade_238 Y OP 235 ACWC01000034 clade_238 Y OP 236 FJ897765 clade_238 Y OP 237 FJ897766 clade_238 Y OP 238 FJ897769 clade_238 Y OP 239 FJ897771 clade_238 Y OP 240 FJ897772 clade_238 Y OP 241 JF824800 clade_238 Y OP 248 HM099654 clade_238 Y OP 243 GU797283 clade_238 Y OP 242 GU797292 clade_238 Y OP 244 GU797284 clade_238 Y OP 245 GU797288 clade_238 Y OP 249 HQ844242 clade_238 Y OP 250 FJ851424 clade_238 Y OP 251 DQ286318 clade_238 Y OP 252 NR_026010 clade_238 Y OP 253 EU627588 clade_238 Y OP 254 NR_029151 clade_238 Y OP 255 NC_008600 clade_238 Y OP 256 NR_074926 clade_238 Y OP 933 NR_074989 clade_238 Y N 936 NR_040794 clade_238 Y N 938 NR_074976 clade_238 Y N 939 NR_043022 clade_238 Y N 1193 NR_074883 clade_238 Y N Clostridiales sp. SS3_4 543 AY305316 clade_246 Y N 557 NR_074434 clade_252 Y N 560 NC_010723 clade_252 Y Category-A 561 ABDT01000017 clade_252 Y N 568 EU106372 clade_252 Y N 582 X76749 clade_252 Y N 592 HF558362 clade_252 Y N 597 NR_026347 clade_252 Y N 602 FR870444 clade_252 Y N 622 NR_026490 clade_252 Y N 624 NR_026020 clade_252 Y N 626 ACDK01000101 clade_252 Y N 645 ABKW02000003 clade_252 Y N 653 Y18174 clade_252 Y N 564 NR_044716 clade_253 Y N 565 X77844 clade_253 Y N 579 NR_026491 clade_253 Y N 585 NR_024945 clade_253 Y N 616 NR_026149 clade_253 Y N 593 AB023973 clade_260 Y N 623 AF262238 clade_260 Y N Lachnospiraceae bacterium 1054 ACTR01000020 clade_260 Y N 5_1_57FAA 588 AB233029 clade_262 Y N 607 X73443 clade_262 Y N 674 ABVR01000038 clade_262 Y N Lachnospiraceae bacterium 1048 ACTM01000065 clade_262 Y N 1_1_57FAA Lachnospiraceae bacterium 1049 ACTN01000028 clade_262 Y N 1_4_56FAA Lachnospiraceae bacterium 1057 ACWQ01000079 clade_262 Y N 8_1_57FAA 1663 ABOU02000049 clade_262 Y N 1670 AAVP02000002 clade_262 Y N 1397 NR_040882 clade_270 Y N 1399 NR_037006 clade_270 Y N 1402 AEXS01000095 clade_270 Y N 1403 AFDH01000147 clade_270 Y N 868 AY349379 clade_298 Y N 124 NR_041475 clade_301 Y N 126 NR_024753 clade_301 Y N 127 NR_024801 clade_301 Y N 373 AB571656 clade_309 Y N 374 AB588023 clade_309 Y N 375 AB439724 clade_309 Y N 376 ABYU02000037 clade_309 Y N 378 AB691576 clade_309 Y N 379 AB600998 clade_309 Y N 380 NR_026312 clade_309 Y N 381 HM626178 clade_309 Y N 382 HM626177 clade_309 Y N 383 EF036467 clade_309 Y N 439 ACCL02000018 clade_309 Y N 573 EF025906 clade_309 Y N 839 AY178842 clade_309 Y N Lachnospiraceae bacterium 1056 ACTV01000014 clade_309 Y N 6_1_63FAA 1662 M59114 clade_309 Y N 1664 AY169419 clade_309 Y N 1666 ACII01000172 clade_309 Y N 1669 AB222208 clade_309 Y N 1911 NR_036869 clade_309 Y N 198 X76436 clade_327 Y N 205 FN397477 clade_327 Y OP 210 NR_025595 clade_327 Y OP 212 AY144582 clade_327 Y OP 246 HM099642 clade_327 Y OP 595 M23732 clade_351 Y N 628 AENW01000022 clade_351 Y N 612 ABDW01000023 clade_353 Y Category-B 1687 NR_026146 clade_353 Y N 556 ABEZ02000012 clade_354 Y N 558 X73437 clade_354 Y N 586 AB542933 clade_354 Y N 587 FJ384385 clade_354 Y N 605 FR733682 clade_354 Y N 625 AB448946 clade_354 Y N 635 FJ159523 clade_354 Y N 872 M59118 clade_354 Y N 553 NR_029232 clade_355 Y N 630 CAEV01000127 clade_355 Y N 636 JN093130 clade_355 Y N 650 NR_041795 clade_355 Y N 651 NR_044161 clade_355 Y N 773 AAXA02000006 clade_360 Y N 774 AJ132842 clade_360 Y N Lachnospiraceae bacterium 1050 ADLB01000035 clade_360 Y N 2_1_46FAA Lachnospiraceae bacterium 1051 ACTO01000052 clade_360 Y N 2_1_58FAA Lachnospiraceae bacterium 1053 ADCR01000030 clade_360 Y N 4_1_37FAA Lachnospiraceae bacterium 1058 ACTX01000023 clade_360 Y N 9_1_43BFAA 1661 X94967 clade_360 Y N 1668 AY960564 clade_360 Y N 377 ACBZ01000217 clade_368 Y N 1147 DQ100449 clade_368 Y N 1633 AF445258 clade_368 Y N 849 U13039 clade_384 Y N 864 FJ687606 clade_384 Y N Erysipelotrichaceae bacterium 823 ACZW01000054 clade_385 Y N 5_2_54FAA 835 ABYT01000002 clade_385 Y N 842 FP929041 clade_385 Y N 844 L34682 clade_385 Y N 861 ACTL01000045 clade_385 Y N 873 NR_044648 clade_385 Y N 441 ADFR01000011 clade_388 Y N 1739 AECQ01000039 clade_388 Y N 673 EU266552 clade_393 Y N Lachnospiraceae bacterium oral 1064 HM099641 clade_393 Y N taxon F15 574 NR_044717 clade_395 Y N 604 FR749893 clade_395 Y N 654 NC_004557 clade_395 Y N 6 FR749897 clade_396 Y N 161 NR_042953 clade_396 Y N 288 ABVQ01000036 clade_396 Y N 551 NR_029245 clade_396 Y N 613 NR_074652 clade_396 Y N 848 L34621 clade_396 Y N 875 L34628 clade_396 Y N 1658 NR_029160 clade_406 Y N 1659 FP929052 clade_406 Y N 1665 AJ515913 clade_406 Y N 1667 FM954974 clade_406 Y N 162 ABAX03000023 clade_408 Y N 163 ACWB01000002 clade_408 Y N Clostridiales bacterium 541 ABQR01000074 clade_408 Y N 1_7_47FAA Clostridiales sp. SM4_1 542 FP929060 clade_408 Y N Clostridiales sp. SSC_2 544 FP929061 clade_408 Y N 546 X76163 clade_408 Y N 547 NR_043680 clade_408 Y N 550 NR_028726 clade_408 Y N 552 AY353957 clade_408 Y N 554 ACCJ01000522 clade_408 Y N 559 ABCC02000039 clade_408 Y N 566 JQ246092 clade_408 Y N 569 ADLJ01000059 clade_408 Y N 571 M59089 clade_408 Y N 572 NR_044715 clade_408 Y N 590 AY552788 clade_408 Y N 594 AF028351 clade_408 Y N 600 EF564277 clade_408 Y N 620 CP002109 clade_408 Y N 633 ACFX02000046 clade_408 Y N 638 ABGC03000041 clade_408 Y N 643 X73449 clade_408 Y N 652 ADLQ01000114 clade_408 Y N 658 NR_037068 clade_408 Y N 847 FR749933 clade_408 Y N Lachnospiraceae bacterium 1052 ACTP01000124 clade_408 Y N 3_1_57FAA_CT1 Lachnospiraceae bacterium 1055 ACTS01000081 clade_408 Y N 5_1_63FAA Lachnospiraceae bacterium A4 1059 DQ789118 clade_408 Y N Lachnospiraceae bacterium DJF 1060 EU728771 clade_408 Y N VP30 Lachnospiraceae genomosp. C1 1065 AY278618 clade_408 Y N 578 NC_013315 clade_409 Y OP 862 HQ616364 clade_428 Y N 863 HQ616354 clade_428 Y N 871 AY947497 clade_428 Y N 876 AEES01000073 clade_428 Y N 545 NR_074511 clade_430 Y N 549 NR_041746 clade_430 Y N 562 AB542932 clade_430 Y N 563 FR733710 clade_430 Y N 580 NR_042153 clade_430 Y N 581 NR_044714 clade_430 Y N 583 AF270502 clade_430 Y N 584 NR_024919 clade_430 Y N 598 NR_074165 clade_430 Y N 603 X77835 clade_430 Y N 615 NR_024995 clade_430 Y N 629 AY862516 clade_430 Y N 656 NR_044718 clade_430 Y N 1899 AB300989 clade_432 Y N 4 NR_042930 clade_439 Y N 567 NR_044624 clade_439 Y N 832 AY675965 clade_439 Y N 856 FP929042 clade_444 Y N 865 AY349374 clade_444 Y N 1045 GU324407 clade_444 Y N 1634 GU233441 clade_444 Y N 1635 AY804149 clade_444 Y N 1636 AY305310 clade_444 Y N 1637 AJ270482 clade_444 Y N 1638 FP929050 clade_444 Y N 1639 AJ270473 clade_444 Y N 410 NR_041524 clade_448 Y N 414 NR_037005 clade_448 Y N 206 DQ297928 clade_451 Y OP 1752 NR_040962 clade_451 Y N 1041 EU333884 clade_453 Y N 1353 NC_006361 clade_455 Y N 247 HM099650 clade_456 Y OP 495 AB030224 clade_469 Y N 640 AB249652 clade_469 Y N 670 AB030218 clade_469 Y N 671 ADKX01000057 clade_469 Y N 618 NR_029271 clade_470 Y N 854 U13041 clade_476 Y N 859 NR_026031 clade_476 Y N 867 AY349373 clade_476 Y N 870 AY349378 clade_476 Y N 880 ACOP02000011 clade_478 Y N 932 GU562446 clade_478 Y N 1896 AJ518869 clade_478 Y N Clostridiaceae bacterium JC13 532 JF824807 clade_479 Y N 634 AF304435 clade_479 Y N Erysipelotrichaceae bacterium 822 ACTJ01000113 clade_479 Y N 3_1_53 575 NR_026495 clade_481 Y N 617 M23731 clade_481 Y N 619 DQ100445 clade_481 Y N 644 X73441 clade_481 Y N 672 ACDT01000199 clade_481 Y N Clostridiales bacterium SY8519 535 AB477431 clade_482 Y N 639 AP012212 clade_482 Y N 855 AJ011522 clade_482 Y N 819 NR_025594 clade_485 Y N 820 ACLK01000021 clade_485 Y N 821 NR_040871 clade_485 Y N 1004 Y11466 clade_485 Y N Mollicutes bacterium pACH93 1258 AY297808 clade_485 Y N 736 CP000890 clade_486 Y Category-B 591 AB023970 clade_487 Y N 596 NR_029249 clade_487 Y N 609 Y18187 clade_494 Y N 637 EU815224 clade_494 Y N 886 AY724678 clade_494 Y N 1591 AY136666 clade_494 Y N Ruminococcaceae bacterium D16 1655 ADDX01000083 clade_494 Y N 5 NR_025917 clade_495 Y N 548 NR_026099 clade_495 Y N 570 NR_041235 clade_495 Y N 647 NR_025100 clade_495 Y N 649 NR_024829 clade_495 Y N 655 NR_074629 clade_495 Y N 901 ADVK01000034 clade_497 Y N 834 NR_044661 clade_512 Y N 838 NR_026330 clade_512 Y N 850 CP002273 clade_512 Y N 164 ABGD02000021 clade_516 Y N 606 ACEC01000059 clade_516 Y N 642 AB491208 clade_516 Y N 1005 NR_044425 clade_516 Y N 1656 AY445600 clade_516 Y N 1660 NR_025931 clade_516 Y N 589 NR_024749 clade_517 Y N 608 NR_074343 clade_517 Y N 632 X95274 clade_517 Y N 874 L34421 clade_519 Y N 280 DQ497994 clade_522 Y N 845 CP001104 clade_522 Y N 1046 FR733699 clade_522 Y N 1047 L14675 clade_522 Y N 1114 GU269544 clade_522 Y N 214 NR_036860 clade_527 Y OP 232 FN397519 clade_527 Y OP 836 U13038 clade_533 Y N 881 CP002390 clade_533 Y N 882 NR_041928 clade_533 Y N 601 AJ305238 clade_537 Y N 641 AB491207 clade_537 Y N 646 NR_044835 clade_537 Y N 841 HM037995 clade_537 Y N 1657 EU266549 clade_537 Y N 860 ABCA03000054 clade_538 Y N 657 NR_026204 clade_540 Y N 1386 HM626173 clade_540 Y N 1387 NR_074793 clade_540 Y N 1388 AB040495 clade_540 Y N 455 ABWN01000012 clade_543 Y N 631 AAYW02000018 clade_543 Y N 675 EF031543 clade_543 Y N 676 AY350746 clade_543 Y N 857 NR_024661 clade_543 Y N 659 AAVN02000007 clade_553 Y N 137 AY137848 clade_554 Y N 138 NR_043674 clade_554 Y N 648 L04167 clade_554 Y N 1965 AF349724 clade_555 Y N 892 EF589680 clade_557 Y N 753 AJ276701 clade_560 Y N 754 NR_074996 clade_560 Y N 756 NR_044832 clade_560 Y N 1191 NR_041236 clade_564 Y N 405 NR_075069 clade_565 Y N 778 AF292375 clade_566 Y N 1888 AJ697941 clade_566 Y N Chlamydiales bacterium NS11 505 JN606074 clade_567 Y N 159 ABIL02000005 clade_570 Y N 453 HH793440 clade_572 Y N 843 NR_044644 clade_572 Y N 1415 NR_025025 clade_572 Y N 1751 NR_044972 clade_572 Y N Deferribacteres sp. oral clone 744 AY349371 clade_575 Y N JV006 577 NR_026151 clade_576 Y N 599 NR_025651 clade_576 Y N 614 D14639 clade_576 Y N 1671 X54286 clade_579 Y N 1921 NC_007333 clade_579 Y N 1164 EF612284 clade_585 Y OP 1259 NR_075001 clade_590 Y N 1920 CP000924 clade_590 Y N 888 NR_074881 clade_591 Y N 942 NR_074282 clade_596 Y N 869 AY349377 clade_90 Y N 610 FR749922 clade_96 Y N 627 ADBG01000142 clade_96 Y N 840 FR749946 clade_96 Y N 846 FR749935 clade_96 Y N 692 X96497 clade_100 N N 711 NR_026396 clade_100 N N 733 AM397636 clade_100 N N 684 NR_028951 clade_102 N N 698 ACLJ01000031 clade_102 N N 699 NR_028971 clade_102 N N 703 AF537597 clade_102 N N 719 EU848548 clade_102 N N 723 HE575405 clade_102 N N 724 GU238409 clade_102 N N 93_0481 728 Y09655 clade_102 N N 730 AY677186 clade_102 N N 1504 AGEK01000035 clade_104 N N 1513 ADDV01000091 clade_104 N N 1517 AB108826 clade_104 N N 1521 HQ616399 clade_104 N N 1528 AY005057 clade_104 N N 1538 AY349396 clade_104 N N 1558 GU432179 clade_104 N N 1491 L16465 clade_105 N N 312 ACTC01000133 clade_110 N N 315 AF139524 clade_110 N N 319 ACPT01000052 clade_110 N N 322 AB470322 clade_110 N N 329 AB050110 clade_110 N N 1510 JN867228 clade_127 N N 1548 ACWZ01000026 clade_127 N N 1485 ACKS01000100 clade_128 N N 1489 JN867261 clade_129 N N 1564 ADEF01000012 clade_129 N N 1512 AEPE01000021 clade_130 N N 1525 JN867238 clade_130 N N 1177 NR_040811 clade_135 N N 1179 FN822744 clade_135 N N 1180 NR_025204 clade_135 N N 1181 NR_075014 clade_135 N N 777 CP002154 clade_139 N N 1466 Z76752 clade_139 N N 1607 CP000082 clade_141 N N 1608 HQ698586 clade_141 N N 1609 CP000323 clade_141 N N 1610 HQ698566 clade_141 N N 1611 HQ698587 clade_141 N N 1612 HQ698582 clade_141 N N 1592 AABQ07000001 clade_154 N N 1600 ACWU01000257 clade_154 N N 691 Y15886 clade_158 N N 712 NR_037038 clade_158 N N 713 X84258 clade_158 N N 338 NC_008783 clade_159 N N 339 CP001562 clade_159 N N 340 NC_005956 clade_159 N N 341 BX897700 clade_159 N N 342 EF672728 clade_159 N N 343 FJ719017 clade_159 N N 430 ACBJ01000075 clade_159 N Category-B 431 NR_044652 clade_159 N Category-B 432 ACJD01000006 clade_159 N Category-B 433 AE009462 clade_159 N Category-B 434 NR_042549 clade_159 N Category-B 435 NC_009504 clade_159 N Category-B 436 ACBQ01000040 clade_159 N Category-B 437 EU053207 clade_159 N Category-B 438 ACBK01000034 clade_159 N Category-B 1360 NC_009667 clade_159 N N 1361 ACQA01000001 clade_159 N N 1362 DQ365921 clade_159 N N 1496 AY278625 clade_164 N N 1509 AFJE01000016 clade_164 N N 1543 AY550997 clade_164 N N IDR_CEC_0055 1547 GQ422735 clade_164 N N 1549 GU409549 clade_164 N N 1505 AEEI01000070 clade_166 N N 1544 AY349401 clade_166 N N 1554 GQ422744 clade_166 N N 1562 AB244774 clade_166 N N 1487 NR_041954 clade_167 N N 1516 CP002006 clade_167 N N 1560 AB003384 clade_167 N N 1561 AB003385 clade_167 N N 1483 NR_025300 clade_168 N N 1490 ACBX02000014 clade_168 N N 1514 L16472 clade_168 N N 1518 AJ581354 clade_168 N N 1546 AY207050 clade_168 N N P2 1557 GU432133 clade_168 N N 1484 AB547670 clade_169 N N 268 EU136686 clade_170 N N 277 AB222699 clade_170 N N 283 ABJL02000006 clade_171 N N 326 AM230649 clade_171 N N Bifidobacteriaceae genomosp. C1 345 AY278612 clade_172 N N 346 AAXD02000018 clade_172 N N 347 ABYS02000004 clade_172 N N 348 CP001606 clade_172 N N 350 CP002743 clade_172 N N 351 ABXY01000019 clade_172 N N 352 CP001750 clade_172 N OP 353 ABXB03000004 clade_172 N N 354 AY151398 clade_172 N N 355 AB491757 clade_172 N N 356 ABQQ01000041 clade_172 N N 357 ABXX02000002 clade_172 N N 358 NR_043442 clade_172 N N 359 AJ307005 clade_172 N N 360 AB425276 clade_172 N N 361 JF519685 clade_172 N N 362 HM626176 clade_172 N N 363 HQ616382 clade_172 N N 364 AB218972 clade_172 N N 365 DQ340557 clade_172 N N 1178 AM157444 clade_175 N N 1182 NR_040823 clade_175 N N 123 NR_040844 clade_179 N N 125 NR_024754 clade_179 N N 27 ACYQ01000014 clade_181 N N 28 AM157426 clade_181 N N 29 AY278636 clade_181 N N 30 ADMT01000017 clade_181 N N 31 ACPL01000162 clade_181 N N 32 ACPM01000135 clade_181 N N 33 ACPN01000204 clade_181 N N 34 AIEB01000124 clade_181 N N 36 NR_025412 clade_181 N N 37 GQ178049 clade_181 N N 38 JQ638573 clade_181 N N 39 JQ638578 clade_181 N N 41 HM366447 clade_181 N N 42 ACQF01000094 clade_181 N N 43 ADCH01000068 clade_181 N N 1092 ACQD01000066 clade_182 N N 119 AB680368 clade_183 N N 120 DQ643040 clade_183 N N 121 HQ262549 clade_183 N N 1366 NR_041998 clade_183 N N 1367 NR_041753 clade_183 N N 784 ACEA01000028 clade_185 N N 1019 AEWV01000047 clade_185 N N 1020 DQ003616 clade_185 N N MB2_C20 1021 AFHS01000073 clade_185 N N 1022 ACJW02000005 clade_185 N N 1023 AY349381 clade_185 N N 1330 ADBF01000003 clade_185 N N 1332 DQ003630 clade_185 N N MB5_P15 1345 AY349388 clade_185 N N 1342 FJ763637 clade_185 N N 1731 ADCY01000105 clade_185 N N 700 ABYP01000081 clade_193 N N 716 FJ185225 clade_193 N N 1649 DQ673320 clade_194 N N 1650 ADDW01000024 clade_194 N N 1653 GU470892 clade_194 N N 681 ACGD01000048 clade_195 N N 707 AB359393 clade_195 N N 714 ABYQ01000237 clade_195 N N 729 ACVP01000009 clade_195 N N 1074 CP000423 clade_198 N N 1106 ABQV01000067 clade_198 N N 1143 NR_037122 clade_198 N N 1492 AB547678 clade_205 N N 1529 AY923148 clade_206 N N 1541 AY349399 clade_206 N N 1542 AY349400 clade_206 N N 1545 AY349402 clade_206 N N 1499 DQ003633 clade_207 N N clone MB7_G16 1531 AY005062 clade_207 N N 1532 AY005063 clade_207 N N 1534 AY349392 clade_207 N N 56 AY278610 clade_212 N N 57 AY278611 clade_212 N N 58 DQ003632 clade_212 N N clone MB6_C03 59 GU561319 clade_212 N N 60 AF479270 clade_212 N N 61 AB545934 clade_212 N N 62 GU561321 clade_212 N N 66 ACYT01000123 clade_212 N N 68 AJ575186 clade_212 N N 71 AJ234058 clade_212 N N 75 HQ616391 clade_212 N N 76 HQ616392 clade_212 N N 77 HQ616395 clade_212 N N 78 HQ616398 clade_212 N N 87 AY349366 clade_212 N N 91 AEUH01000060 clade_212 N N 92 AEPP01000041 clade_212 N N 80 GU561315 clade_212 N N 968 GU396991 clade_213 N N 1424 CP000490 clade_213 N N 1425 NR_044922 clade_213 N N 967 ADAQ01000013 clade_216 N N 1723 CP002457 clade_216 N N 111 EU117385 clade_217 N N 1626 CP000301 clade_217 N N 1223 NC_010172 clade_218 N N 1224 AY468363 clade_218 N N 1225 GU294320 clade_218 N N 1226 AY468371 clade_218 N N 1227 AY468370 clade_218 N N 18 NR_042021 clade_224 N N 19 ADMS01000149 clade_224 N N 20 ACRC01000072 clade_224 N N 384 NR_025949 clade_224 N OP 385 AB683187 clade_224 N OP 386 NR_025950 clade_224 N OP 387 BX640418 clade_224 N OP 1230 NR_037045 clade_225 N N 1231 EU714363 clade_225 N N 1233 EU714351 clade_225 N N 1234 EU714381 clade_225 N N 1235 EU714348 clade_225 N N 1236 AJ491806 clade_225 N N 1237 EU714359 clade_225 N N 1238 NR_044936 clade_225 N N 1239 EU714378 clade_225 N N 1240 AF287752 clade_225 N N C24KA 1241 EU714365 clade_225 N N 686 NR_025540 clade_229 N N 708 AB359395 clade_229 N N 725 GU238411 clade_229 N N 97_0186 1275 AF385898 clade_237 N OP 1288 EU919229 clade_237 N OP 1289 GU142920 clade_237 N OP 1293 EU703152 clade_237 N N 1294 EU703147 clade_237 N N 1297 HM210417 clade_237 N N 1299 FJ497243 clade_237 N N 1300 FJ497247 clade_237 N N 1301 FJ652846 clade_237 N N 1302 FJ497240 clade_237 N N 1303 FJ555538 clade_237 N N 172 NR_029006 clade_238 N N 195 NR_025557 clade_238 N N 422 NR_042639 clade_238 N N 934 DQ647387 clade_238 N N 935 CP001638 clade_238 N N 937 NR_043020 clade_238 N N 940 NR_074931 clade_238 N N 1192 FN397522 clade_238 N N 1468 NR_025011 clade_238 N N 1754 AFPZ01000142 clade_238 N N 1755 GU994081 clade_238 N N 1968 NR_043746 clade_238 N N 1969 NR_043232 clade_238 N N 1970 NR_025394 clade_238 N N 1971 NR_043747 clade_238 N N 1972 NR_040961 clade_238 N N 1507 AGWK01000061 clade_239 N N 1533 AY005065 clade_239 N N 1523 JN867222 clade_239 N N 1937 NR_024868 clade_240 N OP 1938 AY005083 clade_240 N N 1953 GU408850 clade_240 N N 1958 GU432215 clade_240 N N 1472 ACNN01000021 clade_241 N N 1478 AY005068 clade_241 N N BB134 1479 AY005069 clade_241 N N F016 1480 AY207054 clade_241 N N P2PB_52_P1 1481 AY207057 clade_241 N N P4GB_100 P2 26 AY258065 clade_245 N N Comamonadaceae bacterium 663 JN585335 clade_245 N N NML000135 Comamonadaceae bacterium 664 JN585331 clade_245 N N NML790751 Comamonadaceae bacterium 665 JN585332 clade_245 N N NML910035 Comamonadaceae bacterium 666 JN585333 clade_245 N N NML910036 668 AB076850 clade_245 N N 748 CP000884 clade_245 N N 2018 JN585329 clade_245 N N 1380 ACIQ02000009 clade_246 N N 1381 GQ422713 clade_246 N N 2007 NR_036924 clade_247 N N 2008 NR_040816 clade_247 N N 2009 AB680902 clade_247 N N 2010 NR_044659 clade_247 N N 2011 NR_075058 clade_247 N N 2012 ACKU01000017 clade_247 N N 2013 EU600924 clade_247 N N 1251 AEPZ01000013 clade_249 N N 785 ACYI01000081 clade_256 N N 1262 JN175341 clade_256 N N 1264 JF837191 clade_256 N N 420 JF951998 clade_257 N N 421 NR_029262 clade_257 N N 426 NR_028016 clade_257 N N 427 AB177640 clade_257 N N 35 ACVR01000010 clade_261 N N 1068 NR_044701 clade_263 N N 1082 NR_044707 clade_263 N N 1097 NR_025045 clade_263 N N 1101 NR_041629 clade_263 N N 1138 NR_042194 clade_263 N N 1595 AAUL01000021 clade_265 N N 1598 NR_037000 clade_265 N N 1602 EU723211 clade_265 N N 1603 AM905854 clade_265 N N 1390 NR_042272 clade_270 N N 1391 NR_042756 clade_270 N N 1392 NR_040885 clade_270 N N 1393 NR_025372 clade_270 N N 1394 NR_037017 clade_270 N N 1395 D78470 clade_270 N N 1396 NR_025739 clade_270 N N 1398 NR_040853 clade_270 N N 1400 NR_040888 clade_270 N N 1401 HM212646 clade_270 N N 1404 JF824808 clade_270 N N 1405 HE586333 clade_270 N N 1406 HE586338 clade_270 N N 1408 NR_042844 clade_270 N N 1651 ACVO01000020 clade_271 N N 1652 NR_025310 clade_271 N N 1550 ACZK01000043 clade_280 N N 1556 HM099652 clade_280 N N 1563 ACIJ02000018 clade_280 N N Prevotellaceae bacterium P4P_62 1566 AY207061 clade_280 N N P1 1471 AENO01000048 clade_281 N N 1473 AE015924 clade_281 N N 1475 NR_025908 clade_281 N N 1477 EU012301 clade_281 N N 1482 ACLR01000152 clade_281 N N 1165 CP001685 clade_282 N N 1168 ACVB02000032 clade_282 N N 1173 AY349386 clade_282 N N 1176 GU408547 clade_282 N N 278 AFBN01000029 clade_285 N N 281 CP002352 clade_285 N N 1419 ABYH01000014 clade_286 N N 1420 EU136685 clade_286 N N 1926 ADEC01000002 clade_288 N OP 1929 DQ003624 clade_288 N N clone MB3_P23 1935 AJ543428 clade_288 N OP 1942 AY207055 clade_288 N N P2PB_53 P3 1949 GU408748 clade_288 N N 1950 GU408776 clade_288 N N 1951 GU408781 clade_288 N N 144 ABXA01000039 clade_289 N N 148 HM587318 clade_289 N N 156 AM176540 clade_289 N N 158 ACXU01000016 clade_289 N N 1569 NC_019395 clade_290 N N 1571 AJ003055 clade_290 N N 1573 FJ785716 clade_290 N N 1574 NR_042269 clade_290 N N 1575 NR_025277 clade_290 N N 1577 AB177643 clade_290 N N 1581 NR_042270 clade_290 N N 349 ABQP01000027 clade_293 N N 1183 ACKV01000113 clade_295 N N 1184 NR_040814 clade_295 N N 1016 X87152 clade_298 N N 1570 ADJM01000010 clade_299 N N 1576 AFIL01000035 clade_299 N N 1578 AY354921 clade_299 N N 1579 AB264622 clade_299 N N 128 HE613268 clade_301 N N 53 GU470888 clade_303 N N 55 HQ906497 clade_303 N N 74 HQ335393 clade_303 N N 94 HM099646 clade_303 N N 1018 NR_025669 clade_307 N N 1467 JN585327 clade_307 N N 104 S39232 clade_308 N N 105 X71121 clade_308 N N 106 NC_008570 clade_308 N N 107 X60413 clade_308 N N 108 NC_009348 clade_308 N N 109 X60415 clade_308 N N 110 NR_044845 clade_308 N N 1196 AJ505973 clade_309 N N 1620 HM099648 clade_310 N N 1621 CP000144 clade_310 N N 1071 ACLL01000037 clade_313 N N 1076 ACOH01000030 clade_313 N N 1083 CP002033 clade_313 N N 1085 AICN01000060 clade_313 N N 1099 FR693800 clade_313 N N 1103 AEKL01000077 clade_313 N N 1111 HM218420 clade_313 N N 1112 ACGW02000012 clade_313 N N 1127 EU600911 clade_313 N N 1128 EU600913 clade_313 N N 1129 EU600915 clade_313 N N 1131 EU600917 clade_313 N N 1132 EU600921 clade_313 N N 1133 EU600922 clade_313 N N 1137 GQ422710 clade_313 N N 1140 ACGV01000168 clade_313 N N 419 NR_044854 clade_314 N N 423 AJ315491 clade_314 N N 1108 JN813103 clade_315 N N 1110 ACGZ02000033 clade_315 N N 1123 EU600906 clade_315 N N 1124 EU600907 clade_315 N N 1125 EU600908 clade_315 N N 1126 EU600909 clade_315 N N 115 CP000628 clade_316 N N 116 AJ389893 clade_316 N N 685 EF463055 clade_317 N N 693 NC_002935 clade_317 N OP 715 NR_037070 clade_317 N N 717 NR_037069 clade_317 N N 731 NR_074467 clade_317 N N 191 AY065627 clade_318 N N 192 FN658986 clade_318 N N 1066 NR_024718 clade_320 N N 1117 AEBA01000145 clade_320 N N 1134 EU600923 clade_320 N N 1073 ACGH01000101 clade_321 N N 1086 AY278619 clade_321 N N 1087 AY278620 clade_321 N N 1089 ACGP01000200 clade_321 N N 1096 NR_042230 clade_321 N N 1105 NR_041294 clade_321 N N 1107 NR_029039 clade_321 N N 1079 NR_042437 clade_322 N N 1116 DQ989236 clade_322 N N 167 AB101592 clade_323 N N 168 NR_028657 clade_323 N N 169 NR_036799 clade_323 N N 170 NR_042271 clade_323 N N 1757 CP002643 clade_325 N Category-B 1758 JQ624774 clade_325 N N 1759 ACFR01000029 clade_325 N N 1760 ACRH01000033 clade_325 N N 1761 NR_075003 clade_325 N N 1762 JN175375 clade_325 N N 1763 NR_029345 clade_325 N N 1764 ACHE01000056 clade_325 N N 1765 NR_027520 clade_325 N N 1767 NC_007168 clade_325 N N 1768 AM157418 clade_325 N N 1769 AEQA01000024 clade_325 N N 1770 FJ189773 clade_325 N N 1771 CP002439 clade_325 N N 1772 NR_029158 clade_325 N N 1773 NC_007350 clade_325 N N 1777 AF467424 clade_325 N N 1775 AB177642 clade_325 N N 1776 AB177644 clade_325 N N 1778 NR_028667 clade_325 N N 1780 ACPZ01000009 clade_325 N N 1781 AY395016 clade_325 N N 490 ACKY01000036 clade_326 N N 491 NR_028847 clade_326 N N 1593 AY622220 clade_326 N N 1594 FJ943496 clade_326 N N 1596 NR_024910 clade_326 N N 1597 GU188951 clade_326 N N 1599 AF094741 clade_326 N N 1601 DQ910482 clade_326 N N 1604 AF320988 clade_326 N N 1605 NR_042764 clade_326 N N 1185 ACCR02000003 clade_328 N OP 1186 JF967625 clade_328 N N 1187 X56151 clade_328 N N 1188 CP002003 clade_328 N Category-B 1189 AM263198 clade_328 N OP 484 AY923149 clade_333 N N ASCH05 489 ABZV01000054 clade_333 N N 1166 AY278621 clade_334 N N 1169 AY029806 clade_334 N N 1170 AF189244 clade_334 N N 1171 AY349384 clade_334 N N 1172 AY349385 clade_334 N N 296 ACRQ01000064 clade_335 N N 307 ADCJ01000062 clade_335 N N 311 ACIB01000079 clade_335 N N 1416 CP000140 clade_335 N N 1417 AY974070 clade_335 N N 1418 AB470344 clade_335 N N 1421 ACPW01000017 clade_335 N N 477 AY278613 clade_336 N N 480 AEOH01000054 clade_336 N N 481 GU561335 clade_336 N N 486 AY005077 clade_336 N N A47ROY 482 U42009 clade_336 N N 1426 AFFY01000068 clade_336 N N 282 JN867284 clade_338 N N 1500 GQ422742 clade_338 N N 1928 DQ003618 clade_339 N N clone MB2_G19 1930 DQ003625 clade_339 N N clone MB4_G11 1952 GU408803 clade_339 N N 1956 GU413616 clade_339 N N 1957 GU413640 clade_339 N N 502 AE002160 clade_341 N OP 504 U68443 clade_341 N OP 503 NR_036864 clade_342 N Category-B 509 NC_002179 clade_342 N OP 510 D85712 clade_342 N OP 146 NR_026360 clade_343 N N 149 HM587319 clade_343 N N 150 HM587322 clade_343 N N 151 HM587325 clade_343 N N 923 CP001849 clade_344 N N 466 CP000932 clade_346 N OP 142 NR_026075 clade_347 N N 143 AJ420985 clade_347 N N 1654 NR_026450 clade_347 N N 1897 AEVO01000027 clade_347 N N 54 NR_026363 clade_348 N N 82 AY349361 clade_348 N N 1260 CP002005 clade_349 N N 1261 FR822735 clade_349 N N 1263 JF682466 clade_349 N N 1613 HM212668 clade_349 N N 49 AF487679 clade_350 N N 50 AY957507 clade_350 N N 51 AY282578 clade_350 N N 52 AY207066 clade_350 N N 84 AY349363 clade_350 N N 93 ACUY01000072 clade_350 N N 65 X71862 clade_352 N N 1252 ACKW01000035 clade_352 N N 372 NR_040824 clade_356 N N 1357 AAAV03000008 clade_356 N N 1745 AY349411 clade_356 N N FI012 1749 CP000356 clade_356 N N 1389 ACDQ01000020 clade_357 N N 1974 AEDS01000059 clade_358 N N 1975 ACIK02000021 clade_358 N N 1976 DQ003631 clade_358 N N clone MB5_P17 1978 ADFU01000009 clade_358 N N 1979 ADCV01000019 clade_358 N N 1980 ADCW01000016 clade_358 N N 1981 HQ616359 clade_358 N N 1982 HQ616365 clade_358 N N 1983 HQ616368 clade_358 N N 1984 HQ616396 clade_358 N N 1985 HQ616381 clade_358 N N 1986 EF108443 clade_358 N N 1987 JN695650 clade_358 N N 1990 AY923144 clade_358 N N 1991 AY953257 clade_358 N N 1992 AY947495 clade_358 N N 1993 AENU01000007 clade_358 N N 1040 GQ260086 clade_365 N N 1042 AY030315 clade_365 N N 1043 X87756 clade_365 N N 1044 AF542074 clade_365 N N Clostridiaceae bacterium END_2 531 EF451053 clade_368 N N 1242 NR_025285 clade_371 N N 1243 NR_075062 clade_371 N N 1244 NR_026200 clade_371 N N 1245 EU714334 clade_371 N N 1072 EU194349 clade_372 N N 1104 NR_042456 clade_372 N N 1436 ACXB01000026 clade_372 N N 1437 NR_075052 clade_372 N N 1081 NR_036861 clade_373 N N 1109 NR_029360 clade_373 N N 1113 ABWJ01000068 clade_373 N N 1118 AB602569 clade_373 N N 1121 HQ616370 clade_373 N N 1282 FR798914 clade_374 N OP 1286 AF268445 clade_374 N OP 1291 CP000480 clade_374 N OP 1304 AJ012738 clade_374 N N 775 ADLV01000001 clade_377 N N 776 ADLW01000023 clade_377 N N 1474 NR_025907 clade_377 N N 1476 AB547667 clade_377 N N 267 NR_041446 clade_378 N N 272 ABIY02000050 clade_378 N N 273 ACBW01000012 clade_378 N N 274 ABWZ01000093 clade_378 N N 284 AB200226 clade_378 N N 289 AB200218 clade_378 N N 309 ACPS01000085 clade_378 N N 310 ACRT01000136 clade_378 N N 313 ACDR02000029 clade_378 N N 314 ACAA01000096 clade_378 N N 323 AB117565 clade_378 N N 331 CP000139 clade_378 N N 287 ACWH01000036 clade_38 N N 294 ADCL01000128 clade_38 N N 297 ACPQ01000117 clade_38 N N 299 ABZZ01000168 clade_38 N N 308 ACRS01000081 clade_38 N N 318 ACAB02000030 clade_38 N N 321 ACGA01000077 clade_38 N N 320 ADCK01000151 clade_38 N N 332 ADKP01000087 clade_38 N N 1931 NR_026247 clade_380 N OP 1933 AF302937 clade_380 N OP 1940 AY349417 clade_380 N N 1954 GQ422733 clade_380 N N 1428 ADEB01000020 clade_381 N N 1688 AB029087 clade_381 N N 1689 AY278626 clade_381 N N Clostridiales bacterium 9400853 533 HM587320 clade_384 N N 1254 NR_027191 clade_384 N N 1255 NR_027203 clade_384 N N 1256 NR_028608 clade_384 N N 1257 Z36296 clade_384 N N 389 ABGI01000001 clade_386 N OP 392 ABJV01000001 clade_386 N OP 397 AJ224142 clade_386 N OP 457 NR_040787 clade_387 N N Comamonadaceae bacterium oral 667 HM099651 clade_387 N N taxon F47 1149 AEQP01000026 clade_387 N N 1150 AY005030 clade_387 N N 1441 D14145 clade_389 N N 1442 EU526290 clade_389 N N 1443 NR_026358 clade_389 N N 1444 AY153431 clade_389 N N 1446 ADDO01000050 clade_389 N N 1450 AM176527 clade_389 N N 1447 JF824803 clade_389 N N 1452 ADCS01000031 clade_389 N N 1453 AEAA01000090 clade_389 N N Peptostreptococcaceae bacterium 1454 JN837495 clade_389 N N ph1 765 HM596297 clade_390 N N 767 GQ422739 clade_390 N N 741 GU230889 clade_391 N N 1001 CP002039 clade_391 N N 1002 JN657219 clade_391 N N 1015 EF455530 clade_391 N N 1197 FR773700 clade_391 N N 1615 NC_010682 clade_391 N N 1616 ACUF01000076 clade_391 N N 889 ABSS01000002 clade_392 N N 890 AY928394 clade_392 N N 891 ABAZ01000082 clade_392 N Category-A 1009 HQ823562 clade_392 N N 1010 HQ823559 clade_392 N N 1814 AP010655 clade_394 N N 1084 ACOZ01000018 clade_398 N N 1090 FR681902 clade_398 N N 1091 AEKJ01000002 clade_398 N N 1093 AE017198 clade_398 N N 1119 AB602570 clade_398 N N 1135 AY349382 clade_398 N N 2006 EU439435 clade_398 N N 1744 NR_024700 clade_399 N N 1747 HM099639 clade_399 N N 1748 HM099645 clade_399 N N 2032 NR_074274 clade_399 N N 174 NR_025347 clade_400 N N 175 GU585578 clade_400 N N 1962 NR_044858 clade_400 N N 1144 AF061005 clade_401 N N 1145 CP002365 clade_401 N N 424 ADNU01000076 clade_402 N N 425 EU086796 clade_402 N N 428 JF824806 clade_402 N N 1692 HM596274 clade_403 N N 1704 HQ616378 clade_403 N N 1715 AENV01000007 clade_403 N N 751 AM940019 clade_404 N N 752 AFHT01000143 clade_404 N N 1407 HM099647 clade_404 N N 682 ADNS01000011 clade_405 N N 687 ACLH01000041 clade_405 N N 688 AF537590 clade_405 N N 689 GQ871934 clade_405 N N 690 NR_025101 clade_405 N N 694 Z97069 clade_405 N N 695 ACLI01000121 clade_405 N N 696 Y13024 clade_405 N N 697 NR_037040 clade_405 N N 701 BA000036 clade_405 N N 704 ACYW01000001 clade_405 N OP 705 NR_026380 clade_405 N N 706 ACHJ01000075 clade_405 N N 709 ACSH02000003 clade_405 N N 710 X82064 clade_405 N N 718 ADGN01000058 clade_405 N N 720 AF537604 clade_405 N N 721 NR_026394 clade_405 N N 722 Y13427 clade_405 N N 726 GU238413 clade_405 N N 99_0018 727 ACGE01000001 clade_405 N OP 732 X81913 clade_405 N OP 734 NR_025314 clade_405 N N 98 AY837833 clade_407 N N 99 CP002512 clade_407 N N 100 NR_043443 clade_407 N N 101 ADNT01000041 clade_407 N N 898 HQ223106 clade_408 N N 1268 AF527773 clade_408 N N 1697 AY341820 clade_410 N N 1710 AY349408 clade_410 N N 1717 ACKP02000033 clade_410 N N 1007 AY468372 clade_411 N N 1228 NR_074237 clade_411 N N 1153 NC_002942 clade_412 N OP 1077 NR_044705 clade_413 N N 178 NR_026198 clade_414 N N 179 NR_074608 clade_414 N N 180 NR_025612 clade_414 N N 181 NR_026187 clade_414 N N 182 NR_026190 clade_414 N N 1269 AGQU01000002 clade_418 N OP 1273 AB548610 clade_418 N OP 291 CP002530 clade_419 N N 1427 AFBR01000011 clade_419 N N 336 AB370251 clade_420 N N 337 NR_041508 clade_420 N N 1422 JN029805 clade_420 N N Porphyromonadaceae bacterium 1470 EF184292 clade_420 N N NML 060648 1913 CP003191 clade_420 N N 1914 ACWX01000068 clade_420 N N 1311 AY531656 clade_421 N N 1317 L43967 clade_421 N N 1322 NC_000912 clade_421 N N 1321 NC_004432 clade_422 N N 1966 AE002127 clade_422 N N 1967 AAYN01000002 clade_422 N N 1927 AY341822 clade_425 N N 1943 GU408580 clade_425 N N 1944 GU408603 clade_425 N N 1945 GU408631 clade_425 N N 1946 GU408646 clade_425 N N 1947 GU408673 clade_425 N N 1959 AJ010951 clade_425 N N 1960 ACYH01000036 clade_425 N OP Burkholderiales bacterium 1_1_47 452 ADCQ01000066 clade_432 N OP 1429 AFBP01000029 clade_432 N N 1430 AB491209 clade_432 N N 1898 AJ832129 clade_432 N N 1900 AJ748647 clade_432 N N 1901 AB491210 clade_432 N N 1902 NR_025600 clade_432 N N 1903 ADMF01000048 clade_432 N N 1572 NR_036972 clade_433 N N 1580 GQ422728 clade_433 N N 192 1917 HM099640 clade_433 N N 1445 Y07840 clade_434 N N 1448 AM176517 clade_434 N N 1449 AM176519 clade_434 N N 1451 AM176535 clade_434 N N 887 AY126479 clade_436 N N 993 ACDN01000023 clade_436 N N 995 ABQT01000054 clade_436 N N 998 U44756 clade_436 N N 429 CP002102 clade_438 N N 1008 NR_074092 clade_438 N N 1465 AY628697 clade_438 N N 1793 AEKN01000002 clade_441 N N 1848 Y07601 clade_441 N N 40 JQ638584 clade_443 N N 990 NR_074782 clade_443 N N 991 FR775979 clade_443 N N 456 U41172 clade_444 N N 1640 FM954975 clade_444 N N 1641 FM954976 clade_444 N N 1728 ACIP02000004 clade_444 N N 1729 HQ616383 clade_444 N N 1730 GU432167 clade_444 N N 344 AY294215 clade_445 N N 755 AY005036 clade_445 N N CH031 757 DQ092636 clade_445 N N 758 U42221 clade_445 N N 759 AF192152 clade_445 N N 760 ADDR01000239 clade_445 N N 941 CP001124 clade_445 N N 401 NR_026269 clade_446 N N 402 AB537169 clade_446 N N 403 NR_026272 clade_446 N N 749 FJ263375 clade_446 N N 171 NR_029303 clade_448 N N 409 NR_040983 clade_448 N N 411 NR_043414 clade_448 N N 412 NR_040980 clade_448 N N 413 NR_041836 clade_448 N N 415 NR_040981 clade_448 N N 416 NR_040982 clade_448 N N 417 JN837488 clade_448 N N 418 NR_026514 clade_448 N N 1100 NR_042231 clade_449 N N 1102 NR_043095 clade_449 N N 1115 ACGS02000043 clade_449 N N 1141 NR_042196 clade_449 N N 924 ACDZ02000012 clade_450 N N 925 NR_025904 clade_450 N N 926 ACRX01000010 clade_450 N N 927 ACRY01000057 clade_450 N N 929 AY923133 clade_450 N N 930 AY923139 clade_450 N N 931 AY923143 clade_450 N N 928 EU427463 clade_450 N N 1753 NR_042247 clade_451 N N 945 NR_028909 clade_452 N N 946 NR_026513 clade_452 N N 947 NR_026133 clade_452 N N 949 NR_041295 clade_452 N N 950 NR_074338 clade_452 N N 193 FN554542 clade_453 N N 750 AEIQ01000090 clade_453 N N 1013 NR_026362 clade_453 N N 1014 EF063716 clade_453 N N 7 NR_026121 clade_454 N N 8 NR_042678 clade_454 N N 9 NR_040832 clade_454 N N 10 NR_025513 clade_454 N N 11 NR_028625 clade_454 N N 12 NR_026107 clade_454 N N 13 NR_042112 clade_454 N N 14 NR_040868 clade_454 N N 15 NR_036881 clade_454 N N 943 NR_028767 clade_454 N N 944 NR_074292 clade_454 N N 948 NR_024959 clade_454 N N 1351 AIHV01000038 clade_455 N N 1352 HQ009486 clade_455 N N 1354 NR_028994 clade_455 N N 1355 GU574059 clade_455 N N 1623 ADNW01000058 clade_455 N N 1358 NR_041533 clade_456 N N 1359 CAER01000083 clade_456 N N 1384 NR_044923 clade_456 N N 1385 FN397526 clade_456 N N 2005 NR_025308 clade_456 N N 683 ABZU01000033 clade_457 N OP 702 AM946639 clade_457 N N 735 FN179330 clade_457 N OP Staphylococcaceae bacterium 1756 AY841362 clade_458 N N NML 92_0017 1766 NR_041326 clade_458 N N 1774 NR_025520 clade_458 N N 1779 NR_024670 clade_458 N N 1782 AAVZ01000005 clade_459 N N 1783 EF017810 clade_459 N N 1270 AF480605 clade_46 N OP 1271 AJ938169 clade_46 N OP 1272 CP000479 clade_46 N OP 1274 AM062764 clade_46 N OP 1276 GU142930 clade_46 N OP 1277 GQ153276 clade_46 N OP 1278 AF480601 clade_46 N OP 1279 NR_025175 clade_46 N OP 1280 FM211192 clade_46 N OP 1281 EU203590 clade_46 N OP 1283 FJ042897 clade_46 N OP 1284 NC_010612 clade_46 N OP 1285 NR_025234 clade_46 N OP 1287 ADNV01000350 clade_46 N OP 1290 DQ536403 clade_46 N OP 1292 EU703150 clade_46 N N 1295 EU703148 clade_46 N N 1296 EU703149 clade_46 N N 1298 HQ174245 clade_46 N N B10_07.09.0206 1305 HM627011 clade_46 N N 1306 DQ437715 clade_46 N N 1307 CP001658 clade_46 N Category-C 1308 AB548725 clade_46 N OP 1309 EU834055 clade_46 N OP 2016 EF101975 clade_461 N N 2017 EU723184 clade_461 N N 769 GQ870426 clade_462 N N 770 DQ337512 clade_462 N N 771 GQ870422 clade_462 N N 772 GQ870424 clade_462 N N 951 NR_027594 clade_463 N N 952 DQ385609 clade_463 N N 953 DQ068383 clade_463 N N 954 FJ536304 clade_463 N N 955 GQ848239 clade_463 N N 1167 ADAD01000110 clade_465 N N 1174 AY349387 clade_465 N N 1175 AY207053 clade_465 N N P2PB_51 P1 Bacteroidales genomosp. P7 oral 264 DQ003623 clade_466 N N clone MB3_P19 454 AB443949 clade_466 N N 1363 AB490805 clade_466 N N 1364 CP002544 clade_466 N N 478 ACLQ01000011 clade_467 N N 479 X97248 clade_467 N N 483 AY005074 clade_467 N N AH015 487 AY005073 clade_467 N N 488 AEXX01000050 clade_467 N N 338 476 CP002113 clade_468 N N 485 AY349368 clade_468 N N ID062 1075 M23729 clade_469 N N 1142 NR_041305 clade_469 N N 501 AJ438155 clade_470 N N 896 ACET01000043 clade_470 N N 897 ACDB02000034 clade_470 N N 899 X55408 clade_470 N N 900 AM905356 clade_470 N N 905 AGWJ01000070 clade_470 N N 911 ACDD01000078 clade_470 N N 918 ACDG02000036 clade_470 N N 921 ACDH01000090 clade_470 N N 922 ACIE01000009 clade_470 N N 1312 NC_011025 clade_473 N N 1314 NR_024983 clade_473 N N 1318 AF443616 clade_473 N N 1319 AY796060 clade_473 N N 1324 M24661 clade_473 N N 1247 NR_028840 clade_474 N N 1248 ABWK02000005 clade_474 N N 1249 GU413658 clade_474 N N 1250 GU432166 clade_474 N N 1695 AY278627 clade_474 N N 1700 DQ003628 clade_474 N N clone MB5_P06 1703 NR_075026 clade_474 N N Veillonellaceae bacterium oral 1994 GU402916 clade_474 N N taxon 131 139 NR_042583 clade_475 N N 140 AB425070 clade_475 N N 366 AJ278695 clade_475 N N 1503 JN867231 clade_48 N N 1530 DQ272511 clade_48 N N 1540 AY349398 clade_48 N N 1553 ACZS01000106 clade_48 N N 1693 GQ422719 clade_480 N N 1694 AF287803 clade_480 N N 1696 AY278628 clade_480 N N 1698 DQ003636 clade_480 N N clone MB3_C41 1699 DQ003627 clade_480 N N clone MB5_C08 1701 AF287802 clade_480 N N 1702 GU470909 clade_480 N N 1705 AY349403 clade_480 N N 1706 AY349404 clade_480 N N 1707 AY349405 clade_480 N N GT010 1708 AY349406 clade_480 N N HU051 1709 AY349407 clade_480 N N 1711 AY349409 clade_480 N N 1712 AY349410 clade_480 N N 1713 AY947498 clade_480 N N 1714 AY207052 clade_480 N N P2PA_80 P4 1716 AEEJ01000007 clade_480 N N Veillonellaceae bacterium oral 1995 GU470897 clade_480 N N taxon 155 117 NR_026275 clade_484 N N 1232 NR_025098 clade_484 N N 1590 FJ375951 clade_484 N N 1961 BX251412 clade_484 N N 2031 AB012592 clade_484 N N 1151 M36028 clade_486 N OP 1152 M36029 clade_486 N OP 1154 JN380999 clade_486 N OP 1155 JN381012 clade_486 N OP 1156 JF831047 clade_486 N OP 1157 GU062706 clade_486 N OP 1158 HQ398202 clade_486 N OP 1915 M36032 clade_486 N N 996 ABQU01000097 clade_489 N N Acetobacteraceae bacterium 16 AGEZ01000040 clade_490 N N AT_5844 1643 ADVL01000363 clade_490 N N 1644 NR_028857 clade_490 N N 1645 AF533357 clade_490 N N 1646 AF533359 clade_490 N N 1647 AF533358 clade_490 N N 1648 AF533360 clade_490 N N 1627 CP000847 clade_492 N OP 1628 AE008647 clade_492 N OP 1629 M21789 clade_492 N Category-B 1630 NC_010263 clade_492 N OP 1631 L36224 clade_492 N OP 1632 AE017197 clade_492 N OP 160 AGCJ01000054 clade_493 N N 1201 AY278622 clade_493 N N 1203 AECS01000020 clade_493 N N Clostridiales genomosp. BVAB3 540 CP001850 clade_495 N N 1963 X80628 clade_496 N N 1964 AB478958 clade_496 N N 2 AB022027 clade_497 N N 492 NR_044706 clade_497 N N 493 NC_019425 clade_497 N N 800 AF133535 clade_497 N N 801 AY943820 clade_497 N N 802 AEWT01000047 clade_497 N N 803 AJ276354 clade_497 N N 804 AE016830 clade_497 N N 805 AM157434 clade_497 N N 806 AB269767 clade_497 N N 807 AY033814 clade_497 N N 808 AY321377 clade_497 N N 809 AF061011 clade_497 N N 810 AEPV01000109 clade_497 N N 811 NR_024906 clade_497 N N 812 FN600541 clade_497 N N 813 JN809766 clade_497 N N 814 GU457263 clade_497 N N 815 FJ463817 clade_497 N N 816 AJ133478 clade_497 N N 817 AY321376 clade_497 N N 893 AY162222 clade_497 N N 894 AY278616 clade_497 N N 895 AY278617 clade_497 N N 902 ACJY01000002 clade_497 N N 906 ADGG01000053 clade_497 N N 904 ACUO01000052 clade_497 N N 907 ACDC02000018 clade_497 N N 908 ADGF01000045 clade_497 N N 909 ACQE01000178 clade_497 N N 910 ACPU01000044 clade_497 N N 912 HQ616357 clade_497 N N 913 HQ616358 clade_497 N N 914 HQ616361 clade_497 N N 915 HQ616371 clade_497 N N 916 HQ616375 clade_497 N N 917 HQ616376 clade_497 N N 919 AY923141 clade_497 N N ASCF06 920 AY953256 clade_497 N N ASCF11 959 ACKZ01000002 clade_497 N N 960 AB252689 clade_497 N N 961 AY879298 clade_497 N N 963 AY923126 clade_497 N N ASC02 964 DQ341469 clade_497 N N ASCA05 965 AY953251 clade_497 N N ASCB09 966 AY923146 clade_497 N N ASCG05 1918 NR_075020 clade_497 N N 1919 NR_043113 clade_497 N N 1973 NR_026489 clade_497 N N 514 AM982793 clade_498 N N 515 ACKQ02000003 clade_498 N N 516 NR_042517 clade_498 N N 1936 AF426101 clade_499 N OP 1941 AY349416 clade_499 N N 1948 GU408738 clade_499 N N 1955 GU408871 clade_499 N N 129 NR_043064 clade_500 N N 131 NR_043318 clade_500 N N 132 ABFK02000017 clade_500 N N 133 FP929032 clade_500 N N 134 AENZ01000082 clade_500 N N 135 JF824804 clade_500 N N 136 GQ140629 clade_500 N N 1310 AF010477 clade_501 N N 1313 NR_025987 clade_501 N N 1315 CP002458 clade_501 N N 1316 X62699 clade_501 N N 1320 NR_025989 clade_501 N N 176 AEPT01000071 clade_502 N N 177 NR_025905 clade_502 N N 461 NC_009715 clade_502 N OP 467 ACFU01000050 clade_502 N OP 468 ACVQ01000030 clade_502 N OP 469 HQ616379 clade_502 N OP 470 HQ616380 clade_502 N OP 471 AY005038 clade_502 N OP BB120 472 NR_044839 clade_502 N OP 330 GQ167666 clade_504 N N 463 ACYG01000026 clade_504 N OP 464 NC_009714 clade_504 N OP 762 ACIM02000001 clade_506 N N 763 AFBB01000028 clade_506 N N 764 AENT01000008 clade_506 N N 766 NR_043231 clade_506 N N 768 AB370249 clade_506 N N 1200 AY038996 clade_506 N N 1202 ADGP01000010 clade_506 N N 1204 HM990964 clade_506 N N 1205 AFIJ01000040 clade_506 N N 513 NC_005085 clade_507 N N 1148 CP001154 clade_507 N N 1229 AY436794 clade_507 N N 883 ACHM02000001 clade_509 N N 1431 AB729072 clade_509 N N 1432 AFII01000002 clade_509 N N 1456 AM176538 clade_509 N N 1460 AY349390 clade_509 N N FJ023 1458 AY207059 clade_509 N N P3 997 CP000012 clade_510 N OP 165 ABOR01000019 clade_511 N N 166 NC_007797 clade_511 N N 783 AAIF01000035 clade_511 N OP 1349 CP001431 clade_511 N N 1350 NC_007798 clade_511 N N 1606 AB036759 clade_512 N N 1977 AF473836 clade_513 N N 1988 AY923118 clade_513 N N 1989 AY923122 clade_513 N N 1012 NR_029046 clade_514 N N 1746 AY349412 clade_514 N N FZ016 145 ABYO01000217 clade_515 N N 147 CP001708 clade_515 N N 152 AM176528 clade_515 N N 153 AM176530 clade_515 N N 154 AM176536 clade_515 N N 155 AM176539 clade_515 N N 157 ACGC01000107 clade_515 N N 271 AB547639 clade_515 N N Clostridiales bacterium 9403326 534 HM587324 clade_515 N N Clostridiales bacterium ph2 539 JN837487 clade_515 N N 1457 X90471 clade_515 N N 1459 AB175072 clade_515 N N AP24 1924 NR_044860 clade_515 N N 994 ABQS01000108 clade_518 N N 1455 AY326462 clade_520 N N 1461 ADGQ01000048 clade_520 N N 367 ADCP01000166 clade_521 N N 761 NR_074897 clade_521 N N 64 AJ508455 clade_523 N N 500 AY501364 clade_523 N N 1146 NR_044359 clade_524 N N Bacteroidales genomosp. P1 258 AY341819 clade_529 N N Bacteroidales genomosp. P2 oral 259 DQ003613 clade_529 N N clone MB1_G13 Bacteroidales genomosp. P3 oral 260 DQ003615 clade_529 N N clone MB1_G34 Bacteroidales genomosp. P4 oral 261 DQ003617 clade_529 N N clone MB2_G17 Bacteroidales genomosp. P5 oral 262 DQ003619 clade_529 N N clone MB2_P04 Bacteroidales genomosp. P6 oral 263 DQ003634 clade_529 N N clone MB3_C19 Bacteroidales genomosp. P8 oral 265 DQ003626 clade_529 N N clone MB4_G15 Bacteroidetes bacterium oral taxon 333 HM099638 clade_530 N N D27 Bacteroidetes bacterium oral taxon 334 HM099643 clade_530 N N F31 Bacteroidetes bacterium oral taxon 335 HM099649 clade_530 N N F44 885 FJ195988 clade_530 N N 1326 NR_042354 clade_530 N N 1327 GU253339 clade_530 N N Chlamydiales bacterium NS16 507 JN606076 clade_531 N N 508 D88317 clade_531 N OP 1423 BX908798 clade_531 N N 903 NR_044687 clade_532 N N 1784 NR_027615 clade_532 N N Eubacteriaceae bacterium P4P_50 833 AY207060 clade_533 N N P4 1 ACIN02000016 clade_534 N N 3 AY207063 clade_534 N N P4PA_155 P1 496 DQ003629 clade_534 N N MB5_P12 497 ACIL02000016 clade_534 N N 498 AY349369 clade_534 N N 818 AENN01000008 clade_534 N N 879 Y10772 clade_534 N N 962 AJ271861 clade_534 N N 459 AAFL01000004 clade_535 N OP 460 CP000792 clade_535 N OP 462 ACLG01001177 clade_535 N OP 465 AL139074 clade_535 N Category-B 473 AEPU01000040 clade_535 N OP 183 HM007583 clade_539 N N 184 CP001721 clade_539 N N 185 ACFE01000007 clade_539 N N 186 HQ616367 clade_539 N N 187 EU592966 clade_539 N N 188 HQ616393 clade_539 N N 189 HQ616400 clade_539 N N 190 AEDQ01000024 clade_539 N N Coriobacteriaceae bacterium 677 JN809768 clade_539 N N BV3Ac1 63 X81062 clade_54 N N 67 NR_025559 clade_54 N N 69 BABV01000070 clade_54 N N 70 EU484334 clade_54 N N 72 AF543275 clade_54 N N 73 GU561313 clade_54 N N 79 AJ234063 clade_54 N N 83 AY349362 clade_54 N N 85 AY349364 clade_54 N N 86 AY349365 clade_54 N N 88 AY349367 clade_54 N N 89 AFBL01000010 clade_54 N N 90 AECW01000034 clade_54 N N 95 ACFH01000038 clade_54 N N 96 ACRE01000096 clade_54 N N 1383 AP008981 clade_541 N OP 1198 AB300988 clade_542 N N 1199 AJ420107 clade_542 N N 102 NR_025681 clade_544 N N 103 JF824798 clade_544 N N 1190 NR_025507 clade_544 N N Propionibacteriaceae bacterium 1568 EF599122 clade_544 N N NML 02_0265 1622 X80615 clade_546 N N 1624 ACNO01000030 clade_546 N N 1625 NR_037021 clade_546 N N 1690 CP001958 clade_546 N N 1691 ACZI01000025 clade_546 N N 878 FJ970034 clade_547 N N 1194 NR_074941 clade_547 N N 1890 FJ176782 clade_548 N N 1892 EU544234 clade_548 N N 1893 EU544233 clade_548 N N 1895 NR_027616 clade_548 N N 388 ABCU01000001 clade_549 N OP 390 DQ057990 clade_549 N OP 391 NC_011229 clade_549 N OP 393 AY597657 clade_549 N OP 394 DQ057988 clade_549 N OP 395 HM161645 clade_549 N OP 396 AF107367 clade_549 N OP 398 ABKB01000002 clade_549 N OP 399 NC_008710 clade_549 N OP 400 ABCY01000002 clade_549 N OP 1586 ABXW01000071 clade_55 N N 1587 AM040492 clade_55 N N 1588 AM040489 clade_55 N N 1589 AF008581 clade_55 N N 1932 CP001752 clade_550 N OP 1934 AEFH01000172 clade_550 N N 1939 Y08894 clade_550 N N 17 NR_074448 clade_551 N N 1323 U26055 clade_551 N N Mycoplasmataceae genomosp. P1 1325 DQ003614 clade_551 N N oral clone MB1_G23 1750 NR_025705 clade_551 N N 660 ABXH02000037 clade_553 N N 661 ABXJ01000150 clade_553 N N 662 AB490807 clade_553 N N 458 NR_025485 clade_554 N N 21 CP001859 clade_556 N N 22 CP003058 clade_556 N N 23 ACGB01000071 clade_556 N N 1462 NR_026111 clade_556 N N 1463 AB490812 clade_556 N N 12068 1464 AB490811 clade_556 N N succinatutens 25 NR_074660 clade_557 N N Xanthomonadaceae bacterium 2015 EU313791 clade_557 N N NML 03_0222 494 AB671763 clade_558 N N 512 AB490809 clade_558 N N Clostridiales bacterium oral clone 536 AY207065 clade_558 N N P4PA_66 P1 Clostridiales bacterium oral taxon 537 GQ422712 clade_558 N N 093 1000 NR_074517 clade_560 N N 130 AB490804 clade_561 N N Bacteroidales bacterium ph8 257 JN837494 clade_561 N N 475 CP002163 clade_561 N N 742 FR733683 clade_561 N N Flavobacteriaceae genomosp. C1 884 AY278614 clade_561 N N 958 NR_074707 clade_561 N N 1740 NR_025537 clade_562 N N 1741 JF708889 clade_562 N N 1742 NR_040953 clade_562 N N 1743 ACHA02000013 clade_562 N N 1017 ACOO02000004 clade_563 N N 1614 AY207056 clade_563 N N Synergistes genomosp. C1 1904 AY278615 clade_563 N N Synergistes sp. RMA 14551 1905 DQ412722 clade_563 N N Synergistetes bacterium ADV897 1906 GQ258968 clade_563 N N 474 NR_074460 clade_564 N N SFB_mouse_Yit 957 NR_043559 clade_564 N N 404 FM178386 clade_565 N N 406 FM178387 clade_565 N N 407 FM178388 clade_565 N N 408 FM178389 clade_565 N N 97 AB306661 clade_566 N N Coriobacteriaceae bacterium 678 CAEM01000062 clade_566 N N JC110 Coriobacteriaceae bacterium phl 679 JN837493 clade_566 N N 740 GQ422741 clade_566 N N 779 AY321958 clade_566 N N 780 ACWN01000099 clade_566 N N 781 AEXR01000021 clade_566 N N 782 AP012211 clade_566 N N 680 AM886059 clade_566 N N 956 FP929047 clade_566 N N 1732 EU377663 clade_566 N N 1733 ACUX01000029 clade_566 N N 1734 NR_042220 clade_566 N N 1735 NR_074439 clade_566 N N 1736 AB566418 clade_566 N N 1737 AB490806 clade_566 N N 1738 AB505075 clade_566 N N Chlamydiales bacterium NS13 506 JN606075 clade_567 N N Victivallaceae bacterium NML 2003 FJ394915 clade_567 N N 080035 2004 ABDE02000010 clade_567 N N 1889 NR_074787 clade_573 N N 1891 EU544231 clade_573 N N 1894 EU544232 clade_573 N N 530 GQ258966 clade_575 N N 743 AY349370 clade_575 N N JV001 745 AY349372 clade_575 N N JV023 Synergistetes bacterium 1907 GQ258969 clade_575 N N LBVCM1157 Synergistetes bacterium oral taxon 1909 GU410752 clade_575 N N 362 Synergistetes bacterium oral taxon 1910 GU430992 clade_575 N N D48 1439 AY349389 clade_576 N N 999 ACDO01000013 clade_577 N N 2014 BX571657 clade_577 N N 1368 AY278623 clade_578 N N 1369 FN178466 clade_578 N N 1370 EU592964 clade_578 N N 1371 ACVE01000002 clade_578 N N 1372 CP002106 clade_578 N N 1356 CP002041 clade_579 N N 1438 NR_029221 clade_580 N N 1440 GQ422727 clade_580 N N 118 CP001071 clade_583 N N 1373 NR_074978 clade_583 N N Clostridiales bacterium oral taxon 538 HM099644 clade_584 N N F32 1161 NC_008508 clade_585 N OP 1162 NR_043200 clade_585 N OP 1163 NC_005823 clade_585 N OP 1213 NR_044789 clade_587 N N 1214 NR_042785 clade_587 N N 1216 HE654003 clade_587 N N 1219 NR_044787 clade_587 N N 1218 ABYV02000002 clade_588 N N 746 AE000513 clade_589 N N 747 FR682752 clade_589 N N 1923 NR_025900 clade_589 N N 81 AB167239 clade_590 N N Syntrophomonadaceae genomosp. 1912 AY341821 clade_590 N N P1 141 ACJX02000009 clade_591 N N 1246 NC_010296 clade_592 N N 1567 CP000551 clade_592 N N 1208 NR_028779 clade_593 N N 1209 NR_042783 clade_593 N N 1210 NR_044796 clade_593 N N 1211 NR_044776 clade_593 N N 1212 NR_044801 clade_593 N N 1220 NR_044788 clade_593 N N 1642 CP000804 clade_594 N N 1215 NR_043024 clade_595 N N 1217 NR_042784 clade_595 N N 1221 NR_044790 clade_595 N N 1222 AY196684 clade_595 N N Chloroflexi genomosp. P1 511 AY331414 clade_596 N N 992 AB477978 clade_597 N N 1207 NR_025028 clade_597 N N 24 AY350586 clade_598 N N 1006 CP000493 clade_598 N N 1011 X99562 clade_598 N N 1206 D26491 clade_598 N N 1922 X14835 clade_598 N N 1506 CP002122 clade_6 N N 1520 HQ616385 clade_6 N N 1535 AY349393 clade_6 N N 1537 AY349395 clade_6 N N 1526 JN867246 clade_6 N N 1787 AECT01000011 clade_60 N N 1812 X81023 clade_60 N N 1829 JN590019 clade_60 N N 1832 X78825 clade_60 N N 1833 HQ616356 clade_60 N N 1839 HQ616373 clade_60 N N 1847 HQ616352 clade_60 N N 442 AAUZ01000009 clade_61 N OP 443 AAHI01000060 clade_61 N OP 444 NR_041719 clade_61 N OP 445 CP000547 clade_61 N Category-B 446 NC_010086 clade_61 N OP 447 DQ108388 clade_61 N OP 448 CP001408 clade_61 N Category-B 449 HQ005410 clade_61 N OP 450 CP000151 clade_61 N OP 451 U86373 clade_61 N OP 1488 ACRB01000001 clade_62 N N 1498 DQ003622 clade_62 N N clone MB3_P13 1536 AY349394 clade_62 N N 1486 ADFO01000096 clade_63 N N 1494 AEDO01000026 clade_64 N N 276 GQ496624 clade_65 N N 279 AP006841 clade_65 N N 285 NR_043017 clade_65 N N 292 EU136690 clade_65 N N 293 ACRP01000155 clade_65 N N 295 ACIC01000215 clade_65 N N 298 ACWI01000065 clade_65 N N 316 AF139525 clade_65 N N 317 EU722733 clade_65 N N 328 NR_074277 clade_65 N N 45 ACFT01000025 clade_69 N N 978 GU226366 clade_69 N N 1996 AAUR01000095 clade_71 N Category-B 1997 X76335 clade_71 N Category-B 1998 CP002377 clade_71 N Category-B 1999 ADAF01000001 clade_71 N Category-B 2000 AAWQ01000116 clade_71 N Category-B 2001 ACZT01000024 clade_71 N Category-B 2002 AE016796 clade_71 N Category-B 1067 CP000033 clade_72 N N 1069 ADNY01000006 clade_72 N N 1070 CP002338 clade_72 N N 1078 ACOG01000151 clade_72 N N 1080 CP002341 clade_72 N N 1088 ACLM01000202 clade_72 N N 1094 NR_029083 clade_72 N N 1095 NR_042440 clade_72 N N 1098 JX986966 clade_72 N N 1120 FR681900 clade_72 N N 1122 EU600905 clade_72 N N 1130 EU600916 clade_72 N N 1136 AY349383 clade_72 N N 1139 ACGU01000081 clade_72 N N 1502 AF414829 clade_81 N N 1511 AFPX01000069 clade_81 N N 1515 AFPY01000135 clade_81 N N 1551 GQ422737 clade_81 N N 1495 AY278624 clade_82 N N 1519 HQ610181 clade_82 N N 1552 ACQH01000158 clade_82 N N 1527 GU561343 clade_82 N N 1493 CP002589 clade_83 N N 1497 DQ003620 clade_83 N N clone MB2_P31 1501 JN867315 clade_83 N N 1508 AEWX01000054 clade_83 N N 1522 AB547699 clade_83 N N 1539 AY349397 clade_83 N N 1555 GQ422745 clade_83 N N 1559 GU432180 clade_83 N N 1524 JN867234 clade_83 N N 1565 ACVA01000027 clade_83 N N 266 NR_028607 clade_85 N N 269 ACCH01000108 clade_85 N N 270 AFBM01000011 clade_85 N N 275 ACWG01000065 clade_85 N N 286 AB547644 clade_85 N N 290 NR_041280 clade_85 N N 300 FJ848547 clade_85 N N 301 AJ583248 clade_85 N N 302 AJ583249 clade_85 N N 303 AJ583244 clade_85 N N 304 AJ583245 clade_85 N N 305 AJ583246 clade_85 N N 306 AJ583247 clade_85 N N 324 AY895180 clade_85 N N 325 AM230648 clade_85 N N 327 ABFZ02000022 clade_85 N N 46 NR_074857 clade_88 N N 48 AEVG01000167 clade_88 N N 969 AFBC01000053 clade_88 N N 970 AE017143 clade_88 N OP 973 JN175335 clade_88 N N 974 AADP01000001 clade_88 N OP 975 GU561425 clade_88 N N 976 AEWU01000024 clade_88 N N 977 M75076 clade_88 N N 979 NC_008309 clade_88 N N 980 HQ680854 clade_88 N N 981 FJ685624 clade_88 N N 982 AY923117 clade_88 N N ASCA07 983 AY923147 clade_88 N N ASCG06 984 AY005034 clade_88 N N 985 AY005033 clade_88 N N 987 AGRK01000004 clade_88 N N 988 AFNK01000005 clade_88 N N 1003 AF549387 clade_88 N N 1195 ACZX01000102 clade_88 N N 1433 L06088 clade_88 N N 1253 JN175344 clade_89 N N 1265 AJ301681 clade_89 N N 1266 AJ781005 clade_89 N N 1582 ACLE01000013 clade_89 N N 1583 ABVP01000020 clade_89 N N 1584 DQ512963 clade_89 N N 1585 AJ233425 clade_89 N N 1374 ACKX01000142 clade_90 N N 1375 HM120210 clade_90 N N 1376 HM120211 clade_90 N N 1377 HQ616374 clade_90 N N 1378 HQ616397 clade_90 N N 1379 HQ616355 clade_90 N N 1382 AFIH01000001 clade_90 N N 44 AY362885 clade_92 N N 47 CP000746 clade_92 N N 112 CP001733 clade_92 N N 113 CP001607 clade_92 N N 114 AEPS01000017 clade_92 N N 194 DQ481464 clade_92 N N 368 AY683487 clade_92 N N 369 AY683489 clade_92 N N 370 AY683491 clade_92 N N 371 AY683492 clade_92 N N 440 NR_074609 clade_92 N N 499 AF493976 clade_92 N N 517 FR870441 clade_92 N N 518 NR_028687 clade_92 N N 519 AF025371 clade_92 N N 520 NR_028894 clade_92 N N 521 AF025367 clade_92 N N 522 NC_009792 clade_92 N N 523 AF025369 clade_92 N N 524 NR_074903 clade_92 N N 525 AF025364 clade_92 N N 526 ACDJ01000053 clade_92 N N 527 GQ468398 clade_92 N N 528 AF025373 clade_92 N N 529 ABWL02000011 clade_92 N N 737 GU122174 clade_92 N N 738 NC_009778 clade_92 N N 739 FN543093 clade_92 N N 786 AJ251468 clade_92 N N 787 NR_024640 clade_92 N N 788 Z96078 clade_92 N N 789 FP929040 clade_92 N N 790 NR_025566 clade_92 N N 791 AFHR01000079 clade_92 N N 792 HQ122932 clade_92 N N 793 NR_074777 clade_92 N N 794 JN657217 clade_92 N N 795 HM007811 clade_92 N N 796 HM156134 clade_92 N N Enterobacteriaceae bacterium 797 ADCU01000033 clade_92 N N 9_2_54FAA Enterobacteriaceae bacterium 798 AJ489826 clade_92 N N CF01Ent_1 Enterobacteriaceae bacterium 799 AY538694 clade_92 N N Smarlab 3302238 824 ABKX01000012 clade_92 N N 825 NC_008563 clade_92 N Category-B 826 CU928158 clade_92 N N 827 HQ407266 clade_92 N N 828 ACID01000033 clade_92 N N 829 ACDM02000056 clade_92 N N 830 EU722735 clade_92 N N 831 NR_041927 clade_92 N N 877 JN175329 clade_92 N N 971 DQ003621 clade_92 N N clone MB3_C24 972 DQ003635 clade_92 N N clone MB3_C38 986 AY349380 clade_92 N N 989 DQ412565 clade_92 N N 1024 AY292871 clade_92 N OP 1025 CP000647 clade_92 N OP 1026 HQ616362 clade_92 N N 1027 DQ068764 clade_92 N N 1036 HM195210 clade_92 N N clone SRC_DSD25 1028 HQ616353 clade_92 N N 1029 FJ999767 clade_92 N N 1033 GU797254 clade_92 N N 1030 GU797263 clade_92 N N 1031 GU797264 clade_92 N N 1032 GU797267 clade_92 N N 1034 GU797253 clade_92 N N 1035 GU797258 clade_92 N N 1037 CP001891 clade_92 N N 1038 NR_028677 clade_92 N N 1039 NR_028803 clade_92 N N 1159 AJ233421 clade_92 N N 1160 HF558368 clade_92 N N 1409 AY335552 clade_92 N N 1410 CP001875 clade_92 N N 1411 EU216735 clade_92 N N 1412 EF688008 clade_92 N N 1413 EU216737 clade_92 N N 1414 EU216734 clade_92 N N 1434 ACZR01000003 clade_92 N N 1435 NC_002663 clade_92 N N 1469 X60418 clade_92 N N 1617 AB364958 clade_92 N N 1618 AF129443 clade_92 N N 1619 NR_037085 clade_92 N N 1683 NR_041699 clade_92 N Category-B 1672 NC_011149 clade_92 N Category-B 1673 NC_011205 clade_92 N Category-B 1674 DQ344532 clade_92 N Category-B 1675 ABEH02000004 clade_92 N Category-B 1676 ABAK02000001 clade_92 N Category-B 1677 NC_011080 clade_92 N Category-B 1678 EU118094 clade_92 N Category-B 1679 NC_011094 clade_92 N Category-B 1680 AE014613 clade_92 N Category-B 1682 ABFH02000001 clade_92 N Category-B 1684 ABEM01000001 clade_92 N Category-B 1685 ABAM02000001 clade_92 N Category-B 1681 DQ344533 clade_92 N Category-B 1686 AF170176 clade_92 N Category-B 1718 NR_025339 clade_92 N N 1719 NR_042062 clade_92 N N 1720 GU826157 clade_92 N N 1721 ADBY01000001 clade_92 N N 1722 AAUN01000015 clade_92 N N 1724 AAKA01000007 clade_92 N Category-B 1725 NC_007606 clade_92 N Category-B 1726 AE005674 clade_92 N Category-B 1727 NC_007384 clade_92 N Category-B 1916 NR_025342 clade_92 N N 1925 AY373830 clade_92 N N 2019 AJ871363 clade_92 N OP 2020 AJ627597 clade_92 N OP 2021 AF366377 clade_92 N OP 2022 FR729477 clade_92 N Category-B 2023 AF366379 clade_92 N OP 2024 AF366380 clade_92 N OP 2025 ACCA01000078 clade_92 N OP 2026 NR_027546 clade_92 N OP 2027 AE013632 clade_92 N Category-A 2028 NC_009708 clade_92 N OP 2029 ACCD01000071 clade_92 N OP 2030 AB273739 clade_92 N N 669 NR_041821 clade_94 N N 1267 JN175352 clade_94 N N 1328 AFAY01000058 clade_94 N N 1329 ACDY01000037 clade_94 N N 1331 ACQV01000025 clade_94 N N 1333 CP002440 clade_94 N OP 1334 ACEQ01000095 clade_94 N N 1335 AFQE01000146 clade_94 N N 1336 NC_003112 clade_94 N OP 1337 ACDX01000110 clade_94 N N 1338 AJ239281 clade_94 N N 1339 ADBE01000137 clade_94 N N 1340 ACKO02000016 clade_94 N N 1341 GQ203291 clade_94 N N 1344 AY005027 clade_94 N N 1346 AY005028 clade_94 N N 1347 ADEA01000039 clade_94 N N 1343 DQ279352 clade_94 N N 1348 ACEO01000067 clade_94 N N 1365 HQ699465 clade_98 N N 1785 AAJO01000130 clade_98 N N 1786 NR_041781 clade_98 N N 1788 AEQR01000024 clade_98 N N 1789 AEEL01000030 clade_98 N N 1790 AJ413203 clade_98 N N 1791 AY277942 clade_98 N N 1792 AEVC01000028 clade_98 N N 1794 AP010935 clade_98 N N 1795 CP001129 clade_98 N N 1796 AEVB01000043 clade_98 N N 1797 FR824043 clade_98 N N 1798 AY278629 clade_98 N N 1799 AY278630 clade_98 N N 1800 AY278631 clade_98 N N 1801 AY278632 clade_98 N N 1802 AY278633 clade_98 N N 1803 AY278634 clade_98 N N 1804 AY278635 clade_98 N N 1805 AY278609 clade_98 N N 1806 NC_009785 clade_98 N N 1807 ABJK02000017 clade_98 N N 1808 AFNN01000024 clade_98 N N 1809 NR_028736 clade_98 N N 1810 NR_037096 clade_98 N N 1811 AY769997 clade_98 N N 1813 AM157420 clade_98 N N 1815 AY099095 clade_98 N N 1816 ADMV01000001 clade_98 N N 1817 AEKM01000012 clade_98 N N 1818 AP012054 clade_98 N N 1819 AEVF01000016 clade_98 N N 1820 AE008537 clade_98 N N 1821 EF121439 clade_98 N N 1822 FJ827123 clade_98 N N 1823 AENS01000003 clade_98 N N 1824 AE006496 clade_98 N OP 1825 X58304 clade_98 N N 1827 NR_074974 clade_98 N N 1828 AF432857 clade_98 N N 1831 ACOI01000028 clade_98 N N 1830 AJ131965 clade_98 N N 1834 HQ616360 clade_98 N N 1835 HQ616366 clade_98 N N 1836 HQ616369 clade_98 N N 1837 ACRI01000045 clade_98 N N 1838 HQ616372 clade_98 N N 1840 HQ616389 clade_98 N N 1841 HQ616390 clade_98 N N 1842 HQ616386 clade_98 N N 1844 HQ616387 clade_98 N N 1843 HQ616394 clade_98 N N 1845 ACRK01000025 clade_98 N N 1846 ACRL01000052 clade_98 N N 1849 AY923121 clade_98 N N ASB02 1850 DQ272504 clade_98 N N ASCA03 1851 AY923116 clade_98 N N ASCA04 1852 AY923119 clade_98 N N ASCA09 1853 AY923123 clade_98 N N ASCB04 1854 AY923124 clade_98 N N ASCB06 1855 AY923127 clade_98 N N ASCC04 1856 AY923128 clade_98 N N ASCC05 1857 DQ272507 clade_98 N N ASCC12 1858 AY923129 clade_98 N N ASCD01 1859 AY923130 clade_98 N N ASCD09 1860 DQ272509 clade_98 N N ASCD10 1861 AY923134 clade_98 N N ASCE03 1862 AY953253 clade_98 N N ASCE04 1863 DQ272510 clade_98 N N ASCE05 1864 AY923135 clade_98 N N ASCE06 1865 AY923136 clade_98 N N ASCE09 1866 AY923137 clade_98 N N ASCE10 1867 AY923138 clade_98 N N ASCE12 1868 AY923140 clade_98 N N ASCF05 1869 AY953255 clade_98 N N ASCF07 1870 AY923142 clade_98 N N ASCF09 1871 AY923145 clade_98 N N ASCG04 1872 AY005042 clade_98 N N BW009 1873 AY005044 clade_98 N N CH016 1874 AY349413 clade_98 N N GK051 1875 AY349414 clade_98 N N GM006 1876 AY207051 clade_98 N N P2PA_41 P2 1877 AY207064 clade_98 N N P4PA_30 P4 1878 AEEP01000019 clade_98 N N 1879 GU432132 clade_98 N N 1880 GU432146 clade_98 N N 1881 GU432150 clade_98 N N 1882 FM252032 clade_98 N N 1883 CP000419 clade_98 N N 1826 AGBV01000001 clade_98 N N 1884 HQ391900 clade_98 N N 1885 DQ303194 clade_98 N N 1886 AEKO01000008 clade_98 N N 1887 AF076036 clade_98 N N Synergistetes bacterium oral clone 1908 GU227192 clade_98 N N 03 5 D05 Clade membership of bacterial OTUs is based on 16S sequence data. Clades are defined based on the topology of a phylogenetic tree that is constructed from full-length 16S sequences using maximum likelihood methods familiar to individuals with ordinary skill in the art of phylogenetics. Clades are constructed to ensure that all OTUs in a given clade are: (i) within a specified number of bootstrap supported nodes from one another, and (ii) within 5% genetic similarity. OTUs that are within the same clade can be distinguished as genetically and phylogenetically distinct from OTUs in a different clade based on 16S-V4 sequence data, while OTUs falling within the same clade are closely related. OTUs falling within the same clade are evolutionarily closely related and may or may not be distinguishable from one another using 16S-V4 sequence data. Members of the same clade, due to their evolutionary relatedness, play similar functional roles in a microbial ecology such as that found in the human gut. Compositions substituting one species with another from the same clade are likely to have conserved ecological function and therefore are useful in the present invention. All OTUs are denoted as to their putative capacity to form spores and whether they are a Pathogen or Pathobiont (see Definitions for description of “Pathobiont”). NIAID Priority Pathogens are denoted as ‘Category-A’, ‘Category-B’, or ‘Category-C’, and Opportunistic Pathogens are denoted as ‘OP’. OTUs that are not pathogenic or for which their ability to exist as a pathogen is unknown are denoted as ‘N’. The ‘SEQ ID Number’ denotes the identifier of the OTU in the Sequence Listing File and ‘Public DB Accession’ denotes the identifier of the OTU in a public sequence repository. Mouse studies with bacterial compositions Mortality Morbidity Summary Score D3 Weight Score >3 Score Score Treatment 1 3 3.0 3.0 9 Treatment 2 0 0.6 0.0 1 Treatment 3 0 −0.5 0.0 −1 Treatment 4 0.5 2.4 0.6 3 Treatment 5 0 0.5 0.0 0 Treatment 6 1 2.0 0.6 4 Treatment 7 0.5 0.7 0.4 2 Treatment 8 0 0.6 0.0 1 Treatment 9 0.5 1.3 0.6 2 Treatment 10 0.5 1.5 0.6 3 Treatment 11 0.5 1.0 0.6 2 Treatment 12 0 1.3 0.0 1 Treatment 13 0.5 1.3 0.4 2 Treatment 14 0.5 1.2 0.6 2 Table 3A. Mouse studies with bacterial compositions Mortality Morbidity Summary Score D3 Weight Score >3 Score Score Treatment 1 3 3.0 3.0 9 Treatment 2 0 0.0 0.0 0 Treatment 3 3 2.1 2.7 8 Treatment 4 1.5 1.1 1.1 4 Treatment 5 0 0.7 0.2 1 Treatment 6 0 1.2 0.0 1 Treatment 7 3 2.4 2.1 8 Treatment 8 0 0.8 0.6 1 Treatment 9 0 0.9 0.3 1 Treatment 10 1.5 2.5 2.7 7 Treatment 11 0 1.3 0.8 2 Treatment 12 0 0.1 0.0 0 Treatment 13 3 1.6 0.3 5 Treatment 14 0 0.4 2.3 3 Treatment 15 1.5 3.4 2.6 7 Table 3B. Mouse studies with bacterial compositions Mortality Morbidity Summary Score D3 Weight Score >3 Score Score Treatment 1 3 3.0 3.0 9 Treatment 2 1.8 0.7 2.1 5 Treatment 3 0 0.0 0.0 0 Treatment 4 0 0.5 0.0 0 Treatment 5 0 0.7 0.0 1 Treatment 6 0.6 2.3 0.7 4 Treatment 7 0.6 1.7 0.6 3 Treatment 8 2.4 3.0 2.0 7 Treatment 9 0.6 1.4 0.6 3 Treatment 10 0 1.1 0.0 1 Treatment 11 0 1.7 0.6 2 Treatment 12 3 3.1 3.2 9 Table 4: Species isolated from ethanol treated spore preparation preparation before (left) and after (right) CsCl gradient step ethanol treated, ethanol treated gradient purified Isolates spore preparation spore preparation 7 2 1 1 14 13 3 1 4 2 1 2 1 2 0 1 1 1 0 1 8 6 1 0 2 2 0 1 0 1 3 6 9 7 5 2 1 1 3 4 7 9 8 11 0 1 4 6 1 0 Mortality and weight change in mice challenged with with or without ethanol treated, spore preparation treatment. % weight mortality change on Test article (n = 10) Day 3 vehicle 20% −10.5% (negative control) Donor feces 0 −0.1% (positive control) EtOH-treated 0 2.3% spore preparation 1x EtOH-treated 0 2.4% spore preparation 0.1x EtOH-treated 0 −3% spore preparation 0.01x heat-treated 0 0.1% spore preparation Preparation 1 4.0 × 105 6.8 × 107 5.9 × 10−3 Preparation 2 2.1 × 107 9.2 × 108 0.023 Preparation 3 6.9 × 109 9.6 × 109 0.72 DPA doses in Table 7 when normalized to 4 × 105SCFU per dose Fraction of SCFU/30 DPA SEq/30 Preparation 1 Preparation capsules capsules Dose Preparation 1 4.0 × 105 6.8 × 107 1.0 Preparation 2 4.0 × 105 1.8 × 107 0.26 Preparation 3 4.0 × 105 5.6 × 105 0.0082 SPC10325 SPC10415 SPC10567 Clostridium_bolteae Eubacterium_rectale ++++ SPC10325 SPC10355 SPC10415 Clostridium_bolteae Clostridium_symbiosum ++++ SPC10325 SPC10355 SPC10567 Clostridium_bolteae Clostridium_symbiosum Eubacterium_rectale − SPC10325 SPC10355 SPC10386 Clostridium_bolteae Clostridium_symbiosum Faecalibacterium_prausnitzii − SPC10325 SPC10355 SPC10390 Clostridium_bolteae Clostridium_symbiosum Lachnospiraceae_bacterium— 5_1_57FAA SPC10325 SPC10386 SPC10415 Clostridium_bolteae Faecalibacterium_prausnitzii ++++ SPC10325 SPC10386 SPC10567 Clostridium_bolteae Faecalibacterium_prausnitzii Eubacterium_rectale SPC10325 SPC10386 SPC10390 Clostridium_bolteae Faecalibacterium_prausnitzii Lachnospiraceae_bacterium— ++++ 5_1_57FAA SPC10325 SPC10390 SPC10415 Clostridium_bolteae Lachnospiraceae_bacterium— ++++ 5_1_57FAA SPC10325 SPC10390 SPC10567 Clostridium_bolteae Lachnospiraceae_bacterium— Eubacterium_rectale + 5_1_57FAA SPC10355 SPC10415 SPC10567 Clostridium_symbiosum Eubacterium_rectale ++++ SPC10355 SPC10386 SPC10415 Clostridium_symbiosum Faecalibacterium_prausnitzii ++++ SPC10355 SPC10386 SPC10567 Clostridium_symbiosum Faecalibacterium_prausnitzii Eubacterium_rectale SPC10355 SPC10386 SPC10390 Clostridium_symbiosum Faecalibacterium_prausnitzii Lachnospiraceae_bacterium— + 5_1_57FAA SPC10355 SPC10390 SPC10415 Clostridium_symbiosum Lachnospiraceae_bacterium— ++++ 5_1_57FAA SPC10355 SPC10390 SPC10567 Clostridium_symbiosum Lachnospiraceae_bacterium— Eubacterium_rectale 5_1_57FAA SPC10097 SPC10415 SPC10567 Collinsella_aerofaciens Eubacterium_rectale ++++ SPC10097 SPC10325 SPC10415 Collinsella_aerofaciens Clostridium_bolteae ++++ SPC10097 SPC10325 SPC10355 Collinsella_aerofaciens Clostridium_bolteae Clostridium_symbiosum ++++ SPC10097 SPC10325 SPC10567 Collinsella_aerofaciens Clostridium_bolteae Eubacterium_rectale ++++ SPC10097 SPC10325 SPC10386 Collinsella_aerofaciens Clostridium_bolteae Faecalibacterium_prausnitzii ++++ SPC10097 SPC10325 SPC10390 Collinsella_aerofaciens Clostridium_bolteae Lachnospiraceae_bacterium— ++++ 5_1_57FAA SPC10097 SPC10355 SPC10415 Collinsella_aerofaciens Clostridium_symbiosum ++++ SPC10097 SPC10355 SPC10567 Collinsella_aerofaciens Clostridium_symbiosum Eubacterium_rectale SPC10097 SPC10355 SPC10386 Collinsella_aerofaciens Clostridium_symbiosum Faecalibacterium_prausnitzii SPC10097 SPC10355 SPC10390 Collinsella_aerofaciens Clostridium_symbiosum Lachnospiraceae_bacterium— + 5_1_57FAA SPC10097 SPC10304 SPC10415 Collinsella_aerofaciens Coprococcus_comes ++++ SPC10097 SPC10304 SPC10325 Collinsella_aerofaciens Coprococcus_comes Clostridium_bolteae ++++ SPC10097 SPC10304 SPC10355 Collinsella_aerofaciens Coprococcus_comes Clostridium_symbiosum +++ SPC10097 SPC10304 SPC10567 Collinsella_aerofaciens Coprococcus_comes Eubacterium_rectale +++ SPC10097 SPC10304 SPC10386 Collinsella_aerofaciens Coprococcus_comes Faecalibacterium_prausnitzii ++++ SPC10097 SPC10304 SPC10390 Collinsella_aerofaciens Coprococcus_comes Lachnospiraceae_bacterium— +++ 5_1_57FAA SPC10097 SPC10386 SPC10415 Collinsella_aerofaciens Faecalibacterium_prausnitzii ++++ SPC10097 SPC10386 SPC10567 Collinsella_aerofaciens Faecalibacterium_prausnitzii Eubacterium_rectale +++ SPC10097 SPC10386 SPC10390 Collinsella_aerofaciens Faecalibacterium_prausnitzii Lachnospiraceae_bacterium— +++ 5_1_57FAA SPC10097 SPC10390 SPC10415 Collinsella_aerofaciens Lachnospiraceae_bacterium— ++++ 5_1_57FAA SPC10097 SPC10390 SPC10567 Collinsella_aerofaciens Lachnospiraceae_bacterium— Eubacterium_rectale ++++ 5_1_57FAA SPC10304 SPC10415 SPC10567 Coprococcus_comes Eubacterium_rectale ++++ SPC10304 SPC10325 SPC10415 Coprococcus_comes Clostridium_bolteae ++++ SPC10304 SPC10325 SPC10355 Coprococcus_comes Clostridium_bolteae Clostridium_symbiosum SPC10304 SPC10325 SPC10567 Coprococcus_comes Clostridium_bolteae Eubacterium_rectale −− SPC10304 SPC10325 SPC10386 Coprococcus_comes Clostridium_bolteae Faecalibacterium_prausnitzii +++ SPC10304 SPC10325 SPC10390 Coprococcus_comes Clostridium_bolteae Lachnospiraceae_bacterium— +++ 5_1_57FAA SPC10304 SPC10355 SPC10415 Coprococcus_comes Clostridium_symbiosum ++++ SPC10304 SPC10355 SPC10567 Coprococcus_comes Clostridium_symbiosum Eubacterium_rectale −−− SPC10304 SPC10355 SPC10386 Coprococcus_comes Clostridium_symbiosum Faecalibacterium_prausnitzii SPC10304 SPC10355 SPC10390 Coprococcus_comes Clostridium_symbiosum Lachnospiraceae_bacterium— 5_1_57FAA SPC10304 SPC10386 SPC10415 Coprococcus_comes Faecalibacterium_prausnitzii ++++ SPC10304 SPC10386 SPC10567 Coprococcus_comes Faecalibacterium_prausnitzii Eubacterium_rectale − SPC10304 SPC10386 SPC10390 Coprococcus_comes Faecalibacterium_prausnitzii Lachnospiraceae_bacterium— 5_1_57FAA SPC10304 SPC10390 SPC10415 Coprococcus_comes Lachnospiraceae_bacterium— ++++ 5_1_57FAA SPC10304 SPC10390 SPC10567 Coprococcus_comes Lachnospiraceae_bacterium— Eubacterium_rectale 5_1_57FAA SPC10386 SPC10415 SPC10567 Faecalibacterium_prausnitzii Eubacterium_rectale ++++ SPC10386 SPC10390 SPC10415 Faecalibacterium_prausnitzii Lachnospiraceae_bacterium— ++++ 5_1_57FAA SPC10386 SPC10390 SPC10567 Faecalibacterium_prausnitzii Lachnospiraceae_bacterium— Eubacterium_rectale 5_1_57FAA SPC10390 SPC10415 SPC10567 Lachnospiraceae_bacterium— Eubacterium_rectale ++++ 5_1_57FAA SPC10414 SPC10414 Alistipes_shahii Alistipes_shahii SPC10211 SPC10414 Bacteroides_caccae Alistipes_shahii SPC10213 SPC10414 Bacteroides_eggerthii Alistipes_shahii −− SPC10030 SPC10414 Bacteroides_ovatus Alistipes_shahii SPC00006 SPC10414 Bacteroides_sp_1_1_6 Alistipes_shahii ++++ SPC00007 SPC10414 Bacteroides_sp_3_1_23 Alistipes_shahii + SPC10019 SPC10414 Bacteroides_sp_D20 Alistipes_shahii − SPC00005 SPC10414 Bacteroides_vulgatus Alistipes_shahii +++ SPC10081 SPC10414 Bacteroides_vulgatus Alistipes_shahii + SPC10301 SPC10414 Bifidobacterium_adolescentis Alistipes_shahii ++++ SPC10298 SPC10414 Bifidobacterium_pseudocatenulatum Alistipes_shahii SPC00021 SPC10414 Blautia_producta Alistipes_shahii ++++ SPC10403 SPC10414 Blautia_schinkii Alistipes_shahii SPC10243 SPC10414 Clostridium_hathewayi Alistipes_shahii ++++ SPC00026 SPC10414 Clostridium_nexile Alistipes_shahii SPC00027 SPC10414 Clostridium_sp_HGF2 Alistipes_shahii SPC10355 SPC10414 Clostridium_symbiosum Alistipes_shahii SPC10097 SPC10414 Collinsella_aerofaciens Alistipes_shahii ++++ SPC00009 SPC10414 Coprobacillus_sp_D7 Alistipes_shahii ++++ SPC00080 SPC10414 Coprococcus_catus Alistipes_shahii − SPC10304 SPC10414 Coprococcus_comes Alistipes_shahii SPC00018 SPC10414 Dorea_formicigenerans Alistipes_shahii −−−− SPC00057 SPC10414 Dorea_longicatena Alistipes_shahii ++++ SPC00008 SPC10414 Enterococcus_faecalis Alistipes_shahii ++++ SPC10001 SPC10414 Erysipelotrichaceae_bacterium Alistipes_shahii −−− SPC00001 SPC10414 Escherichia_coli Alistipes_shahii ++++ SPC10110 SPC10414 Escherichia_coli Alistipes_shahii ++++ SPC00022 SPC10414 Eubacterium_eligens Alistipes_shahii −− SPC10363 SPC10414 Eubacterium_rectale Alistipes_shahii SPC00054 SPC10414 Faecalibacterium_prausnitzii Alistipes_shahii SPC10386 SPC10414 Faecalibacterium_prausnitzii Alistipes_shahii + SPC10390 SPC10414 Lachnospiraceae_bacterium_5_1_57FAA Alistipes_shahii SPC00056 SPC10414 Odoribacter_splanchnicus Alistipes_shahii SPC10388 SPC10414 Odoribacter_splanchnicus Alistipes_shahii SPC10048 SPC10414 Parabacteroides_merdae Alistipes_shahii SPC00061 SPC10414 Roseburia_intestinalis Alistipes_shahii − SPC10197 SPC10414 Ruminococcus_obeum Alistipes_shahii SPC10233 SPC10414 Ruminococcus_torques Alistipes_shahii SPC00015 SPC10414 Streptococcus_thermophilus Alistipes_shahii SPC10211 SPC10211 Bacteroides_caccae Bacteroides_caccae ++++ SPC10030 SPC10211 Bacteroides_ovatus Bacteroides_caccae SPC00006 SPC10211 Bacteroides_sp_1_1_6 Bacteroides_caccae ++++ SPC00007 SPC10211 Bacteroides_sp_3_1_23 Bacteroides_caccae +++ SPC10019 SPC10211 Bacteroides_sp_D20 Bacteroides_caccae +++ SPC00005 SPC10211 Bacteroides_vulgatus Bacteroides_caccae ++++ SPC10081 SPC10211 Bacteroides_vulgatus Bacteroides_caccae + SPC00021 SPC10211 Blautia_producta Bacteroides_caccae ++++ SPC00026 SPC10211 Clostridium_nexile Bacteroides_caccae SPC00027 SPC10211 Clostridium_sp_HGF2 Bacteroides_caccae SPC10097 SPC10211 Collinsella_aerofaciens Bacteroides_caccae ++++ SPC00009 SPC10211 Coprobacillus_sp_D7 Bacteroides_caccae +++ SPC00080 SPC10211 Coprococcus_catus Bacteroides_caccae ++++ SPC00018 SPC10211 Dorea_formicigenerans Bacteroides_caccae +++ SPC00057 SPC10211 Dorea_longicatena Bacteroides_caccae SPC00008 SPC10211 Enterococcus_faecalis Bacteroides_caccae ++++ SPC10001 SPC10211 Erysipelotrichaceae_bacterium Bacteroides_caccae ++ SPC00001 SPC10211 Escherichia_coli Bacteroides_caccae ++++ SPC10110 SPC10211 Escherichia_coli Bacteroides_caccae ++++ SPC00022 SPC10211 Eubacterium_eligens Bacteroides_caccae ++ SPC00054 SPC10211 Faecalibacterium_prausnitzii Bacteroides_caccae − SPC00056 SPC10211 Odoribacter_splanchnicus Bacteroides_caccae SPC10048 SPC10211 Parabacteroides_merdae Bacteroides_caccae + SPC00061 SPC10211 Roseburia_intestinalis Bacteroides_caccae + SPC10197 SPC10211 Ruminococcus_obeum Bacteroides_caccae ++++ SPC00015 SPC10211 Streptococcus_thermophilus Bacteroides_caccae ++ SPC10211 SPC10213 Bacteroides_caccae Bacteroides_eggerthii ++++ SPC10213 SPC10213 Bacteroides_eggerthii Bacteroides_eggerthii ++++ SPC10030 SPC10213 Bacteroides_ovatus Bacteroides_eggerthii SPC00006 SPC10213 Bacteroides_sp_1_1_6 Bacteroides_eggerthii +++ SPC00007 SPC10213 Bacteroides_sp_3_1_23 Bacteroides_eggerthii ++ SPC10019 SPC10213 Bacteroides_sp_D20 Bacteroides_eggerthii SPC00005 SPC10213 Bacteroides_vulgatus Bacteroides_eggerthii ++++ SPC10081 SPC10213 Bacteroides_vulgatus Bacteroides_eggerthii + SPC00021 SPC10213 Blautia_producta Bacteroides_eggerthii ++++ SPC00026 SPC10213 Clostridium_nexile Bacteroides_eggerthii SPC00027 SPC10213 Clostridium_sp_HGF2 Bacteroides_eggerthii − SPC10097 SPC10213 Collinsella_aerofaciens Bacteroides_eggerthii ++++ SPC00009 SPC10213 Coprobacillus_sp_D7 Bacteroides_eggerthii SPC00080 SPC10213 Coprococcus_catus Bacteroides_eggerthii + SPC00018 SPC10213 Dorea_formicigenerans Bacteroides_eggerthii SPC00057 SPC10213 Dorea_longicatena Bacteroides_eggerthii − SPC00008 SPC10213 Enterococcus_faecalis Bacteroides_eggerthii ++++ SPC10001 SPC10213 Erysipelotrichaceae_bacterium Bacteroides_eggerthii SPC00001 SPC10213 Escherichia_coli Bacteroides_eggerthii ++++ SPC10110 SPC10213 Escherichia_coli Bacteroides_eggerthii ++++ SPC00022 SPC10213 Eubacterium_eligens Bacteroides_eggerthii SPC00054 SPC10213 Faecalibacterium_prausnitzii Bacteroides_eggerthii SPC00056 SPC10213 Odoribacter_splanchnicus Bacteroides_eggerthii SPC10048 SPC10213 Parabacteroides_merdae Bacteroides_eggerthii SPC00061 SPC10213 Roseburia_intestinalis Bacteroides_eggerthii SPC10197 SPC10213 Ruminococcus_obeum Bacteroides_eggerthii ++++ SPC00015 SPC10213 Streptococcus_thermophilus Bacteroides_eggerthii SPC10030 SPC10030 Bacteroides_ovatus Bacteroides_ovatus +++ SPC00006 SPC10030 Bacteroides_sp_1_1_6 Bacteroides_ovatus ++++ SPC00007 SPC10030 Bacteroides_sp_3_1_23 Bacteroides_ovatus SPC10019 SPC10030 Bacteroides_sp_D20 Bacteroides_ovatus − SPC00005 SPC10030 Bacteroides_vulgatus Bacteroides_ovatus + SPC00021 SPC10030 Blautia_producta Bacteroides_ovatus ++++ SPC00026 SPC10030 Clostridium_nexile Bacteroides_ovatus SPC00027 SPC10030 Clostridium_sp_HGF2 Bacteroides_ovatus SPC00009 SPC10030 Coprobacillus_sp_D7 Bacteroides_ovatus SPC00080 SPC10030 Coprococcus_catus Bacteroides_ovatus SPC00018 SPC10030 Dorea_formicigenerans Bacteroides_ovatus SPC00057 SPC10030 Dorea_longicatena Bacteroides_ovatus − SPC00008 SPC10030 Enterococcus_faecalis Bacteroides_ovatus ++++ SPC10001 SPC10030 Erysipelotrichaceae_bacterium Bacteroides_ovatus SPC00001 SPC10030 Escherichia_coli Bacteroides_ovatus ++++ SPC00022 SPC10030 Eubacterium_eligens Bacteroides_ovatus − SPC00054 SPC10030 Faecalibacterium_prausnitzii Bacteroides_ovatus SPC00056 SPC10030 Odoribacter_splanchnicus Bacteroides_ovatus SPC00061 SPC10030 Roseburia_intestinalis Bacteroides_ovatus SPC00015 SPC10030 Streptococcus_thermophilus Bacteroides_ovatus ++ SPC00006 SPC00006 Bacteroides_sp_1_1_6 Bacteroides_sp_1_1_6 ++++ SPC00005 SPC00006 Bacteroides_vulgatus Bacteroides_sp_1_1_6 ++++ SPC00001 SPC00006 Escherichia_coli Bacteroides_sp_1_1_6 ++++ SPC00006 SPC00007 Bacteroides_sp_1_1_6 Bacteroides_sp_3_1_23 ++++ SPC00007 SPC00007 Bacteroides_sp_3_1_23 Bacteroides_sp_3_1_23 SPC00005 SPC00007 Bacteroides_vulgatus Bacteroides_sp_3_1_23 +++ SPC00001 SPC00007 Escherichia_coli Bacteroides_sp_3_1_23 ++++ SPC00006 SPC10019 Bacteroides_sp_1_1_6 Bacteroides_sp_D20 ++++ SPC00007 SPC10019 Bacteroides_sp_3_1_23 Bacteroides_sp_D20 ++++ SPC10019 SPC10019 Bacteroides_sp_D20 Bacteroides_sp_D20 SPC00005 SPC10019 Bacteroides_vulgatus Bacteroides_sp_D20 + SPC00021 SPC10019 Blautia_producta Bacteroides_sp_D20 ++++ SPC00026 SPC10019 Clostridium_nexile Bacteroides_sp_D20 − SPC00027 SPC10019 Clostridium_sp_HGF2 Bacteroides_sp_D20 SPC00009 SPC10019 Coprobacillus_sp_D7 Bacteroides_sp_D20 SPC00080 SPC10019 Coprococcus_catus Bacteroides_sp_D20 SPC00018 SPC10019 Dorea_formicigenerans Bacteroides_sp_D20 − SPC00057 SPC10019 Dorea_longicatena Bacteroides_sp_D20 SPC00008 SPC10019 Enterococcus_faecalis Bacteroides_sp_D20 ++++ SPC10001 SPC10019 Erysipelotrichaceae_bacterium Bacteroides_sp_D20 SPC00001 SPC10019 Escherichia_coli Bacteroides_sp_D20 ++++ SPC00022 SPC10019 Eubacterium_eligens Bacteroides_sp_D20 − SPC00054 SPC10019 Faecalibacterium_prausnitzii Bacteroides_sp_D20 SPC00056 SPC10019 Odoribacter_splanchnicus Bacteroides_sp_D20 SPC00061 SPC10019 Roseburia_intestinalis Bacteroides_sp_D20 − SPC00015 SPC10019 Streptococcus_thermophilus Bacteroides_sp_D20 + SPC10030 SPC10081 Bacteroides_ovatus Bacteroides_vulgatus SPC00006 SPC10081 Bacteroides_sp_1_1_6 Bacteroides_vulgatus SPC00007 SPC10081 Bacteroides_sp_3_1_23 Bacteroides_vulgatus − SPC10019 SPC10081 Bacteroides_sp_D20 Bacteroides_vulgatus SPC00005 SPC00005 Bacteroides_vulgatus Bacteroides_vulgatus + SPC00005 SPC10081 Bacteroides_vulgatus Bacteroides_vulgatus ++ SPC10081 SPC10081 Bacteroides_vulgatus Bacteroides_vulgatus SPC00021 SPC10081 Blautia_producta Bacteroides_vulgatus ++++ SPC00026 SPC10081 Clostridium_nexile Bacteroides_vulgatus SPC00027 SPC10081 Clostridium_sp_HGF2 Bacteroides_vulgatus +++ SPC00009 SPC10081 Coprobacillus_sp_D7 Bacteroides_vulgatus − SPC00080 SPC10081 Coprococcus_catus Bacteroides_vulgatus ++ SPC00018 SPC10081 Dorea_formicigenerans Bacteroides_vulgatus SPC00057 SPC10081 Dorea_longicatena Bacteroides_vulgatus SPC00008 SPC10081 Enterococcus_faecalis Bacteroides_vulgatus ++++ SPC10001 SPC10081 Erysipelotrichaceae_bacterium Bacteroides_vulgatus SPC00001 SPC00005 Escherichia_coli Bacteroides_vulgatus ++++ SPC00001 SPC10081 Escherichia_coli Bacteroides_vulgatus ++++ SPC00022 SPC10081 Eubacterium_eligens Bacteroides_vulgatus SPC00054 SPC10081 Faecalibacterium_prausnitzii Bacteroides_vulgatus SPC00056 SPC10081 Odoribacter_splanchnicus Bacteroides_vulgatus SPC10048 SPC10081 Parabacteroides_merdae Bacteroides_vulgatus + SPC00061 SPC10081 Roseburia_intestinalis Bacteroides_vulgatus SPC00015 SPC10081 Streptococcus_thermophilus Bacteroides_vulgatus −− SPC10211 SPC10301 Bacteroides_caccae Bifidobacterium_adolescentis ++++ SPC10213 SPC10301 Bacteroides_eggerthii Bifidobacterium_adolescentis ++++ SPC10030 SPC10301 Bacteroides_ovatus Bifidobacterium_adolescentis ++++ SPC00006 SPC10301 Bacteroides_sp_1_1_6 Bifidobacterium_adolescentis ++++ SPC00007 SPC10301 Bacteroides_sp_3_1_23 Bifidobacterium_adolescentis ++++ SPC10019 SPC10301 Bacteroides_sp_D20 Bifidobacterium_adolescentis ++++ SPC00005 SPC10301 Bacteroides_vulgatus Bifidobacterium_adolescentis ++++ SPC10081 SPC10301 Bacteroides_vulgatus Bifidobacterium_adolescentis ++++ SPC10301 SPC10301 Bifidobacterium_adolescentis Bifidobacterium_adolescentis ++++ SPC10298 SPC10301 Bifidobacterium_pseudocatenulatum Bifidobacterium_adolescentis ++++ SPC00021 SPC10301 Blautia_producta Bifidobacterium_adolescentis ++++ SPC10243 SPC10301 Clostridium_hathewayi Bifidobacterium_adolescentis ++++ SPC00026 SPC10301 Clostridium_nexile Bifidobacterium_adolescentis ++++ SPC00027 SPC10301 Clostridium_sp_HGF2 Bifidobacterium_adolescentis ++++ SPC10097 SPC10301 Collinsella_aerofaciens Bifidobacterium_adolescentis ++++ SPC00009 SPC10301 Coprobacillus_sp_D7 Bifidobacterium_adolescentis ++++ SPC00080 SPC10301 Coprococcus_catus Bifidobacterium_adolescentis SPC00018 SPC10301 Dorea_formicigenerans Bifidobacterium_adolescentis ++++ SPC00057 SPC10301 Dorea_longicatena Bifidobacterium_adolescentis ++++ SPC00008 SPC10301 Enterococcus_faecalis Bifidobacterium_adolescentis ++++ SPC10001 SPC10301 Erysipelotrichaceae_bacterium Bifidobacterium_adolescentis ++++ SPC00001 SPC10301 Escherichia_coli Bifidobacterium_adolescentis ++++ SPC10110 SPC10301 Escherichia_coli Bifidobacterium_adolescentis ++++ SPC00022 SPC10301 Eubacterium_eligens Bifidobacterium_adolescentis ++++ SPC00054 SPC10301 Faecalibacterium_prausnitzii Bifidobacterium_adolescentis + SPC00056 SPC10301 Odoribacter_splanchnicus Bifidobacterium_adolescentis +++ SPC10048 SPC10301 Parabacteroides_merdae Bifidobacterium_adolescentis ++++ SPC00061 SPC10301 Roseburia_intestinalis Bifidobacterium_adolescentis +++ SPC10197 SPC10301 Ruminococcus_obeum Bifidobacterium_adolescentis ++++ SPC10233 SPC10301 Ruminococcus_torques Bifidobacterium_adolescentis ++++ SPC00015 SPC10301 Streptococcus_thermophilus Bifidobacterium_adolescentis ++++ SPC10211 SPC10298 Bacteroides_caccae Bifidobacterium_pseudocatenulatum ++++ SPC10213 SPC10298 Bacteroides_eggerthii Bifidobacterium_pseudocatenulatum ++++ SPC10030 SPC10298 Bacteroides_ovatus Bifidobacterium_pseudocatenulatum ++++ SPC00006 SPC10298 Bacteroides_sp_1_1_6 Bifidobacterium_pseudocatenulatum ++++ SPC00007 SPC10298 Bacteroides_sp_3_1_23 Bifidobacterium_pseudocatenulatum ++++ SPC10019 SPC10298 Bacteroides_sp_D20 Bifidobacterium_pseudocatenulatum −− SPC00005 SPC10298 Bacteroides_vulgatus Bifidobacterium_pseudocatenulatum ++++ SPC10081 SPC10298 Bacteroides_vulgatus Bifidobacterium_pseudocatenulatum ++++ SPC10298 SPC10298 Bifidobacterium_pseudocatenulatum Bifidobacterium_pseudocatenulatum ++++ SPC00021 SPC10298 Blautia_producta Bifidobacterium_pseudocatenulatum + SPC10243 SPC10298 Clostridium_hathewayi Bifidobacterium_pseudocatenulatum ++++ SPC00026 SPC10298 Clostridium_nexile Bifidobacterium_pseudocatenulatum ++++ SPC00027 SPC10298 Clostridium_sp_HGF2 Bifidobacterium_pseudocatenulatum +++ SPC10097 SPC10298 Collinsella_aerofaciens Bifidobacterium_pseudocatenulatum ++++ SPC00009 SPC10298 Coprobacillus_sp_D7 Bifidobacterium_pseudocatenulatum +++ SPC00080 SPC10298 Coprococcus_catus Bifidobacterium_pseudocatenulatum SPC00018 SPC10298 Dorea_formicigenerans Bifidobacterium_pseudocatenulatum +++ SPC00057 SPC10298 Dorea_longicatena Bifidobacterium_pseudocatenulatum ++++ SPC00008 SPC10298 Enterococcus_faecalis Bifidobacterium_pseudocatenulatum ++++ SPC10001 SPC10298 Erysipelotrichaceae_bacterium Bifidobacterium_pseudocatenulatum SPC00001 SPC10298 Escherichia_coli Bifidobacterium_pseudocatenulatum ++++ SPC10110 SPC10298 Escherichia_coli Bifidobacterium_pseudocatenulatum ++++ SPC00022 SPC10298 Eubacterium_eligens Bifidobacterium_pseudocatenulatum ++++ SPC00054 SPC10298 Faecalibacterium_prausnitzii Bifidobacterium_pseudocatenulatum ++ SPC00056 SPC10298 Odoribacter_splanchnicus Bifidobacterium_pseudocatenulatum + SPC10048 SPC10298 Parabacteroides_merdae Bifidobacterium_pseudocatenulatum ++++ SPC00061 SPC10298 Roseburia_intestinalis Bifidobacterium_pseudocatenulatum +++ SPC10197 SPC10298 Ruminococcus_obeum Bifidobacterium_pseudocatenulatum ++++ SPC10233 SPC10298 Ruminococcus_torques Bifidobacterium_pseudocatenulatum ++++ SPC00015 SPC10298 Streptococcus_thermophilus Bifidobacterium_pseudocatenulatum ++++ SPC10414 SPC10415 Alistipes_shahii Blautia_producta SPC10211 SPC10415 Bacteroides_caccae Blautia_producta + SPC10213 SPC10415 Bacteroides_eggerthii Blautia_producta SPC10030 SPC10415 Bacteroides_ovatus Blautia_producta − SPC00006 SPC00021 Bacteroides_sp_1_1_6 Blautia_producta ++++ SPC00006 SPC10415 Bacteroides_sp_1_1_6 Blautia_producta ++++ SPC00007 SPC00021 Bacteroides_sp_3_1_23 Blautia_producta ++++ SPC00007 SPC10415 Bacteroides_sp_3_1_23 Blautia_producta ++ SPC10019 SPC10415 Bacteroides_sp_D20 Blautia_producta SPC00005 SPC00021 Bacteroides_vulgatus Blautia_producta ++++ SPC00005 SPC10415 Bacteroides_vulgatus Blautia_producta ++++ SPC10081 SPC10415 Bacteroides_vulgatus Blautia_producta ++++ SPC10301 SPC10415 Bifidobacterium_adolescentis Blautia_producta ++++ SPC10298 SPC10415 Bifidobacterium_pseudocatenulatum Blautia_producta SPC00021 SPC00021 Blautia_producta Blautia_producta ++++ SPC00021 SPC10415 Blautia_producta Blautia_producta ++++ SPC10415 SPC10415 Blautia_producta Blautia_producta + SPC10415 SPC10415 Blautia_producta Blautia_producta ++++ SPC10403 SPC10415 Blautia_schinkii Blautia_producta SPC10256 SPC10415 Clostridium butyricum Blautia_producta ++++ SPC10358 SPC10415 Clostridium orbiscindens Blautia_producta ++++ SPC10325 SPC10415 Clostridium_bolteae Blautia_producta ++++ SPC10167 SPC10415 Clostridium_disporicum Blautia_producta ++++ SPC10243 SPC10415 Clostridium_hathewayi Blautia_producta +++ SPC10313 SPC10415 Clostridium_hylemonae Blautia_producta ++++ SPC10202 SPC10415 Clostridium_innocuum Blautia_producta ++++ SPC10238 SPC10415 Clostridium_mayombei Blautia_producta ++++ SPC00026 SPC10415 Clostridium_nexile Blautia_producta − SPC00027 SPC10415 Clostridium_sp_HGF2 Blautia_producta SPC10355 SPC10415 Clostridium_symbiosum Blautia_producta SPC10355 SPC10415 Clostridium_symbiosum Blautia_producta ++++ SPC10155 SPC10415 Clostridium_tertium Blautia_producta ++++ SPC10097 SPC10415 Collinsella_aerofaciens Blautia_producta ++++ SPC10097 SPC10415 Collinsella_aerofaciens Blautia_producta ++++ SPC00009 SPC00021 Coprobacillus_sp_D7 Blautia_producta ++++ SPC00009 SPC10415 Coprobacillus_sp_D7 Blautia_producta ++++ SPC00080 SPC10415 Coprococcus_catus Blautia_producta −−−− SPC10304 SPC10415 Coprococcus_comes Blautia_producta SPC10304 SPC10415 Coprococcus_comes Blautia_producta ++++ SPC00018 SPC00021 Dorea_formicigenerans Blautia_producta ++++ SPC00018 SPC10415 Dorea_formicigenerans Blautia_producta −− SPC00057 SPC10415 Dorea_longicatena Blautia_producta +++ SPC00008 SPC00021 Enterococcus_faecalis Blautia_producta ++++ SPC00008 SPC10415 Enterococcus_faecalis Blautia_producta ++++ SPC10001 SPC10415 Erysipelotrichaceae_bacterium Blautia_producta −−− SPC00001 SPC00021 Escherichia_coli Blautia_producta ++++ SPC00001 SPC10415 Escherichia_coli Blautia_producta ++++ SPC10110 SPC10415 Escherichia_coli Blautia_producta ++++ SPC00022 SPC10415 Eubacterium_eligens Blautia_producta −−− SPC10363 SPC10415 Eubacterium_rectale Blautia_producta + SPC00054 SPC10415 Faecalibacterium_prausnitzii Blautia_producta SPC10386 SPC10415 Faecalibacterium_prausnitzii Blautia_producta + SPC10386 SPC10415 Faecalibacterium_prausnitzii Blautia_producta ++++ SPC10390 SPC10415 Lachnospiraceae_bacterium_5_1_57FAA Blautia_producta + SPC10390 SPC10415 Lachnospiraceae_bacterium_5_1_57FAA Blautia_producta ++++ SPC00056 SPC10415 Odoribacter_splanchnicus Blautia_producta − SPC10388 SPC10415 Odoribacter_splanchnicus Blautia_producta + SPC10048 SPC10415 Parabacteroides_merdae Blautia_producta +++ SPC00061 SPC10415 Roseburia_intestinalis Blautia_producta −− SPC10468 SPC10415 Ruminococcus_gnavus Blautia_producta ++++ SPC10197 SPC10415 Ruminococcus_obeum Blautia_producta SPC10233 SPC10415 Ruminococcus_torques Blautia_producta SPC00015 SPC00021 Streptococcus_thermophilus Blautia_producta ++++ SPC00015 SPC10415 Streptococcus_thermophilus Blautia_producta SPC10211 SPC10403 Bacteroides_caccae Blautia_schinkii SPC10213 SPC10403 Bacteroides_eggerthii Blautia_schinkii −− SPC10030 SPC10403 Bacteroides_ovatus Blautia_schinkii − SPC00006 SPC10403 Bacteroides_sp_1_1_6 Blautia_schinkii +++ SPC00007 SPC10403 Bacteroides_sp_3_1_23 Blautia_schinkii + SPC10019 SPC10403 Bacteroides_sp_D20 Blautia_schinkii −− SPC00005 SPC10403 Bacteroides_vulgatus Blautia_schinkii ++ SPC10081 SPC10403 Bacteroides_vulgatus Blautia_schinkii SPC10301 SPC10403 Bifidobacterium_adolescentis Blautia_schinkii ++ SPC10298 SPC10403 Bifidobacterium_pseudocatenulatum Blautia_schinkii − SPC00021 SPC10403 Blautia_producta Blautia_schinkii ++++ SPC10403 SPC10403 Blautia_schinkii Blautia_schinkii SPC10243 SPC10403 Clostridium_hathewayi Blautia_schinkii ++++ SPC00026 SPC10403 Clostridium_nexile Blautia_schinkii −− SPC00027 SPC10403 Clostridium_sp_HGF2 Blautia_schinkii SPC10355 SPC10403 Clostridium_symbiosum Blautia_schinkii SPC10097 SPC10403 Collinsella_aerofaciens Blautia_schinkii ++++ SPC00009 SPC10403 Coprobacillus_sp_D7 Blautia_schinkii ++++ SPC00080 SPC10403 Coprococcus_catus Blautia_schinkii −−− SPC10304 SPC10403 Coprococcus_comes Blautia_schinkii + SPC00018 SPC10403 Dorea_formicigenerans Blautia_schinkii SPC00057 SPC10403 Dorea_longicatena Blautia_schinkii +++ SPC00008 SPC10403 Enterococcus_faecalis Blautia_schinkii ++++ SPC10001 SPC10403 Erysipelotrichaceae_bacterium Blautia_schinkii −−− SPC00001 SPC10403 Escherichia_coli Blautia_schinkii ++++ SPC10110 SPC10403 Escherichia_coli Blautia_schinkii ++++ SPC00022 SPC10403 Eubacterium_eligens Blautia_schinkii − SPC10363 SPC10403 Eubacterium_rectale Blautia_schinkii + SPC00054 SPC10403 Faecalibacterium_prausnitzii Blautia_schinkii SPC10386 SPC10403 Faecalibacterium_prausnitzii Blautia_schinkii SPC10390 SPC10403 Lachnospiraceae_bacterium_5_1_57FAA Blautia_schinkii SPC00056 SPC10403 Odoribacter_splanchnicus Blautia_schinkii − SPC10388 SPC10403 Odoribacter_splanchnicus Blautia_schinkii SPC10048 SPC10403 Parabacteroides_merdae Blautia_schinkii SPC00061 SPC10403 Roseburia_intestinalis Blautia_schinkii − SPC10197 SPC10403 Ruminococcus_obeum Blautia_schinkii SPC10233 SPC10403 Ruminococcus_torques Blautia_schinkii SPC00015 SPC10403 Streptococcus_thermophilus Blautia_schinkii SPC10256 SPC10256 Clostridium butyricum Clostridium butyricum ++++ SPC10167 SPC10256 Clostridium_disporicum Clostridium butyricum ++++ SPC10202 SPC10256 Clostridium_innocuum Clostridium butyricum ++++ SPC10238 SPC10256 Clostridium_mayombei Clostridium butyricum ++++ SPC10155 SPC10256 Clostridium_tertium Clostridium butyricum ++++ SPC10097 SPC10256 Collinsella_aerofaciens Clostridium butyricum ++++ SPC10304 SPC10256 Coprococcus_comes Clostridium butyricum ++++ SPC10256 SPC10358 Clostridium butyricum Clostridium ++++ orbiscindens SPC10358 SPC10358 Clostridium orbiscindens Clostridium + orbiscindens SPC10325 SPC10358 Clostridium_bolteae Clostridium ++++ orbiscindens SPC10167 SPC10358 Clostridium_disporicum Clostridium ++++ orbiscindens SPC10313 SPC10358 Clostridium_hylemonae Clostridium orbiscindens SPC10202 SPC10358 Clostridium_innocuum Clostridium ++++ orbiscindens SPC10238 SPC10358 Clostridium_mayombei Clostridium ++++ orbiscindens SPC10355 SPC10358 Clostridium_symbiosum Clostridium ++++ orbiscindens SPC10155 SPC10358 Clostridium_tertium Clostridium ++++ orbiscindens SPC10097 SPC10358 Collinsella_aerofaciens Clostridium ++++ orbiscindens SPC10304 SPC10358 Coprococcus_comes Clostridium ++++ orbiscindens SPC10386 SPC10358 Faecalibacterium_prausnitzii Clostridium orbiscindens SPC10256 SPC10325 Clostridium butyricum Clostridium_bolteae ++++ SPC10325 SPC10325 Clostridium_bolteae Clostridium_bolteae ++++ SPC10167 SPC10325 Clostridium_disporicum Clostridium_bolteae ++++ SPC10313 SPC10325 Clostridium_hylemonae Clostridium_bolteae SPC10202 SPC10325 Clostridium_innocuum Clostridium_bolteae ++++ SPC10238 SPC10325 Clostridium_mayombei Clostridium_bolteae ++++ SPC10355 SPC10325 Clostridium_symbiosum Clostridium_bolteae ++++ SPC10155 SPC10325 Clostridium_tertium Clostridium_bolteae ++++ SPC10097 SPC10325 Collinsella_aerofaciens Clostridium_bolteae ++++ SPC10304 SPC10325 Coprococcus_comes Clostridium_bolteae ++++ SPC10167 SPC10167 Clostridium_disporicum Clostridium_disporicum +++ SPC10202 SPC10167 Clostridium_innocuum Clostridium_disporicum +++ SPC10155 SPC10167 Clostridium_tertium Clostridium_disporicum ++++ SPC10097 SPC10167 Collinsella_aerofaciens Clostridium_disporicum − SPC10211 SPC10243 Bacteroides_caccae Clostridium_hathewayi ++++ SPC10213 SPC10243 Bacteroides_eggerthii Clostridium_hathewayi ++++ SPC10030 SPC10243 Bacteroides_ovatus Clostridium_hathewayi ++++ SPC00006 SPC10243 Bacteroides_sp_1_1_6 Clostridium_hathewayi ++++ SPC00007 SPC10243 Bacteroides_sp_3_1_23 Clostridium_hathewayi ++++ SPC10019 SPC10243 Bacteroides_sp_D20 Clostridium_hathewayi ++++ SPC00005 SPC10243 Bacteroides_vulgatus Clostridium_hathewayi ++++ SPC10081 SPC10243 Bacteroides_vulgatus Clostridium_hathewayi ++++ SPC00021 SPC10243 Blautia_producta Clostridium_hathewayi ++++ SPC10243 SPC10243 Clostridium_hathewayi Clostridium_hathewayi ++++ SPC00026 SPC10243 Clostridium_nexile Clostridium_hathewayi SPC00027 SPC10243 Clostridium_sp_HGF2 Clostridium_hathewayi SPC10097 SPC10243 Collinsella_aerofaciens Clostridium_hathewayi ++++ SPC00009 SPC10243 Coprobacillus_sp_D7 Clostridium_hathewayi ++++ SPC00080 SPC10243 Coprococcus_catus Clostridium_hathewayi +++ SPC00018 SPC10243 Dorea_formicigenerans Clostridium_hathewayi ++++ SPC00057 SPC10243 Dorea_longicatena Clostridium_hathewayi + SPC00008 SPC10243 Enterococcus_faecalis Clostridium_hathewayi ++++ SPC10001 SPC10243 Erysipelotrichaceae_bacterium Clostridium_hathewayi ++++ SPC00001 SPC10243 Escherichia_coli Clostridium_hathewayi ++++ SPC10110 SPC10243 Escherichia_coli Clostridium_hathewayi ++++ SPC00022 SPC10243 Eubacterium_eligens Clostridium_hathewayi + SPC00054 SPC10243 Faecalibacterium_prausnitzii Clostridium_hathewayi SPC00056 SPC10243 Odoribacter_splanchnicus Clostridium_hathewayi SPC10048 SPC10243 Parabacteroides_merdae Clostridium_hathewayi + SPC00061 SPC10243 Roseburia_intestinalis Clostridium_hathewayi +++ SPC10197 SPC10243 Ruminococcus_obeum Clostridium_hathewayi ++++ SPC10233 SPC10243 Ruminococcus_torques Clostridium_hathewayi ++++ SPC00015 SPC10243 Streptococcus_thermophilus Clostridium_hathewayi ++ SPC10256 SPC10313 Clostridium butyricum Clostridium_hylemonae ++++ SPC10325 SPC10313 Clostridium_bolteae Clostridium_hylemonae SPC10167 SPC10313 Clostridium_disporicum Clostridium_hylemonae SPC10313 SPC10313 Clostridium_hylemonae Clostridium_hylemonae SPC10202 SPC10313 Clostridium_innocuum Clostridium_hylemonae ++++ SPC10238 SPC10313 Clostridium_mayombei Clostridium_hylemonae ++++ SPC10155 SPC10313 Clostridium_tertium Clostridium_hylemonae ++++ SPC10097 SPC10313 Collinsella_aerofaciens Clostridium_hylemonae +++ SPC10304 SPC10313 Coprococcus_comes Clostridium_hylemonae + SPC10167 SPC10202 Clostridium_disporicum Clostridium_innocuum +++ SPC10202 SPC10202 Clostridium_innocuum Clostridium_innocuum ++++ SPC10238 SPC10202 Clostridium_mayombei Clostridium_innocuum ++++ SPC10155 SPC10202 Clostridium_tertium Clostridium_innocuum ++++ SPC10097 SPC10202 Collinsella_aerofaciens Clostridium_innocuum +++ SPC10256 SPC10238 Clostridium butyricum Clostridium_mayombei ++++ SPC10167 SPC10238 Clostridium_disporicum Clostridium_mayombei ++++ SPC10202 SPC10238 Clostridium_innocuum Clostridium_mayombei ++++ SPC10238 SPC10238 Clostridium_mayombei Clostridium_mayombei ++++ SPC10155 SPC10238 Clostridium_tertium Clostridium_mayombei ++++ SPC10097 SPC10238 Collinsella_aerofaciens Clostridium_mayombei ++++ SPC00006 SPC00026 Bacteroides_sp_1_1_6 Clostridium_nexile ++++ SPC00007 SPC00026 Bacteroides_sp_3_1_23 Clostridium_nexile ++++ SPC00005 SPC00026 Bacteroides_vulgatus Clostridium_nexile ++++ SPC00021 SPC00026 Blautia_producta Clostridium_nexile ++++ SPC00026 SPC00026 Clostridium_nexile Clostridium_nexile ++ SPC00009 SPC00026 Coprobacillus_sp_D7 Clostridium_nexile SPC00018 SPC00026 Dorea_formicigenerans Clostridium_nexile SPC00008 SPC00026 Enterococcus_faecalis Clostridium_nexile ++++ SPC00001 SPC00026 Escherichia_coli Clostridium_nexile ++++ SPC00022 SPC00026 Eubacterium_eligens Clostridium_nexile + SPC00015 SPC00026 Streptococcus_thermophilus Clostridium_nexile + SPC00006 SPC00027 Bacteroides_sp_1_1_6 Clostridium_sp_HGF2 ++++ SPC00007 SPC00027 Bacteroides_sp_3_1_23 Clostridium_sp_HGF2 ++++ SPC00005 SPC00027 Bacteroides_vulgatus Clostridium_sp_HGF2 ++ SPC00021 SPC00027 Blautia_producta Clostridium_sp_HGF2 ++++ SPC00026 SPC00027 Clostridium_nexile Clostridium_sp_HGF2 ++++ SPC00027 SPC00027 Clostridium_sp_HGF2 Clostridium_sp_HGF2 ++++ SPC00009 SPC00027 Coprobacillus_sp_D7 Clostridium_sp_HGF2 − SPC00018 SPC00027 Dorea_formicigenerans Clostridium_sp_HGF2 SPC00008 SPC00027 Enterococcus_faecalis Clostridium_sp_HGF2 ++++ SPC00001 SPC00027 Escherichia_coli Clostridium_sp_HGF2 ++++ SPC00022 SPC00027 Eubacterium_eligens Clostridium_sp_HGF2 SPC00015 SPC00027 Streptococcus_thermophilus Clostridium_sp_HGF2 + SPC10211 SPC10355 Bacteroides_caccae Clostridium_symbiosum +++ SPC10213 SPC10355 Bacteroides_eggerthii Clostridium_symbiosum ++++ SPC10030 SPC10355 Bacteroides_ovatus Clostridium_symbiosum SPC00006 SPC10355 Bacteroides_sp_1_1_6 Clostridium_symbiosum ++++ SPC00007 SPC10355 Bacteroides_sp_3_1_23 Clostridium_symbiosum ++++ SPC10019 SPC10355 Bacteroides_sp_D20 Clostridium_symbiosum SPC00005 SPC10355 Bacteroides_vulgatus Clostridium_symbiosum +++ SPC10081 SPC10355 Bacteroides_vulgatus Clostridium_symbiosum SPC10301 SPC10355 Bifidobacterium_adolescentis Clostridium_symbiosum ++++ SPC10298 SPC10355 Bifidobacterium_pseudocatenulatum Clostridium_symbiosum + SPC00021 SPC10355 Blautia_producta Clostridium_symbiosum ++++ SPC10256 SPC10355 Clostridium butyricum Clostridium_symbiosum ++++ SPC10358 SPC10355 Clostridium orbiscindens Clostridium_symbiosum ++++ SPC10325 SPC10355 Clostridium_bolteae Clostridium_symbiosum ++++ SPC10167 SPC10355 Clostridium_disporicum Clostridium_symbiosum ++++ SPC10243 SPC10355 Clostridium_hathewayi Clostridium_symbiosum ++++ SPC10313 SPC10355 Clostridium_hylemonae Clostridium_symbiosum +++ SPC10202 SPC10355 Clostridium_innocuum Clostridium_symbiosum ++++ SPC10238 SPC10355 Clostridium_mayombei Clostridium_symbiosum ++++ SPC00026 SPC10355 Clostridium_nexile Clostridium_symbiosum + SPC00027 SPC10355 Clostridium_sp_HGF2 Clostridium_symbiosum SPC10355 SPC10355 Clostridium_symbiosum Clostridium_symbiosum + SPC10355 SPC10355 Clostridium_symbiosum Clostridium_symbiosum ++++ SPC10155 SPC10355 Clostridium_tertium Clostridium_symbiosum + SPC10097 SPC10355 Collinsella_aerofaciens Clostridium_symbiosum +++ SPC10097 SPC10355 Collinsella_aerofaciens Clostridium_symbiosum ++++ SPC00009 SPC10355 Coprobacillus_sp_D7 Clostridium_symbiosum SPC00080 SPC10355 Coprococcus_catus Clostridium_symbiosum − SPC10304 SPC10355 Coprococcus_comes Clostridium_symbiosum SPC10304 SPC10355 Coprococcus_comes Clostridium_symbiosum ++++ SPC00018 SPC10355 Dorea_formicigenerans Clostridium_symbiosum SPC00057 SPC10355 Dorea_longicatena Clostridium_symbiosum ++++ SPC00008 SPC10355 Enterococcus_faecalis Clostridium_symbiosum ++++ SPC10001 SPC10355 Erysipelotrichaceae_bacterium Clostridium_symbiosum SPC00001 SPC10355 Escherichia_coli Clostridium_symbiosum ++++ SPC10110 SPC10355 Escherichia_coli Clostridium_symbiosum ++++ SPC00022 SPC10355 Eubacterium_eligens Clostridium_symbiosum + SPC00054 SPC10355 Faecalibacterium_prausnitzii Clostridium_symbiosum SPC00056 SPC10355 Odoribacter_splanchnicus Clostridium_symbiosum SPC10048 SPC10355 Parabacteroides_merdae Clostridium_symbiosum − SPC00061 SPC10355 Roseburia_intestinalis Clostridium_symbiosum −− SPC10197 SPC10355 Ruminococcus_obeum Clostridium_symbiosum ++++ SPC10233 SPC10355 Ruminococcus_torques Clostridium_symbiosum ++ SPC00015 SPC10355 Streptococcus_thermophilus Clostridium_symbiosum SPC10167 SPC10155 Clostridium_disporicum Clostridium_tertium ++++ SPC10155 SPC10155 Clostridium_tertium Clostridium_tertium ++++ SPC10097 SPC10155 Collinsella_aerofaciens Clostridium_tertium SPC10030 SPC10097 Bacteroides_ovatus Collinsella_aerofaciens ++++ SPC00006 SPC10097 Bacteroides_sp_1_1_6 Collinsella_aerofaciens ++++ SPC00007 SPC10097 Bacteroides_sp_3_1_23 Collinsella_aerofaciens ++++ SPC10019 SPC10097 Bacteroides_sp_D20 Collinsella_aerofaciens ++++ SPC00005 SPC10097 Bacteroides_vulgatus Collinsella_aerofaciens ++++ SPC10081 SPC10097 Bacteroides_vulgatus Collinsella_aerofaciens ++++ SPC00021 SPC10097 Blautia_producta Collinsella_aerofaciens ++++ SPC00026 SPC10097 Clostridium_nexile Collinsella_aerofaciens + SPC00027 SPC10097 Clostridium_sp_HGF2 Collinsella_aerofaciens ++++ SPC10155 SPC10097 Clostridium_tertium Collinsella_aerofaciens SPC10097 SPC10097 Collinsella_aerofaciens Collinsella_aerofaciens ++++ SPC10097 SPC10097 Collinsella_aerofaciens Collinsella_aerofaciens SPC00009 SPC10097 Coprobacillus_sp_D7 Collinsella_aerofaciens +++ SPC00080 SPC10097 Coprococcus_catus Collinsella_aerofaciens ++++ SPC00018 SPC10097 Dorea_formicigenerans Collinsella_aerofaciens ++ SPC00057 SPC10097 Dorea_longicatena Collinsella_aerofaciens ++++ SPC00008 SPC10097 Enterococcus_faecalis Collinsella_aerofaciens ++++ SPC10001 SPC10097 Erysipelotrichaceae_bacterium Collinsella_aerofaciens ++++ SPC00001 SPC10097 Escherichia_coli Collinsella_aerofaciens ++++ SPC00022 SPC10097 Eubacterium_eligens Collinsella_aerofaciens +++ SPC00054 SPC10097 Faecalibacterium_prausnitzii Collinsella_aerofaciens +++ SPC00056 SPC10097 Odoribacter_splanchnicus Collinsella_aerofaciens +++ SPC10048 SPC10097 Parabacteroides_merdae Collinsella_aerofaciens ++++ SPC00061 SPC10097 Roseburia_intestinalis Collinsella_aerofaciens ++ SPC00015 SPC10097 Streptococcus_thermophilus Collinsella_aerofaciens + SPC00006 SPC00009 Bacteroides_sp_1_1_6 Coprobacillus_sp_D7 +++ SPC00007 SPC00009 Bacteroides_sp_3_1_23 Coprobacillus_sp_D7 SPC00005 SPC00009 Bacteroides_vulgatus Coprobacillus_sp_D7 + SPC00009 SPC00009 Coprobacillus_sp_D7 Coprobacillus_sp_D7 − SPC00008 SPC00009 Enterococcus_faecalis Coprobacillus_sp_D7 ++++ SPC00001 SPC00009 Escherichia_coli Coprobacillus_sp_D7 ++ SPC00006 SPC00080 Bacteroides_sp_1_1_6 Coprococcus_catus ++++ SPC00007 SPC00080 Bacteroides_sp_3_1_23 Coprococcus_catus SPC00005 SPC00080 Bacteroides_vulgatus Coprococcus_catus + SPC00021 SPC00080 Blautia_producta Coprococcus_catus ++++ SPC00026 SPC00080 Clostridium_nexile Coprococcus_catus SPC00027 SPC00080 Clostridium_sp_HGF2 Coprococcus_catus −−− SPC00009 SPC00080 Coprobacillus_sp_D7 Coprococcus_catus −−− SPC00080 SPC00080 Coprococcus_catus Coprococcus_catus SPC00018 SPC00080 Dorea_formicigenerans Coprococcus_catus SPC00057 SPC00080 Dorea_longicatena Coprococcus_catus SPC00008 SPC00080 Enterococcus_faecalis Coprococcus_catus ++++ SPC00001 SPC00080 Escherichia_coli Coprococcus_catus ++++ SPC00022 SPC00080 Eubacterium_eligens Coprococcus_catus SPC00054 SPC00080 Faecalibacterium_prausnitzii Coprococcus_catus SPC00056 SPC00080 Odoribacter_splanchnicus Coprococcus_catus SPC00061 SPC00080 Roseburia_intestinalis Coprococcus_catus SPC00015 SPC00080 Streptococcus_thermophilus Coprococcus_catus SPC10211 SPC10304 Bacteroides_caccae Coprococcus_comes +++ SPC10213 SPC10304 Bacteroides_eggerthii Coprococcus_comes +++ SPC10030 SPC10304 Bacteroides_ovatus Coprococcus_comes SPC00006 SPC10304 Bacteroides_sp_1_1_6 Coprococcus_comes +++ SPC00007 SPC10304 Bacteroides_sp_3_1_23 Coprococcus_comes ++++ SPC10019 SPC10304 Bacteroides_sp_D20 Coprococcus_comes SPC00005 SPC10304 Bacteroides_vulgatus Coprococcus_comes ++++ SPC10081 SPC10304 Bacteroides_vulgatus Coprococcus_comes SPC10301 SPC10304 Bifidobacterium_adolescentis Coprococcus_comes ++++ SPC10298 SPC10304 Bifidobacterium_pseudocatenulatum Coprococcus_comes ++++ SPC00021 SPC10304 Blautia_producta Coprococcus_comes ++++ SPC10256 SPC10304 Clostridium butyricum Coprococcus_comes ++++ SPC10167 SPC10304 Clostridium_disporicum Coprococcus_comes ++++ SPC10243 SPC10304 Clostridium_hathewayi Coprococcus_comes ++++ SPC10313 SPC10304 Clostridium_hylemonae Coprococcus_comes + SPC10202 SPC10304 Clostridium_innocuum Coprococcus_comes ++++ SPC10238 SPC10304 Clostridium_mayombei Coprococcus_comes ++++ SPC00026 SPC10304 Clostridium_nexile Coprococcus_comes SPC00027 SPC10304 Clostridium_sp_HGF2 Coprococcus_comes SPC10155 SPC10304 Clostridium_tertium Coprococcus_comes ++++ SPC10097 SPC10304 Collinsella_aerofaciens Coprococcus_comes ++++ SPC10097 SPC10304 Collinsella_aerofaciens Coprococcus_comes +++ SPC00009 SPC10304 Coprobacillus_sp_D7 Coprococcus_comes +++ SPC00080 SPC10304 Coprococcus_catus Coprococcus_comes −− SPC10304 SPC10304 Coprococcus_comes Coprococcus_comes SPC10304 SPC10304 Coprococcus_comes Coprococcus_comes ++ SPC00018 SPC10304 Dorea_formicigenerans Coprococcus_comes SPC00057 SPC10304 Dorea_longicatena Coprococcus_comes SPC00008 SPC10304 Enterococcus_faecalis Coprococcus_comes ++++ SPC10001 SPC10304 Erysipelotrichaceae_bacterium Coprococcus_comes − SPC00001 SPC10304 Escherichia_coli Coprococcus_comes ++++ SPC10110 SPC10304 Escherichia_coli Coprococcus_comes ++++ SPC00022 SPC10304 Eubacterium_eligens Coprococcus_comes ++ SPC00054 SPC10304 Faecalibacterium_prausnitzii Coprococcus_comes SPC00056 SPC10304 Odoribacter_splanchnicus Coprococcus_comes SPC10048 SPC10304 Parabacteroides_merdae Coprococcus_comes − SPC00061 SPC10304 Roseburia_intestinalis Coprococcus_comes − SPC10197 SPC10304 Ruminococcus_obeum Coprococcus_comes ++++ SPC10233 SPC10304 Ruminococcus_torques Coprococcus_comes ++++ SPC00015 SPC10304 Streptococcus_thermophilus Coprococcus_comes ++ SPC00006 SPC00018 Bacteroides_sp_1_1_6 Dorea_formicigenerans +++ SPC00007 SPC00018 Bacteroides_sp_3_1_23 Dorea_formicigenerans SPC00005 SPC00018 Bacteroides_vulgatus Dorea_formicigenerans ++ SPC00009 SPC00018 Coprobacillus_sp_D7 Dorea_formicigenerans − SPC00018 SPC00018 Dorea_formicigenerans Dorea_formicigenerans −− SPC00008 SPC00018 Enterococcus_faecalis Dorea_formicigenerans ++++ SPC00001 SPC00018 Escherichia_coli Dorea_formicigenerans ++ SPC00015 SPC00018 Streptococcus_thermophilus Dorea_formicigenerans SPC00006 SPC00057 Bacteroides_sp_1_1_6 Dorea_longicatena ++++ SPC00007 SPC00057 Bacteroides_sp_3_1_23 Dorea_longicatena +++ SPC00005 SPC00057 Bacteroides_vulgatus Dorea_longicatena ++++ SPC00021 SPC00057 Blautia_producta Dorea_longicatena ++++ SPC00026 SPC00057 Clostridium_nexile Dorea_longicatena SPC00027 SPC00057 Clostridium_sp_HGF2 Dorea_longicatena −− SPC00009 SPC00057 Coprobacillus_sp_D7 Dorea_longicatena SPC00018 SPC00057 Dorea_formicigenerans Dorea_longicatena ++ SPC00057 SPC00057 Dorea_longicatena Dorea_longicatena − SPC00008 SPC00057 Enterococcus_faecalis Dorea_longicatena ++++ SPC00001 SPC00057 Escherichia_coli Dorea_longicatena ++++ SPC00022 SPC00057 Eubacterium_eligens Dorea_longicatena ++ SPC00054 SPC00057 Faecalibacterium_prausnitzii Dorea_longicatena − SPC00056 SPC00057 Odoribacter_splanchnicus Dorea_longicatena SPC00015 SPC00057 Streptococcus_thermophilus Dorea_longicatena + SPC00006 SPC00008 Bacteroides_sp_1_1_6 Enterococcus_faecalis ++++ SPC00007 SPC00008 Bacteroides_sp_3_1_23 Enterococcus_faecalis ++++ SPC00005 SPC00008 Bacteroides_vulgatus Enterococcus_faecalis ++++ SPC00008 SPC00008 Enterococcus_faecalis Enterococcus_faecalis ++++ SPC00001 SPC00008 Escherichia_coli Enterococcus_faecalis ++++ SPC00006 SPC10001 Bacteroides_sp_1_1_6 Erysipelotrichaceae_bacterium ++++ SPC00007 SPC10001 Bacteroides_sp_3_1_23 Erysipelotrichaceae_bacterium SPC00005 SPC10001 Bacteroides_vulgatus Erysipelotrichaceae_bacterium + SPC00021 SPC10001 Blautia_producta Erysipelotrichaceae_bacterium ++++ SPC00026 SPC10001 Clostridium_nexile Erysipelotrichaceae_bacterium SPC00027 SPC10001 Clostridium_sp_HGF2 Erysipelotrichaceae_bacterium −− SPC00009 SPC10001 Coprobacillus_sp_D7 Erysipelotrichaceae_bacterium − SPC00080 SPC10001 Coprococcus_catus Erysipelotrichaceae_bacterium SPC00018 SPC10001 Dorea_formicigenerans Erysipelotrichaceae_bacterium −− SPC00057 SPC10001 Dorea_longicatena Erysipelotrichaceae_bacterium SPC00008 SPC10001 Enterococcus_faecalis Erysipelotrichaceae_bacterium ++++ SPC10001 SPC10001 Erysipelotrichaceae_bacterium Erysipelotrichaceae_bacterium − SPC00001 SPC10001 Escherichia_coli Erysipelotrichaceae_bacterium ++++ SPC00022 SPC10001 Eubacterium_eligens Erysipelotrichaceae_bacterium − SPC00054 SPC10001 Faecalibacterium_prausnitzii Erysipelotrichaceae_bacterium − SPC00056 SPC10001 Odoribacter_splanchnicus Erysipelotrichaceae_bacterium SPC00061 SPC10001 Roseburia_intestinalis Erysipelotrichaceae_bacterium − SPC00015 SPC10001 Streptococcus_thermophilus Erysipelotrichaceae_bacterium SPC10030 SPC10110 Bacteroides_ovatus Escherichia_coli ++++ SPC00006 SPC10110 Bacteroides_sp_1_1_6 Escherichia_coli ++++ SPC00007 SPC10110 Bacteroides_sp_3_1_23 Escherichia_coli ++++ SPC10019 SPC10110 Bacteroides_sp_D20 Escherichia_coli ++++ SPC00005 SPC10110 Bacteroides_vulgatus Escherichia_coli ++++ SPC10081 SPC10110 Bacteroides_vulgatus Escherichia_coli ++++ SPC00021 SPC10110 Blautia_producta Escherichia_coli ++++ SPC00026 SPC10110 Clostridium_nexile Escherichia_coli ++++ SPC00027 SPC10110 Clostridium_sp_HGF2 Escherichia_coli ++++ SPC10097 SPC10110 Collinsella_aerofaciens Escherichia_coli ++++ SPC00009 SPC10110 Coprobacillus_sp_D7 Escherichia_coli ++ SPC00080 SPC10110 Coprococcus_catus Escherichia_coli ++++ SPC00018 SPC10110 Dorea_formicigenerans Escherichia_coli ++++ SPC00057 SPC10110 Dorea_longicatena Escherichia_coli ++++ SPC00008 SPC10110 Enterococcus_faecalis Escherichia_coli ++++ SPC10001 SPC10110 Erysipelotrichaceae_bacterium Escherichia_coli ++++ SPC00001 SPC00001 Escherichia_coli Escherichia_coli ++++ SPC00001 SPC10110 Escherichia_coli Escherichia_coli ++++ SPC10110 SPC10110 Escherichia_coli Escherichia_coli ++++ SPC00022 SPC10110 Eubacterium_eligens Escherichia_coli ++++ SPC00054 SPC10110 Faecalibacterium_prausnitzii Escherichia_coli +++ SPC00056 SPC10110 Odoribacter_splanchnicus Escherichia_coli +++ SPC10048 SPC10110 Parabacteroides_merdae Escherichia_coli ++++ SPC00061 SPC10110 Roseburia_intestinalis Escherichia_coli +++ SPC00015 SPC10110 Streptococcus_thermophilus Escherichia_coli +++ SPC00006 SPC00022 Bacteroides_sp_1_1_6 Eubacterium_eligens ++++ SPC00007 SPC00022 Bacteroides_sp_3_1_23 Eubacterium_eligens SPC00005 SPC00022 Bacteroides_vulgatus Eubacterium_eligens +++ SPC00021 SPC00022 Blautia_producta Eubacterium_eligens ++++ SPC00009 SPC00022 Coprobacillus_sp_D7 Eubacterium_eligens SPC00018 SPC00022 Dorea_formicigenerans Eubacterium_eligens −− SPC00008 SPC00022 Enterococcus_faecalis Eubacterium_eligens ++++ SPC00001 SPC00022 Escherichia_coli Eubacterium_eligens ++ SPC00022 SPC00022 Eubacterium_eligens Eubacterium_eligens SPC00015 SPC00022 Streptococcus_thermophilus Eubacterium_eligens SPC10211 SPC10363 Bacteroides_caccae Eubacterium_rectale SPC10213 SPC10363 Bacteroides_eggerthii Eubacterium_rectale SPC10030 SPC10363 Bacteroides_ovatus Eubacterium_rectale SPC00006 SPC10363 Bacteroides_sp_1_1_6 Eubacterium_rectale ++++ SPC00007 SPC10363 Bacteroides_sp_3_1_23 Eubacterium_rectale +++ SPC10019 SPC10363 Bacteroides_sp_D20 Eubacterium_rectale −− SPC00005 SPC10363 Bacteroides_vulgatus Eubacterium_rectale ++++ SPC10081 SPC10363 Bacteroides_vulgatus Eubacterium_rectale SPC10301 SPC10363 Bifidobacterium_adolescentis Eubacterium_rectale ++++ SPC10298 SPC10363 Bifidobacterium_pseudocatenulatum Eubacterium_rectale SPC00021 SPC10363 Blautia_producta Eubacterium_rectale ++++ SPC10415 SPC10567 Blautia_producta Eubacterium_rectale ++++ SPC10256 SPC10567 Clostridium butyricum Eubacterium_rectale ++++ SPC10358 SPC10567 Clostridium orbiscindens Eubacterium_rectale + SPC10325 SPC10567 Clostridium_bolteae Eubacterium_rectale ++ SPC10167 SPC10567 Clostridium_disporicum Eubacterium_rectale ++++ SPC10243 SPC10363 Clostridium_hathewayi Eubacterium_rectale ++++ SPC10313 SPC10567 Clostridium_hylemonae Eubacterium_rectale SPC10202 SPC10567 Clostridium_innocuum Eubacterium_rectale ++++ SPC10238 SPC10567 Clostridium_mayombei Eubacterium_rectale ++++ SPC00026 SPC10363 Clostridium_nexile Eubacterium_rectale − SPC00027 SPC10363 Clostridium_sp_HGF2 Eubacterium_rectale −− SPC10355 SPC10363 Clostridium_symbiosum Eubacterium_rectale ++ SPC10355 SPC10567 Clostridium_symbiosum Eubacterium_rectale + SPC10155 SPC10567 Clostridium_tertium Eubacterium_rectale ++++ SPC10097 SPC10363 Collinsella_aerofaciens Eubacterium_rectale ++++ SPC10097 SPC10567 Collinsella_aerofaciens Eubacterium_rectale ++++ SPC00009 SPC10363 Coprobacillus_sp_D7 Eubacterium_rectale +++ SPC00080 SPC10363 Coprococcus_catus Eubacterium_rectale −−− SPC10304 SPC10363 Coprococcus_comes Eubacterium_rectale + SPC10304 SPC10567 Coprococcus_comes Eubacterium_rectale ++++ SPC00018 SPC10363 Dorea_formicigenerans Eubacterium_rectale − SPC00057 SPC10363 Dorea_longicatena Eubacterium_rectale ++++ SPC00008 SPC10363 Enterococcus_faecalis Eubacterium_rectale ++++ SPC10001 SPC10363 Erysipelotrichaceae_bacterium Eubacterium_rectale − SPC00001 SPC10363 Escherichia_coli Eubacterium_rectale ++++ SPC10110 SPC10363 Escherichia_coli Eubacterium_rectale ++++ SPC00022 SPC10363 Eubacterium_eligens Eubacterium_rectale SPC10363 SPC10363 Eubacterium_rectale Eubacterium_rectale +++ SPC10567 SPC10567 Eubacterium_rectale Eubacterium_rectale SPC00054 SPC10363 Faecalibacterium_prausnitzii Eubacterium_rectale −− SPC10386 SPC10567 Faecalibacterium_prausnitzii Eubacterium_rectale SPC10390 SPC10567 Lachnospiraceae_bacterium_5_1_57FAA Eubacterium_rectale +++ SPC00056 SPC10363 Odoribacter_splanchnicus Eubacterium_rectale − SPC10048 SPC10363 Parabacteroides_merdae Eubacterium_rectale − SPC00061 SPC10363 Roseburia_intestinalis Eubacterium_rectale −−−− SPC10470 SPC10567 Ruminococcus_bromii Eubacterium_rectale + SPC10468 SPC10567 Ruminococcus_gnavus Eubacterium_rectale ++++ SPC10197 SPC10363 Ruminococcus_obeum Eubacterium_rectale ++ SPC10233 SPC10363 Ruminococcus_torques Eubacterium_rectale + SPC00015 SPC10363 Streptococcus_thermophilus Eubacterium_rectale SPC10211 SPC10386 Bacteroides_caccae Faecalibacterium_prausnitzii SPC10213 SPC10386 Bacteroides_eggerthii Faecalibacterium_prausnitzii − SPC10030 SPC10386 Bacteroides_ovatus Faecalibacterium_prausnitzii − SPC00006 SPC00054 Bacteroides_sp_1_1_6 Faecalibacterium_prausnitzii ++++ SPC00006 SPC10386 Bacteroides_sp_1_1_6 Faecalibacterium_prausnitzii +++ SPC00007 SPC00054 Bacteroides_sp_3_1_23 Faecalibacterium_prausnitzii ++ SPC00007 SPC10386 Bacteroides_sp_3_1_23 Faecalibacterium_prausnitzii SPC10019 SPC10386 Bacteroides_sp_D20 Faecalibacterium_prausnitzii −− SPC00005 SPC00054 Bacteroides_vulgatus Faecalibacterium_prausnitzii ++++ SPC00005 SPC10386 Bacteroides_vulgatus Faecalibacterium_prausnitzii +++ SPC10081 SPC10386 Bacteroides_vulgatus Faecalibacterium_prausnitzii −−− SPC10301 SPC10386 Bifidobacterium_adolescentis Faecalibacterium_prausnitzii + SPC10298 SPC10386 Bifidobacterium_pseudocatenulatum Faecalibacterium_prausnitzii SPC00021 SPC00054 Blautia_producta Faecalibacterium_prausnitzii ++++ SPC00021 SPC10386 Blautia_producta Faecalibacterium_prausnitzii ++++ SPC10256 SPC10386 Clostridium butyricum Faecalibacterium_prausnitzii ++++ SPC10358 SPC10386 Clostridium orbiscindens Faecalibacterium_prausnitzii SPC10325 SPC10386 Clostridium_bolteae Faecalibacterium_prausnitzii ++ SPC10167 SPC10386 Clostridium_disporicum Faecalibacterium_prausnitzii SPC10243 SPC10386 Clostridium_hathewayi Faecalibacterium_prausnitzii +++ SPC10313 SPC10386 Clostridium_hylemonae Faecalibacterium_prausnitzii SPC10202 SPC10386 Clostridium_innocuum Faecalibacterium_prausnitzii ++++ SPC10238 SPC10386 Clostridium_mayombei Faecalibacterium_prausnitzii ++++ SPC00026 SPC00054 Clostridium_nexile Faecalibacterium_prausnitzii SPC00026 SPC10386 Clostridium_nexile Faecalibacterium_prausnitzii − SPC00027 SPC00054 Clostridium_sp_HGF2 Faecalibacterium_prausnitzii ++ SPC00027 SPC10386 Clostridium_sp_HGF2 Faecalibacterium_prausnitzii −− SPC10355 SPC10386 Clostridium_symbiosum Faecalibacterium_prausnitzii +++ SPC10355 SPC10386 Clostridium_symbiosum Faecalibacterium_prausnitzii ++++ SPC10155 SPC10386 Clostridium_tertium Faecalibacterium_prausnitzii ++++ SPC10097 SPC10386 Collinsella_aerofaciens Faecalibacterium_prausnitzii ++++ SPC10097 SPC10386 Collinsella_aerofaciens Faecalibacterium_prausnitzii ++++ SPC00009 SPC00054 Coprobacillus_sp_D7 Faecalibacterium_prausnitzii −−− SPC00009 SPC10386 Coprobacillus_sp_D7 Faecalibacterium_prausnitzii SPC00080 SPC10386 Coprococcus_catus Faecalibacterium_prausnitzii −−− SPC10304 SPC10386 Coprococcus_comes Faecalibacterium_prausnitzii SPC10304 SPC10386 Coprococcus_comes Faecalibacterium_prausnitzii +++ SPC00018 SPC00054 Dorea_formicigenerans Faecalibacterium_prausnitzii SPC00018 SPC10386 Dorea_formicigenerans Faecalibacterium_prausnitzii −−− SPC00057 SPC10386 Dorea_longicatena Faecalibacterium_prausnitzii +++ SPC00008 SPC00054 Enterococcus_faecalis Faecalibacterium_prausnitzii ++++ SPC00008 SPC10386 Enterococcus_faecalis Faecalibacterium_prausnitzii ++++ SPC10001 SPC10386 Erysipelotrichaceae_bacterium Faecalibacterium_prausnitzii −− SPC00001 SPC00054 Escherichia_coli Faecalibacterium_prausnitzii ++++ SPC00001 SPC10386 Escherichia_coli Faecalibacterium_prausnitzii ++++ SPC10110 SPC10386 Escherichia_coli Faecalibacterium_prausnitzii ++ SPC00022 SPC00054 Eubacterium_eligens Faecalibacterium_prausnitzii SPC00022 SPC10386 Eubacterium_eligens Faecalibacterium_prausnitzii SPC10363 SPC10386 Eubacterium_rectale Faecalibacterium_prausnitzii + SPC00054 SPC00054 Faecalibacterium_prausnitzii Faecalibacterium_prausnitzii + SPC00054 SPC10386 Faecalibacterium_prausnitzii Faecalibacterium_prausnitzii SPC10386 SPC10386 Faecalibacterium_prausnitzii Faecalibacterium_prausnitzii + SPC10386 SPC10386 Faecalibacterium_prausnitzii Faecalibacterium_prausnitzii SPC10390 SPC10386 Lachnospiraceae_bacterium_5_1_57FAA Faecalibacterium_prausnitzii ++++ SPC00056 SPC10386 Odoribacter_splanchnicus Faecalibacterium_prausnitzii −− SPC10048 SPC10386 Parabacteroides_merdae Faecalibacterium_prausnitzii − SPC00061 SPC10386 Roseburia_intestinalis Faecalibacterium_prausnitzii SPC10197 SPC10386 Ruminococcus_obeum Faecalibacterium_prausnitzii SPC10233 SPC10386 Ruminococcus_torques Faecalibacterium_prausnitzii SPC00015 SPC00054 Streptococcus_thermophilus Faecalibacterium_prausnitzii SPC00015 SPC10386 Streptococcus_thermophilus Faecalibacterium_prausnitzii SPC10211 SPC10390 Bacteroides_caccae Lachnospiraceae_bacterium_5_1_57FAA SPC10213 SPC10390 Bacteroides_eggerthii Lachnospiraceae_bacterium_5_1_57FAA SPC10030 SPC10390 Bacteroides_ovatus Lachnospiraceae_bacterium_5_1_57FAA − SPC00006 SPC10390 Bacteroides_sp_1_1_6 Lachnospiraceae_bacterium_5_1_57FAA +++ SPC00007 SPC10390 Bacteroides_sp_3_1_23 Lachnospiraceae_bacterium_5_1_57FAA SPC10019 SPC10390 Bacteroides_sp_D20 Lachnospiraceae_bacterium_5_1_57FAA −−− SPC00005 SPC10390 Bacteroides_vulgatus Lachnospiraceae_bacterium_5_1_57FAA +++ SPC10081 SPC10390 Bacteroides_vulgatus Lachnospiraceae_bacterium_5_1_57FAA −− SPC10301 SPC10390 Bifidobacterium_adolescentis Lachnospiraceae_bacterium_5_1_57FAA ++++ SPC10298 SPC10390 Bifidobacterium_pseudocatenulatum Lachnospiraceae_bacterium_5_1_57FAA SPC00021 SPC10390 Blautia_producta Lachnospiraceae_bacterium_5_1_57FAA ++++ SPC10415 SPC10390 Blautia_producta Lachnospiraceae_bacterium_5_1_57FAA ++++ SPC10256 SPC10390 Clostridium butyricum Lachnospiraceae_bacterium_5_1_57FAA ++++ SPC10358 SPC10390 Clostridium orbiscindens Lachnospiraceae_bacterium_5_1_57FAA ++++ SPC10325 SPC10390 Clostridium_bolteae Lachnospiraceae_bacterium_5_1_57FAA ++++ SPC10167 SPC10390 Clostridium_disporicum Lachnospiraceae_bacterium_5_1_57FAA ++++ SPC10243 SPC10390 Clostridium_hathewayi Lachnospiraceae_bacterium_5_1_57FAA ++++ SPC10313 SPC10390 Clostridium_hylemonae Lachnospiraceae_bacterium_5_1_57FAA ++++ SPC10202 SPC10390 Clostridium_innocuum Lachnospiraceae_bacterium_5_1_57FAA ++++ SPC10238 SPC10390 Clostridium_mayombei Lachnospiraceae_bacterium_5_1_57FAA ++++ SPC00026 SPC10390 Clostridium_nexile Lachnospiraceae_bacterium_5_1_57FAA − SPC00027 SPC10390 Clostridium_sp_HGF2 Lachnospiraceae_bacterium_5_1_57FAA − SPC10355 SPC10390 Clostridium_symbiosum Lachnospiraceae_bacterium_5_1_57FAA + SPC10355 SPC10390 Clostridium_symbiosum Lachnospiraceae_bacterium_5_1_57FAA ++++ SPC10155 SPC10390 Clostridium_tertium Lachnospiraceae_bacterium_5_1_57FAA ++++ SPC10097 SPC10390 Collinsella_aerofaciens Lachnospiraceae_bacterium_5_1_57FAA ++++ SPC10097 SPC10390 Collinsella_aerofaciens Lachnospiraceae_bacterium_5_1_57FAA ++++ SPC00009 SPC10390 Coprobacillus_sp_D7 Lachnospiraceae_bacterium_5_1_57FAA ++++ SPC00080 SPC10390 Coprococcus_catus Lachnospiraceae_bacterium_5_1_57FAA SPC10304 SPC10390 Coprococcus_comes Lachnospiraceae_bacterium_5_1_57FAA SPC10304 SPC10390 Coprococcus_comes Lachnospiraceae_bacterium_5_1_57FAA ++++ SPC00018 SPC10390 Dorea_formicigenerans Lachnospiraceae_bacterium_5_1_57FAA −− SPC00057 SPC10390 Dorea_longicatena Lachnospiraceae_bacterium_5_1_57FAA ++++ SPC00008 SPC10390 Enterococcus_faecalis Lachnospiraceae_bacterium_5_1_57FAA ++++ SPC10001 SPC10390 Erysipelotrichaceae_bacterium Lachnospiraceae_bacterium_5_1_57FAA −−− SPC00001 SPC10390 Escherichia_coli Lachnospiraceae_bacterium_5_1_57FAA ++++ SPC10110 SPC10390 Escherichia_coli Lachnospiraceae_bacterium_5_1_57FAA ++++ SPC00022 SPC10390 Eubacterium_eligens Lachnospiraceae_bacterium_5_1_57FAA SPC10363 SPC10390 Eubacterium_rectale Lachnospiraceae_bacterium_5_1_57FAA SPC00054 SPC10390 Faecalibacterium_prausnitzii Lachnospiraceae_bacterium_5_1_57FAA SPC10386 SPC10390 Faecalibacterium_prausnitzii Lachnospiraceae_bacterium_5_1_57FAA SPC10386 SPC10390 Faecalibacterium_prausnitzii Lachnospiraceae_bacterium_5_1_57FAA ++++ SPC10390 SPC10390 Lachnospiraceae_bacterium_5_1_57FAA Lachnospiraceae_bacterium_5_1_57FAA SPC10390 SPC10390 Lachnospiraceae_bacterium_5_1_57FAA Lachnospiraceae_bacterium_5_1_57FAA ++++ SPC00056 SPC10390 Odoribacter_splanchnicus Lachnospiraceae_bacterium_5_1_57FAA −− SPC10388 SPC10390 Odoribacter_splanchnicus Lachnospiraceae_bacterium_5_1_57FAA SPC10048 SPC10390 Parabacteroides_merdae Lachnospiraceae_bacterium_5_1_57FAA − SPC00061 SPC10390 Roseburia_intestinalis Lachnospiraceae_bacterium_5_1_57FAA SPC10197 SPC10390 Ruminococcus_obeum Lachnospiraceae_bacterium_5_1_57FAA SPC10233 SPC10390 Ruminococcus_torques Lachnospiraceae_bacterium_5_1_57FAA SPC00015 SPC10390 Streptococcus_thermophilus Lachnospiraceae_bacterium_5_1_57FAA SPC10211 SPC10388 Bacteroides_caccae Odoribacter_splanchnicus SPC10213 SPC10388 Bacteroides_eggerthii Odoribacter_splanchnicus − SPC10030 SPC10388 Bacteroides_ovatus Odoribacter_splanchnicus −− SPC00006 SPC00056 Bacteroides_sp_1_1_6 Odoribacter_splanchnicus ++++ SPC00006 SPC10388 Bacteroides_sp_1_1_6 Odoribacter_splanchnicus + SPC00007 SPC00056 Bacteroides_sp_3_1_23 Odoribacter_splanchnicus + SPC00007 SPC10388 Bacteroides_sp_3_1_23 Odoribacter_splanchnicus SPC10019 SPC10388 Bacteroides_sp_D20 Odoribacter_splanchnicus −−− SPC00005 SPC00056 Bacteroides_vulgatus Odoribacter_splanchnicus +++ SPC00005 SPC10388 Bacteroides_vulgatus Odoribacter_splanchnicus +++ SPC10081 SPC10388 Bacteroides_vulgatus Odoribacter_splanchnicus − SPC10301 SPC10388 Bifidobacterium_adolescentis Odoribacter_splanchnicus ++++ SPC10298 SPC10388 Bifidobacterium_pseudocatenulatum Odoribacter_splanchnicus +++ SPC00021 SPC00056 Blautia_producta Odoribacter_splanchnicus ++++ SPC00021 SPC10388 Blautia_producta Odoribacter_splanchnicus ++++ SPC10243 SPC10388 Clostridium_hathewayi Odoribacter_splanchnicus ++++ SPC00026 SPC00056 Clostridium_nexile Odoribacter_splanchnicus SPC00026 SPC10388 Clostridium_nexile Odoribacter_splanchnicus −−− SPC00027 SPC00056 Clostridium_sp_HGF2 Odoribacter_splanchnicus SPC00027 SPC10388 Clostridium_sp_HGF2 Odoribacter_splanchnicus −−− SPC10355 SPC10388 Clostridium_symbiosum Odoribacter_splanchnicus ++ SPC10097 SPC10388 Collinsella_aerofaciens Odoribacter_splanchnicus ++++ SPC00009 SPC00056 Coprobacillus_sp_D7 Odoribacter_splanchnicus − SPC00009 SPC10388 Coprobacillus_sp_D7 Odoribacter_splanchnicus +++ SPC00080 SPC10388 Coprococcus_catus Odoribacter_splanchnicus −− SPC10304 SPC10388 Coprococcus_comes Odoribacter_splanchnicus SPC00018 SPC00056 Dorea_formicigenerans Odoribacter_splanchnicus SPC00018 SPC10388 Dorea_formicigenerans Odoribacter_splanchnicus − SPC00057 SPC10388 Dorea_longicatena Odoribacter_splanchnicus ++++ SPC00008 SPC00056 Enterococcus_faecalis Odoribacter_splanchnicus ++++ SPC00008 SPC10388 Enterococcus_faecalis Odoribacter_splanchnicus ++++ SPC10001 SPC10388 Erysipelotrichaceae_bacterium Odoribacter_splanchnicus −− SPC00001 SPC00056 Escherichia_coli Odoribacter_splanchnicus ++++ SPC00001 SPC10388 Escherichia_coli Odoribacter_splanchnicus ++++ SPC10110 SPC10388 Escherichia_coli Odoribacter_splanchnicus ++++ SPC00022 SPC00056 Eubacterium_eligens Odoribacter_splanchnicus SPC00022 SPC10388 Eubacterium_eligens Odoribacter_splanchnicus SPC10363 SPC10388 Eubacterium_rectale Odoribacter_splanchnicus + SPC00054 SPC00056 Faecalibacterium_prausnitzii Odoribacter_splanchnicus SPC00054 SPC10388 Faecalibacterium_prausnitzii Odoribacter_splanchnicus − SPC10386 SPC10388 Faecalibacterium_prausnitzii Odoribacter_splanchnicus + SPC00056 SPC00056 Odoribacter_splanchnicus Odoribacter_splanchnicus SPC00056 SPC10388 Odoribacter_splanchnicus Odoribacter_splanchnicus −−− SPC10388 SPC10388 Odoribacter_splanchnicus Odoribacter_splanchnicus + SPC10048 SPC10388 Parabacteroides_merdae Odoribacter_splanchnicus SPC00061 SPC10388 Roseburia_intestinalis Odoribacter_splanchnicus SPC10197 SPC10388 Ruminococcus_obeum Odoribacter_splanchnicus + SPC10233 SPC10388 Ruminococcus_torques Odoribacter_splanchnicus SPC00015 SPC00056 Streptococcus_thermophilus Odoribacter_splanchnicus SPC00015 SPC10388 Streptococcus_thermophilus Odoribacter_splanchnicus + SPC10030 SPC10048 Bacteroides_ovatus Parabacteroides_merdae SPC00006 SPC10048 Bacteroides_sp_1_1_6 Parabacteroides_merdae ++++ SPC00007 SPC10048 Bacteroides_sp_3_1_23 Parabacteroides_merdae +++ SPC10019 SPC10048 Bacteroides_sp_D20 Parabacteroides_merdae SPC00005 SPC10048 Bacteroides_vulgatus Parabacteroides_merdae ++++ SPC00021 SPC10048 Blautia_producta Parabacteroides_merdae ++++ SPC00026 SPC10048 Clostridium_nexile Parabacteroides_merdae ++ SPC00027 SPC10048 Clostridium_sp_HGF2 Parabacteroides_merdae +++ SPC00009 SPC10048 Coprobacillus_sp_D7 Parabacteroides_merdae − SPC00080 SPC10048 Coprococcus_catus Parabacteroides_merdae +++ SPC00018 SPC10048 Dorea_formicigenerans Parabacteroides_merdae SPC00057 SPC10048 Dorea_longicatena Parabacteroides_merdae SPC00008 SPC10048 Enterococcus_faecalis Parabacteroides_merdae ++++ SPC10001 SPC10048 Erysipelotrichaceae_bacterium Parabacteroides_merdae SPC00001 SPC10048 Escherichia_coli Parabacteroides_merdae ++++ SPC00022 SPC10048 Eubacterium_eligens Parabacteroides_merdae SPC00054 SPC10048 Faecalibacterium_prausnitzii Parabacteroides_merdae + SPC00056 SPC10048 Odoribacter_splanchnicus Parabacteroides_merdae SPC10048 SPC10048 Parabacteroides_merdae Parabacteroides_merdae +++ SPC00061 SPC10048 Roseburia_intestinalis Parabacteroides_merdae SPC00015 SPC10048 Streptococcus_thermophilus Parabacteroides_merdae SPC00006 SPC00061 Bacteroides_sp_1_1_6 Roseburia_intestinalis ++++ SPC00007 SPC00061 Bacteroides_sp_3_1_23 Roseburia_intestinalis + SPC00005 SPC00061 Bacteroides_vulgatus Roseburia_intestinalis + SPC00021 SPC00061 Blautia_producta Roseburia_intestinalis ++++ SPC00026 SPC00061 Clostridium_nexile Roseburia_intestinalis − SPC00027 SPC00061 Clostridium_sp_HGF2 Roseburia_intestinalis −−− SPC00009 SPC00061 Coprobacillus_sp_D7 Roseburia_intestinalis − SPC00018 SPC00061 Dorea_formicigenerans Roseburia_intestinalis SPC00057 SPC00061 Dorea_longicatena Roseburia_intestinalis − SPC00008 SPC00061 Enterococcus_faecalis Roseburia_intestinalis ++++ SPC00001 SPC00061 Escherichia_coli Roseburia_intestinalis ++++ SPC00022 SPC00061 Eubacterium_eligens Roseburia_intestinalis SPC00054 SPC00061 Faecalibacterium_prausnitzii Roseburia_intestinalis SPC00056 SPC00061 Odoribacter_splanchnicus Roseburia_intestinalis − SPC00061 SPC00061 Roseburia_intestinalis Roseburia_intestinalis SPC00015 SPC00061 Streptococcus_thermophilus Roseburia_intestinalis SPC10415 SPC10470 Blautia_producta Ruminococcus_bromii ++++ SPC10256 SPC10470 Clostridium butyricum Ruminococcus_bromii ++++ SPC10358 SPC10470 Clostridium orbiscindens Ruminococcus_bromii SPC10325 SPC10470 Clostridium_bolteae Ruminococcus_bromii +++ SPC10167 SPC10470 Clostridium_disporicum Ruminococcus_bromii SPC10313 SPC10470 Clostridium_hylemonae Ruminococcus_bromii SPC10202 SPC10470 Clostridium_innocuum Ruminococcus_bromii ++++ SPC10238 SPC10470 Clostridium_mayombei Ruminococcus_bromii ++++ SPC10355 SPC10470 Clostridium_symbiosum Ruminococcus_bromii ++++ SPC10155 SPC10470 Clostridium_tertium Ruminococcus_bromii ++++ SPC10097 SPC10470 Collinsella_aerofaciens Ruminococcus_bromii ++++ SPC10304 SPC10470 Coprococcus_comes Ruminococcus_bromii ++++ SPC10567 SPC10470 Eubacterium_rectale Ruminococcus_bromii + SPC10386 SPC10470 Faecalibacterium_prausnitzii Ruminococcus_bromii SPC10390 SPC10470 Lachnospiraceae_bacterium_5_1_57FAA Ruminococcus_bromii ++++ SPC10470 SPC10470 Ruminococcus_bromii Ruminococcus_bromii − SPC10468 SPC10470 Ruminococcus_gnavus Ruminococcus_bromii ++++ SPC10415 SPC10468 Blautia_producta Ruminococcus_gnavus ++++ SPC10256 SPC10468 Clostridium butyricum Ruminococcus_gnavus ++++ SPC10358 SPC10468 Clostridium orbiscindens Ruminococcus_gnavus ++++ SPC10325 SPC10468 Clostridium_bolteae Ruminococcus_gnavus ++++ SPC10167 SPC10468 Clostridium_disporicum Ruminococcus_gnavus ++++ SPC10313 SPC10468 Clostridium_hylemonae Ruminococcus_gnavus +++ SPC10202 SPC10468 Clostridium_innocuum Ruminococcus_gnavus ++++ SPC10238 SPC10468 Clostridium_mayombei Ruminococcus_gnavus ++++ SPC10355 SPC10468 Clostridium_symbiosum Ruminococcus_gnavus ++++ SPC10155 SPC10468 Clostridium_tertium Ruminococcus_gnavus ++++ SPC10097 SPC10468 Collinsella_aerofaciens Ruminococcus_gnavus ++++ SPC10304 SPC10468 Coprococcus_comes Ruminococcus_gnavus ++++ SPC10386 SPC10468 Faecalibacterium_prausnitzii Ruminococcus_gnavus ++++ SPC10390 SPC10468 Lachnospiraceae_bacterium_5_1_57FAA Ruminococcus_gnavus ++++ SPC10470 SPC10468 Ruminococcus_bromii Ruminococcus_gnavus ++++ SPC10468 SPC10468 Ruminococcus_gnavus Ruminococcus_gnavus +++ SPC10030 SPC10197 Bacteroides_ovatus Ruminococcus_obeum SPC00006 SPC10197 Bacteroides_sp_1_1_6 Ruminococcus_obeum +++ SPC00007 SPC10197 Bacteroides_sp_3_1_23 Ruminococcus_obeum +++ SPC10019 SPC10197 Bacteroides_sp_D20 Ruminococcus_obeum SPC00005 SPC10197 Bacteroides_vulgatus Ruminococcus_obeum ++++ SPC10081 SPC10197 Bacteroides_vulgatus Ruminococcus_obeum SPC00021 SPC10197 Blautia_producta Ruminococcus_obeum ++++ SPC00026 SPC10197 Clostridium_nexile Ruminococcus_obeum − SPC00027 SPC10197 Clostridium_sp_HGF2 Ruminococcus_obeum −− SPC10097 SPC10197 Collinsella_aerofaciens Ruminococcus_obeum ++++ SPC00009 SPC10197 Coprobacillus_sp_D7 Ruminococcus_obeum + SPC00080 SPC10197 Coprococcus_catus Ruminococcus_obeum SPC00018 SPC10197 Dorea_formicigenerans Ruminococcus_obeum ++++ SPC00057 SPC10197 Dorea_longicatena Ruminococcus_obeum − SPC00008 SPC10197 Enterococcus_faecalis Ruminococcus_obeum ++++ SPC10001 SPC10197 Erysipelotrichaceae_bacterium Ruminococcus_obeum SPC00001 SPC10197 Escherichia_coli Ruminococcus_obeum +++ SPC10110 SPC10197 Escherichia_coli Ruminococcus_obeum ++++ SPC00022 SPC10197 Eubacterium_eligens Ruminococcus_obeum + SPC00054 SPC10197 Faecalibacterium_prausnitzii Ruminococcus_obeum SPC00056 SPC10197 Odoribacter_splanchnicus Ruminococcus_obeum − SPC10048 SPC10197 Parabacteroides_merdae Ruminococcus_obeum SPC00061 SPC10197 Roseburia_intestinalis Ruminococcus_obeum SPC10197 SPC10197 Ruminococcus_obeum Ruminococcus_obeum ++++ SPC00015 SPC10197 Streptococcus_thermophilus Ruminococcus_obeum +++ SPC10211 SPC10233 Bacteroides_caccae Ruminococcus_torques ++++ SPC10213 SPC10233 Bacteroides_eggerthii Ruminococcus_torques ++++ SPC10030 SPC10233 Bacteroides_ovatus Ruminococcus_torques ++++ SPC00006 SPC10233 Bacteroides_sp_1_1_6 Ruminococcus_torques ++++ SPC00007 SPC10233 Bacteroides_sp_3_1_23 Ruminococcus_torques ++++ SPC10019 SPC10233 Bacteroides_sp_D20 Ruminococcus_torques ++ SPC00005 SPC10233 Bacteroides_vulgatus Ruminococcus_torques ++++ SPC10081 SPC10233 Bacteroides_vulgatus Ruminococcus_torques ++++ SPC00021 SPC10233 Blautia_producta Ruminococcus_torques ++++ SPC00026 SPC10233 Clostridium_nexile Ruminococcus_torques + SPC00027 SPC10233 Clostridium_sp_HGF2 Ruminococcus_torques SPC10097 SPC10233 Collinsella_aerofaciens Ruminococcus_torques ++++ SPC00009 SPC10233 Coprobacillus_sp_D7 Ruminococcus_torques ++++ SPC00080 SPC10233 Coprococcus_catus Ruminococcus_torques + SPC00018 SPC10233 Dorea_formicigenerans Ruminococcus_torques ++++ SPC00057 SPC10233 Dorea_longicatena Ruminococcus_torques SPC00008 SPC10233 Enterococcus_faecalis Ruminococcus_torques ++++ SPC10001 SPC10233 Erysipelotrichaceae_bacterium Ruminococcus_torques + SPC00001 SPC10233 Escherichia_coli Ruminococcus_torques ++++ SPC10110 SPC10233 Escherichia_coli Ruminococcus_torques ++++ SPC00022 SPC10233 Eubacterium_eligens Ruminococcus_torques ++ SPC00054 SPC10233 Faecalibacterium_prausnitzii Ruminococcus_torques SPC00056 SPC10233 Odoribacter_splanchnicus Ruminococcus_torques SPC10048 SPC10233 Parabacteroides_merdae Ruminococcus_torques + SPC00061 SPC10233 Roseburia_intestinalis Ruminococcus_torques + SPC10197 SPC10233 Ruminococcus_obeum Ruminococcus_torques ++++ SPC10233 SPC10233 Ruminococcus_torques Ruminococcus_torques ++++ SPC00015 SPC10233 Streptococcus_thermophilus Ruminococcus_torques + SPC00006 SPC00015 Bacteroides_sp_1_1_6 Streptococcus_thermophilus +++ SPC00007 SPC00015 Bacteroides_sp_3_1_23 Streptococcus_thermophilus +++ SPC00005 SPC00015 Bacteroides_vulgatus Streptococcus_thermophilus + SPC00009 SPC00015 Coprobacillus_sp_D7 Streptococcus_thermophilus + SPC00008 SPC00015 Enterococcus_faecalis Streptococcus_thermophilus ++++ SPC00001 SPC00015 Escherichia_coli Streptococcus_thermophilus + SPC00015 SPC00015 Streptococcus_thermophilus Streptococcus_thermophilus