A pesticidal composition comprises a synergistically effective amount of a chloride channel activator compound and a pesticide selected from N-(3-chloro-1-(pyridin-3-yl)-1H-pyrazol-4-yl)-N-ethyl-((3,3,3 -trifluoropropyl)thio) propanamide (I), N-(3-chloro-1-(pyridine-3-yl)-1H-pyrazol-4-yl)-N-ethyl-((3,3,3,3-trifluoropropyl) sulfinyl)propanamide (II), or any agriculturally acceptable salt thereof. A method of controlling pests comprises applying the pesticidal composition near a population of pests. A method of protecting a plant from infestation and attack by pests comprises contacting the plant with the synergistic pesticidal composition.
1. A pesticidal composition comprising a synergistically effective amount of: a chloride channel activator compound; and a pesticide selected from N-(3-chloro-1-(pyridin-3-yl)-1H-pyrazol-4-yl)-N-ethyl-3-((3,3,3-rifluoropropyl)thio)propanamide (I), N-(3-chloro-1-(pyridin-3-yl)-1H-pyrazol-4-yl)-N-ethyl-3-((3,3,3-trifluoropropyl)sulfinyl)propanamide (II), or any agriculturally acceptable salt thereof. 2. The composition of 3. The composition of 4. The composition of 5. The composition of 6. The composition of 7. The composition of 8. The composition of 9. The composition of 10. The composition of 11. The composition of 12. The composition of 13. The composition of 14. The composition of 15. The composition of wherein, X is the parts by weight of the pesticide (I), (II), or any agriculturally acceptable salt thereof, and the numerical range is 0<X≦20; Y is the parts by weight of the chloride channel activator compound, and the numerical range is 0<Y≦20. 16. The composition of wherein one of the following conditions is satisfied: (a) X1>Y1and X2<Y2; or (b) X1>Y1and X2>Y2; or (c) X1<Y1and X2<Y2. 17. A method of controlling pests comprising applying the pesticidal composition of 18. The method of 19. The method of 20. The method of 21. The method of 22. The method of 23. The method of 24. A method for protecting a plant from infestation and attack by pests, the method comprising contacting the plant with the pesticidal composition of 25. The method of 26. The method of 27. The method of 28. The method of
This application claims the benefit of the filing date of U.S. Provisional Patent Application Ser. No. 61/894,167, filed Oct. 22, 2013, for “SYNERGISTIC PESTICIDAL COMPOSITIONS AND RELATED METHODS,” pending, the disclosure of which is hereby incorporated herein in its entirety by this reference. This disclosure relates to the field of compounds having pesticidal utility against pests in Phyla Nematoda, Arthropoda, and/or Mollusca, processes to produce such compounds and intermediates used in such processes. These compounds may be used, for example, as nematicides, acaricides, miticides, and/or molluscicides. Controlling pest populations is essential to human health, modern agriculture, food storage, and hygiene. There are more than ten thousand species of pests that cause losses in agriculture and the worldwide agricultural losses amount to billions of U.S. dollars each year. Accordingly, there exists a continuous need for new pesticides and for methods of producing and using such pesticides. The Insecticide Resistance Action Committee (IRAC) has classified insecticides into categories based on the best available evidence of the mode of action of such insecticides. Insecticides in the IRAC Mode of Action Group 6 are chloride channel activators. The insecticides in this class are believed to allosterically activate glutamate-gated chloride channels (GluCls), causing paralysis of the affected insects. Glutamate has been reported an important inhibitory neurotransmitter in insects. The insecticides in this class may be avermectins-based compounds or milbemycins-based compounds. Examples of these insecticides may include abamectin, emamectin benzoate, lepimectin, or milbemectin. Emamectin benzoate is a 4′-deoxy-4′-methyl-amino benzoate salt of avermectin B1 (abamectin). Abamectin is a mixture of avermectins containing more than 80% of avermectin B1a, which is (10E,14E,16E)-(1R,4S,5′S,6S,6′R,8R,12S,13S,20R, 21R,24S)-6′-[(S)-sec-butyl]-21,24-dihydroxy-5′,11,13,22-tetramethyl-2-oxo-(3,7,19-trioxatetracyclo [15.6.1.14,8.020,24,]pentacosa-10,14,16,22-tetraene)-6-spiro-2′-(5′,6′-dihydro-2′H-pyran)-12-yl 2,6-dideoxy-3-O-methyl-4-O-(2,4,6-trideoxy-3-O-methyl-4-methylamino-α-L-lyxo-hexapyranosyl)-α-L-arabino-hexapyranoside, and less than 20% of avermectin B1b, which is (10E,14E,16E)-(1R,4S,5′S,6S,6′R,8R,12S, 13S,20R,21R,24S)-21,24-dihydroxy-6′-isopropyl-5′, 11,13,22-tetramethyl-2-oxo-(3,7,19-trioxa tetracyclo[15.6.1.14,8.020,24]pentacosa-10,14,16,22-tetraene)-6-spiro-2′-(5′,6′-dihydro-2′H-pyran)-12-yl-2,6-dideoxy-3-O-methyl-4-O-(2,4,6-trideoxy-3-O-methyl-4-methylamino-α-L-lyxo-hexapyranosyl)-α-L-arabino-hexapyranoside. Although the rotational application of pesticides having different modes of action may be adopted for good pest management practice, this approach does not necessarily give satisfactory insect control. Furthermore, even though combinations of pesticides have been studied, a high synergistic action has not always been found. As used herein, the term “synergistic effect” or grammatical variations thereof means and includes a cooperative action encountered in a combination of two or more active compounds in which the combined activity of the two or more active compounds exceeds the sum of the activity of each active compound alone. The term “synergistically effective amount,” as used herein, means and includes an amount of two or more active compounds that provides a synergistic effect defined above. The term “pesticidally effective amount,” as used herein, means and includes an amount of active pesticide that causes an adverse effect to the at least one pest, wherein the adverse effect may include deviations from natural development, killing, regulation, or the like. As used herein, the term “control” or grammatical variations thereof means and includes regulating the number of living pests or regulating the number of viable eggs of the pests or both. The term “chloride channel activator compound,” as used herein, means and includes any insecticides that are classified by the Insecticide Resistance Action Committee (IRAC), based on the best available evidence of the mode of action, to be within the IRAC Mode of Action Group 6. In one particular embodiment, a pesticidal composition comprises a synergistically effective amount of a chloride channel activator compound in combination with a pesticide selected from N-(3-chloro-1-(pyridin-3-yl)-1H-pyrazol-4-yl)-N-ethyl-3-((3,3,3-trifluoropropyl)thio)propanamide (I), N-(3-chloro-1-(pyridin-3-yl)-1H-pyrazol-4-yl)-N-ethyl-3-((3,3,3-trifluoropropyl)sulfinyl)propanamide (II), or any agriculturally acceptable salt thereof. It is appreciated that a pesticide selected from N-(3-chloro-1-(pyridin-3-yl)-1H-pyrazol-4-yl)-N-ethyl-3-((3,3,3-trifluoropropyl)thio) propanamide (I), N-(3-chloro-1-(pyridin-3 -yl)-1H-pyrazol-4-yl)-N-ethyl-3-((3,3,3-trifluoropropyl)sulfinyl)propanamide (II), or any agriculturally acceptable salt thereof may be oxidized to the corresponding sulfone in the presence of oxygen. As shown in the examples, the existence of synergistic effect is determined using the method described in Colby S. R., “Calculating Synergistic and Antagonistic Responses of Herbicide Combinations,” Weeds, 1967, 15, 20-22. Surprisingly, it has been found that the pesticidal composition of the present disclosure has superior pest control at lower levels of the combined concentrations of the chloride channel activator compound and the pesticide (I), (II), or any agriculturally acceptable salt thereof employed than that which may be achieved when the chloride channel activator compound and the pesticide (I), (II), or any agriculturally acceptable salt thereof are applied alone. In other words, the synergistic pesticidal composition is not a mere admixture of two active compounds resulting in the aggregation of the properties of the active compounds employed in the composition. In some embodiments, the pesticidal compositions may comprise a synergistically effective amount of an avermectins-based compound in combination with a pesticide selected from N-(3-chloro-1-(pyridin-3-yl)-1H-pyrazol-4-yl)-N-ethyl-3-((3,3,3-trifluoropropyl)thio)propanamide (I), N-(3-chloro-1-(pyridin-3-yl)-1H-pyrazol-4-yl)-N-ethyl-3-((3,3,3-trifluoropropyl)sulfinyl) propanamide (II) or any agriculturally acceptable salt thereof. In other embodiments, the pesticidal compositions may comprise a synergistically effective amount of a milbemycins-based compound in combination with a pesticide selected from N-(3-chloro-1-(pyridin-3-yl)-1H-pyrazol-4-yl)-N-ethyl-3-((3,3,3-trifluoropropyl)thio)propanamide (I), N-(3-chloro-1-(pyridin-3-yl)-1H-pyrazol-4-yl)-N-ethyl-3-((3,3,3-trifluoropropyl)sulfinyl) propanamide (II) or any agriculturally acceptable salt thereof. In further embodiments, the pesticidal compositions may comprise a synergistically effective amount of a pesticide selected from (I), (II), or any agriculturally acceptable salt thereof in combination with at least one of abamectin, emamectin benzoate, lepimectin, and milbemectin. In still further embodiments, the pesticidal compositions may comprise a synergistically effective amount of emamectin benzoate in combination with a pesticide selected from N-(3-chloro-1-(pyridin-3-yl)-1H-pyrazol-4-yl)-N-ethyl-3-((3,3,3-trifluoropropyl)thio) propanamide (I), N-(3-chloro-1-(pyridin-3-yl)-1H-pyrazol-4-yl)-N-ethyl-3-((3,3,3-trifluoropropyl) sulfinyl)propanamide (II) or any agriculturally acceptable salt thereof. Table 1A shows weight ratios of the pesticide (I), (II), or any agriculturally acceptable salt thereof to the chloride channel activator compound in the synergistic pesticidal compositions. In some embodiments, the weight ratio of the pesticide to the chloride channel activator compound may be between about 20:1 and about 1:20. In some embodiments, the weight ratio of the pesticide to the chloride channel activator compound may be between about 15:1 and about 1:15. In some embodiments, the weight ratio of the pesticide to the chloride channel activator compound may be between about 10:1 and about 1:10. In some embodiments, the weight ratio of the pesticide to the chloride channel activator compound may be between about 5:1 and about 1:5. In some embodiments, the weight ratio of the pesticide to the chloride channel activator compound may be between about 4:1 and about 1:4. In some embodiments, the weight ratio of the pesticide to the chloride channel activator compound may be between about 3:1 and about 1:3. In some embodiments, the weight ratio of the pesticide to the chloride channel activator compound may be between about 2:1 and about 1:2. In some embodiments, the weight ratio of the pesticide to the chloride channel activator compound may be about 1:1. Additionally, the weight ratio limits of the pesticide to the chloride channel activator compound in the aforementioned embodiments may be interchangeable. By way of non-limiting example, the weight ratio of the pesticide to the chloride channel activator compound may be between about 1:3 and about 20:1. Weight ratios of the pesticide (I), (II), or any agriculturally acceptable salt thereof to the chloride channel activator compound envisioned to be synergistic pesticidal compositions may be depicted as X:Y; wherein X is the parts by weight of the pesticide (I), (II), or any agriculturally acceptable salt thereof, and Y is the parts by weight of the chloride channel activator compound. The numerical range of the parts by weight for X is 0<X≦20 and the parts by weight for Y is 0<Y≦20 as shown graphically in table 1B. By way of non-limiting example, the weight ratio of the pesticide to the chloride channel activator compound may be about 20:1. Ranges of weight ratios of the pesticide (I), (II), or any agriculturally acceptable salt thereof to the chloride channel activator compound envisioned to be synergistic pesticidal compositions may be depicted as X1:Y1to X2:Y2, wherein X and Y are defined as above. In one particular embodiment, the range of weight ratios may be X1:Y1to X2:Y2, wherein X1>Y1and X2<Y2. By way of non-limiting example, the range of weight ratios of the pesticide to the chloride channel activator compound may be between about 3:1 and about 1:3. In some embodiments, the range of weight ratios may be X1:Y1to X2:Y2, wherein X1>Y1and X2>Y2. By way of non-limiting example, the range of weight ratios of the pesticide to the chloride channel activator compound may be between about 15:1 and about 3:1. In further embodiments, the range of weight ratios may be X1:Y1to X2:Y2, wherein X1<Y1and X2<Y2. By way of non-limiting example, the range of weight ratios of the pesticide to the chloride channel activator compound may be between about 1:3 and about 1:20. Table 1C shows further weight ratios of the pesticide (I), (II), or any agriculturally acceptable salt thereof to the chloride channel activator compound in the synergistic pesticidal compositions, according to particular embodiments of present disclosure. In some particular embodiments, the weight ratio of the pesticide (I), (II), or any agriculturally acceptable salt thereof to the chloride channel activator compound may be no more than about 2048:1. In further embodiments, the weight ratio of the pesticide to the chloride channel activator compound may be no more than about 256:1. In further embodiments, the weight ratio of the pesticide to the chloride channel activator compound may be no more than about 64:1. In further embodiments, the weight ratio of the pesticide to the chloride channel activator compound may be no more than about 32:1. In yet further embodiments, the weight ratio of the pesticide to the chloride channel activator compound may be no more than about 16:1. The weight ratio of the pesticide (I), (II), or any agriculturally acceptable salt thereof to the chloride channel activator compound in the synergistic pesticidal composition may be varied and different from those described in table 1A, table 1B, and table 1C. One skilled in the art recognizes that the synergistic effective amount of the combination of active compounds may vary accordingly to various prevailing conditions. Non-limiting examples of such prevailing conditions may include the type of pests, the type of crops, the mode of application, the application timing, the weather conditions, the soil conditions, the topographical character, or the like. It is understood that one skilled in the art may readily determine the synergistic effective amount of the chloride channel activator compound and the pesticide (I), (II), or any agriculturally acceptable salt thereof accordingly to the prevailing conditions. In some embodiments, the pesticidal composition may comprise a synergistically effective amount of a chloride channel activator compound in combination with a pesticide selected from N-(3-chloro-1-(pyridin-3-yl)-1H-pyrazol-4-yl)-N-ethyl-3-((3,3,3-trifluoropropyl)thio) propanamide (I), N-(3-chloro-1-(pyridin-3-yl)-1H-pyrazol-4-yl)-N-ethyl-3-((3,3,3-trifluoropropyl) sulfinyl)propanamide (II), or any agriculturally acceptable salt thereof, and a phytologically-acceptable inert carrier (e.g., solid carrier, or liquid carrier). In further embodiments, the pesticidal composition may further comprise at least one additive selected from a surfactant, a stabilizer, an emetic agent, a disintegrating agent, an antifoaming agent, a wetting agent, a dispersing agent, a binding agent, dye, filler, or combinations thereof. In particular embodiments, each of the active compounds (a chloride channel activator compound and a pesticide selected from N-(3-chloro-1-(pyridin-3-yl)-1H-pyrazol-4-yl)-N-ethyl-3-((3,3,3-trifluoropropyl)thio)propanamide (I), N-(3-chloro-1-(pyridin-3-yl)-1H-pyrazol-4-yl)-N-ethyl-3((3,3,3-trifluoropropyl)sulfinyl)propanamide (II), or any agriculturally acceptable salt thereof) may be formulated separately as a wettable powder, emulsifiable concentrate, aqueous or liquid flowable, suspension concentrate or any one of the conventional formulations used for pesticides, and then tank-mixed in the field with water or other liquid for application as a liquid spray mixture. When desired, the separately formulated pesticides may also be applied sequentially. In some embodiments, the synergistic pesticidal composition may be formulated into a more concentrated primary composition, which is then diluted with water or other diluent before use. In such embodiments, the synergistic pesticidal composition may further comprise a surface active agent. In one particular embodiment, the method of protecting a plant from infestation and attack by pests comprises contacting the plant with a pesticidal composition comprising a synergistically effective amount of a chloride channel activator compound in combination with a pesticide selected from N-(3-chloro-1-(pyridin-3-yl)-1H-pyrazol-4-yl)-N-ethyl-3-((3,3,3-trifluoropropyl)thio)propanamide (I), N-(3-chloro-1-(pyridin-3-yl)-1H-pyrazol-4-yl)-N-ethyl-3-((3,3,3-trifluoropropyl)sulfinyl)propanamide (II), or any agriculturally acceptable salt thereof. In some embodiments, the pesticidal compositions may be in the form of solid. Non-limiting examples of the solid forms may include powder, dust or granular formulations. In other embodiments, the pesticidal compositions may be in the form of liquid formulation. Examples of the liquid forms may include, but are not limited to, dispersion, suspension, emulsion or solution in appropriate liquid carrier. In particular embodiments, the synergistic pesticidal compositions may be in the form of liquid dispersion, wherein the synergistic pesticidal compositions may be dispersed in water or other agriculturally suitable liquid carrier. In certain embodiments, the synergistic pesticidal compositions may be in the form of solution in an appropriate organic solvent. In one embodiment, the spray oils, which are widely used in agricultural chemistry, may be used as the organic solvent for the synergistic pesticidal compositions. In one particular embodiment, the method of controlling pests comprises applying a pesticidal composition near a population of pests, wherein the pesticidal composition comprises a synergistically effective amount of a chloride channel activator compound in combination with a pesticide selected from N-(3-chloro-1-(pyridin-3-yl)-1H-pyrazol-4-yl)-N-ethyl-3-((3,3,3-trifluoropropyl)thio)propanamide (I), N-(3-chloro-1-(pyridin-3-yl)-1H-pyrazol-4-yl)-N-ethyl-3-((3,3,3-trifluoropropyl)sulfinyl)propanamide (II), or any agriculturally acceptable salt thereof. In some embodiments, the method of controlling pests comprises applying a pesticidal composition near a population of pests, wherein the pesticidal composition comprises a synergistically effective amount of an avermectins-based or a milbemycins-based compound in combination with a pesticide selected from N-(3-chloro-1-(pyridin-3-yl)-1H-pyrazol-4-yl)-N-ethyl-3-((3,3,3-trifluoropropyl)thio)propanamide (I), N-(3-chloro-1-(pyridin-3-yl)-1H-pyrazol-4-yl)-N-ethyl-3-((3,3,3-trifluoropropyl)sulfinyl)propanamide (II) or any agriculturally acceptable salt thereof. In other embodiments, the method of controlling pests comprises applying a pesticidal composition near a population of pests, wherein the pesticidal composition comprises a synergistically effective amount of the pesticide in combination with at least one of abamectin, emamectin benzoate, lepimectin, and milbemectin. In further embodiments, the method of controlling pests comprises applying a pesticidal composition near a population of pests, wherein the pesticidal composition comprises a synergistically effective amount of emamectin benzoate in combination with a pesticide selected from N-(3-chloro-1-(pyridin-3-yl)-1H-pyrazol-4-yl)-N-ethyl-3-((3,3,3-trifluoropropyl)thio) propanamide (I), N-(3-chloro-1-(pyridin-3-yl)-1H-pyrazol-4-yl)-N-ethyl-3-((3,3,3-trifluoropropyl) sulfinyl)propanamide (II) or any agriculturally acceptable salt thereof. The control of pests may be achieved by applying a pesticidally effective amount of the synergistic pesticidal compositions in form of sprays, topical treatment, gels, seed coatings, microcapsulations, systemic uptake, baits, eartags, boluses, foggers, fumigants aerosols, dusts, or the like. These disclosed pesticidal compositions may be used, for example, as nematicides, acaricides, miticides, and/or molluscicides. The pesticidal composition of the present disclosure may be used to control a wide variety of insects. As a non-limiting example, in one or more embodiments, the pesticidal composition may be used to control one or more members of at least one of Phylum Arthropoda, Phylum Nematoda, Subphylum Chelicerata, Subphylum Myriapoda, Subphylum Hexapoda, Class Insecta, Class Arachnida, and Class Symphyla. In at least some embodiments, the method of the present disclosure may be used to control one or more members of at least one of Class Insecta and Class Arachnida. As a non-limiting example, in one or more embodiments, the method of the present disclosure may be used to control one or more members of at least one of Phylum Arthropoda, Phylum Nematoda, Subphylum Chelicerata, Subphylum Myriapoda, Subphylum Hexapoda, Class Insecta, Class Arachnida, and Class Symphyla. In at least some embodiments, the method of the present disclosure may be used to control one or more members of at least one of Class Insecta and Class Arachnida. In additional embodiments, the method of the present disclosure may be used to control members of the Order Coleoptera (beetles) including, but not limited to, In other embodiments, the method of the present disclosure may also be used to control members of the Order Dermaptera (earwigs). In additional embodiments, the method of the present disclosure may be used to control members of the Order Dictyoptera (cockroaches) including, but is not limited to, In further embodiments, the method of the present disclosure may be used to control members of the Order Diptera (true flies) including, but is not limited to, In other embodiments, the method of the present disclosure may be used to control members of the Order Hemiptera Sub-order Heteroptera (true bugs) including, but is not limited to, In additional embodiments, the method of the present disclosure may be used to control members of the Order Hemiptera, Sub-orders Auchenorrhyncha (Free-living Hemipterans) and Sternorrhyncha (Plant-parasitic Hemipterans) (aphids, scales, whiteflies, leaflhoppers) including, but is not limited to, In other embodiments, the method of the present disclosure may be used to control members of the Order Hymenoptera (ants, wasps, and sawflies) including, but not limited to, In certain embodiments, the method of the present disclosure may be used to control members of the Order Isoptera (termites) including, but not limited to, In additional embodiments, the method of the present disclosure may be used to control members of the Order Lepidoptera (moths and butterflies) including, but not limited to, The method of the present disclosure may be used to also control members of the Order Mallophaga (chewing lice) including, but not limited to, In additional embodiments, the method of the present disclosure may be used to control members of the Order Orthoptera (grasshoppers, locusts, and crickets) including, but not limited to, In other embodiments, the method of the present disclosure may be used to control members of the Order Phthiraptera (sucking lice) including, but not limited to, In particular embodiments, the method of the present disclosure may be used to control members of the Order Siphonaptera (fleas) including, but not limited to, In additional embodiments, the method of the present disclosure may be used to control members of the Order Thysanoptera (thrips) including, but not limited to, The method of the present disclosure may be used to also control members of the Order Thysanura (bristletails) including, but not limited to, In further embodiments, the method of the present disclosure may be used to control members of the Order Acari (mites and ticks) including, but not limited to, In additional embodiments, the method of the present disclosure may be used to control members of the Order Nematoda (nematodes) including, but not limited to, In at least some embodiments, the method of the present disclosure may be used to control at least one insect in one or more of the Orders Lepidoptera, Coleoptera, Hemiptera, Thysanoptera, Isoptera, Orthoptera, Diptera, Hymenoptera, and Siphonaptera, and at least one mite in the Order Acari. In some embodiments, the method of controlling an insect may comprise applying a pesticidal composition near a population of pests, wherein the pesticidal composition comprises a synergistically effective amount of a chloride channel activator compound in combination with a pesticide selected from N-(3 -chloro-1-(pyridin-3-yl)-1H-pyrazol-4-yl)-N-ethyl-3-((3,3,3-trifluoropropyl)thio)propanamide (I), N-(3-chloro-1-(pyridin-3-yl)-1H-pyrazol-4-yl)-N-ethyl-3-((3,3,3-trifluoropropyl)sulfinyl)propanamide (II) or any agriculturally acceptable salt thereof, and wherein the pests comprise sap feeding insects, chewing insects, or both. In other embodiments, the method of controlling an insect may comprise applying a pesticidal composition near a population of pests, wherein the pesticidal composition comprises a synergistically effective amount of a pesticide selected from N-(3-chloro-1-(pyridin-3-yl)-1H-pyrazol-4-yl)-N-ethyl-3-((3,3,3-trifluoropropyl)thio)propanamide (I), N-(3-chloro-1-(pyridin-3-yl)-1H-pyrazol-4-yl)-N-ethyl-3-((3,3,3-trifluoropropyl)sulfinyl)propanamide (II) or any agriculturally acceptable salt thereof, and at least one of abamectin, emamectin benzoate, lepimectin, and milbemectin, wherein the pests comprise sap feeding insects, chewing insects, or both. In further embodiments, the method of controlling an insect may comprise applying a pesticidal composition near a population of pests, wherein the pesticidal composition comprises a synergistically effective amount of an avermectins-based or a milbemycins-based compound in combination with a pesticide selected from N-(3-chloro-1-(pyridin-3-yl)-1H-pyrazol-4-yl)-N-ethyl-3-((3,3,3-trifluoropropyl)thio)propanamide (I), N-(3-chloro-1-(pyridin-3-yl)-1H-pyrazol-4-yl)-N-ethyl-3-((3,3,3-trifluoropropyl)sulfinyl)propanamide (II) or any agriculturally acceptable salt thereof, wherein the pests comprise at least one of diamondback moth, In yet further embodiments, the method of controlling an insect may comprise applying a pesticidal composition near a population of pests, wherein the pesticidal composition comprises a synergistically effective amount of emamectin benzoate and a pesticide selected from N-(3-chloro-1-(pyridin-3-yl)-1H-pyrazol-4-yl)-N-ethyl-3-((3,3,3-trifluoropropyl)thio)propanamide (I), N-(3-chloro-1-(pyridin-3-yl)-1H-pyrazol-4-yl)-N-ethyl-3-((3,3,3-trifluoropropyl)sulfinyl) propanamide (II), or any agriculturally acceptable salt thereof, and wherein the pests comprise at least one of diamondback moth, In one embodiment of present disclosure, the pesticidal composition may be used in conjunction (such as, in a compositional mixture, or a simultaneous or sequential application) with one or more compounds having acaricidal, algicidal, avicidal, bactericidal, fungicidal, herbicidal, insecticidal, molluscicidal, nematicidal, rodenticidal, and/or virucidal properties. In another embodiment of present disclosure, the pesticidal composition may be used in conjunction (such as, in a compositional mixture, or a simultaneous or sequential application) with one or more compounds that are antifeedants, bird repellents, chemosterilants, herbicide safeners, insect attractants, insect repellents, mammal repellents, mating disrupters, plant activators, plant growth regulators, and/or synergists. The pesticidal compositions of present disclosure show a synergistic effect, providing superior pest control at lower pesticidally effective amounts of the combined active compounds than when a chloride channel activator compound or a pesticide selected from N-(3-chloro-1-(pyridin-3-yl)-1H-pyrazol-4-yl)-N-ethyl-3-((3,3,3-trifluoropropyl)thio) propanamide (I), N-(3-chloro-1-(pyridin-3-yl)-1H-pyrazol-4-yl)-N-ethyl-3-((3,3,3-trifluoropropyl)sulfinyl) propanamide (II), or any agriculturally acceptable salt thereof is used alone. The pesticidal compositions of present disclosure may have high synergistic pest control and allow for a lower effective dosage rate, an increased environmental safety, and a reduced incidence of pest resistance. The following examples serve to explain embodiments of the present invention in more detail. These examples should not be construed as being exhaustive or exclusive as to the scope of this disclosure. A dry five-liter round bottom flask equipped with magnetic stirrer, nitrogen inlet, reflux condenser, and thermometer, was charged with 3-((3,3,3-trifluoropropyl)thio)propanoic acid (prepared as described in the PCT Publication No. WO 2013/062981 to Niyaz et al.) (188 g, 883 mmol) in dichloromethane (CH2Cl2) (3 L). Thionyl chloride (525 g, 321 mL, 4.42 mol) was added dropwise over 50 minutes. The reaction mixture was heated to reflux (about 36° C.) for two hours, then cooled to room temperature (about 22° C.). The resulting mixture was concentrated under vacuum on a rotary evaporator, followed by distillation (40 Torr, product collected at a temperature of from about 123° C. to about 127° C.) to provide the title compound as a clear colorless liquid (177.3 g, 86%):1H NMR (400 MHz, CDCl3) δ 3.20 (t, J=7.1 Hz, 2H), 2.86 (t, J=7.1 Hz, 2H), 2.78-2.67 (m, 2H), 2.48-2.31 (m, 2H);19F NMR (376 MHz, CDCl3) δ −66.42, −66.43, −66.44, −66.44. To a solution of 3-chloro-N-ethyl-1-(pyridin-3-yl)-1H-pyrazol-4-amine (prepared as described in the U.S. Publication No. 2012/0110702 to Yap et al.) (10 g, 44.9 mmol) in CH2Cl2(100 mL) at a temperature of about 0° C. and under N2was added pyridine (5.45 mL, 67.4 mmol), 4-dimethylaminopyridine (DMAP) (2.74 g, 22.45 mmol), and 3-((3,3,3-trifluoropropyl)thio) propanoyl chloride (9.91 g, 44.9 mmol), sequentially. The reaction was warmed to room temperature and stirred for one hour. The reaction mixture was poured into water (100 mL), and the resulting mixture was stirred for five minutes. The mixture was transferred to a separatory funnel, and the layers were separated. The aqueous phase was extracted with CH2Cl2(3×50 mL), and the combined organic extracts were dried over sodium sulfate (Na2SO4), filtered, and concentrated in vacuo. The crude product was purified via normal phase flash chromatography (0% to 100% EtOAc/CH2Cl2) to provide the desired product as a pale yellow solid (17.21 g, 89%): IR (thin film) 1659 cm−1;1H NMR (400 MHz, CDCl3) δ 8.95 (d, J=2.6 Hz, 1H), 8.63 (dd, J=4.7, 1.3 Hz, 1H), 8.05 (ddd, J=8.3, 2.7, 1.4 Hz, 1H), 7.96 (s, 1H), 7.47 (dd, J=8.3, 4.8 Hz, 1H), 3.72 (q, J=7.1 Hz, 2H), 2.84 (t, J=7.2 Hz, 2H), 2.66 (m, 2H), 237 (t, J=7.2 Hz, 2H), 2.44 (m, 2H), 1.17 (t, J=7.2 Hz, 3H); ESIMS m/z 409 ([M+2H]+). To a solution of N-(3-chloro-1-(pyridin-3-yl)-1H-pyrazol-4-yl)-N-ethyl-3-((3,3,3-trifluoropropyl)thio)propanamide (I) (500 mg, 1.229 mmol) in hexafluoroisopropanol (5 mL) stirring at room temperature was added 30% hydrogen peroxide (523 mg, 4.92 mmol). The solution was stirred at room temperature for 15 minutes. It was quenched with saturated sodium sulfite solution and extracted with CH2Cl2. Silica gel chromatography (0%-10% MeOH/CH2Cl2) gave the title compound as white semi-solid (495 mg, 95%): IR (thin film) 1660 cm−1;1H NMR (400 MHz, CDCl3) δ 8.96 (d, J=2.4 Hz, 1H), 8.64 (dd, J=4.7, 1.4 Hz, 1H), 8.07-8.00 (m, 2H), 7.46 (ddd, J=8.3, 4.8, 0.7 Hz, 1H), 3.85-3.61 (m, 2H), 3.23-3.08 (m, 1H), 3.03-2.76 (m, 3H), 2.74-2.52 (m, 4H), 1.18 (t, J=7.2 Hz, 3H); ESIMS m/z 423 ([M+H]+). The method described in Colby S. R., “Calculating Synergistic and Antagonistic Responses of Herbicide Combinations,” Weeds, 1967, 15, 20-22 was used to determine an existence of synergic effect between the chloride channel activator compound and the pesticide (I), (II), or any agriculturally acceptable salt thereof in the formulated pesticidal composition. In this method, the percent insect control of the formulated pesticidal composition as observed in the study was compared to the “expected” percent control (E) as calculated by equation (1) (hereinafter “Colby's equation”) below: where X is the percentage of control with the first pesticide at a given rate (p), Y is the percentage of control with the second pesticide at a given rate (q), and E is the expected control by the first and second pesticide at a rate of p+q. If the observed percent control of the formulated pesticidal is greater than E, there is a synergistic effect between the chloride channel activator compound and the pesticide (I), (II), or any agriculturally acceptable salt thereof in the formulated pesticidal composition. If the observed percent control of the formulated pesticidal is equaled to or less than E, there is no synergistic effect between the chloride channel activator compound and the pesticide (I), (II), or any agriculturally acceptable salt thereof in the formulated pesticidal composition. A pesticidal composition was prepared by thoroughly mixing about 0.0025 weight % of N-(3-chloro-1-(pyridin-3-yl)-1H-pyrazol-4-yl)-N-ethyl-3-((3,3,3-trifluoropropyl)thio) propanamide (hereinafter “compound I”) with about 0.000078 weight % of emamectin benzoate. Bioassays were performed for different active compounds. Cabbage plants with about two to three new-growth—true leaf stage were treated with different active compounds using a track sprayer application at 400 L/Ha spray volume. Three second instar diamondback moth, As shown in table 2, the observed percent control of the pesticidal composition against diamondback moth (100%) was higher than the expected percentage control according to Colby's equation (91.7%). This was 9% improvement over the Colby's expected action. Therefore, the pesticidal composition comprising 0.0025 weight % of compound I and about 0.000078 weight % of emamectin benzoate showed synergistic effect against diamondback moth. A pesticidal composition was prepared by thoroughly mixing about 0.0025 weight % of compound I with about 0.000039 weight % of emamectin benzoate. Bioassays were performed wherein different active compounds were tested against diamondback moth, As shown in table 3, the observed percent control of the pesticidal composition against diamondback moth (95.65%) was higher than the expected percentage control according to Colby's equation (75%). This was about 27.5% improvement over the Colby's expected action. Therefore, the pesticidal composition comprising 0.0025 weight % of compound I and about 0.000039 weight % of emamectin benzoate showed synergistic effect against diamondback moth. A pesticidal composition was prepared by thoroughly mixing about 0.000625 weight % of compound I with about 0.000039 weight % of emamectin benzoate. Bioassays were performed wherein different active compounds were tested against diamondback moth, As shown in table 4, compound I at a dose rate of 0.000625 weight % showed no control against diamondback moth three days after the treatment. Furthermore, the observed percent control of the pesticidal composition against diamondback moth (82.61%) three days after the treatment was higher than the expected percentage control according to Colby's equation (73.90%). This was about 12% improvement over the Colby's expected action. Therefore, the pesticidal composition comprising 0.000625 weight % of compound I and about 0.000039 weight % of emamectin benzoate showed synergistic effect against diamondback moth. A pesticidal composition was prepared by thoroughly mixing about 0.04 weight % of compound I with about 0.000156 weight % of emamectin benzoate. The active compounds were formulated in a 10% acetone solution with 0.025% non-ionic surfactant, TWEEN® 20. Bioassays were performed for each different active solution. Bean pieces (about one inch-long) were used for the tests. Four bean pieces were placed in each tested active solution and left there for 10 minutes. Bean pieces were taken out of the active solution, and each piece was placed in a well in a 32-well tray and allowed to air dry. Three third-instar nymphs of South American brown stink bug, The percent control of the pesticidal composition against South American brown stink bug, As shown in table 5, the observed percent control of the pesticidal composition against brown stink bug (42%) was higher than the expected percentage control according to Colby's equation (31%). This was 35% improvement over the Colby's expected action. Therefore, the pesticidal composition comprising 0.04 weight % of compound I and about 0.000156 weight % of emamectin benzoate showed synergistic effect against South American brown stink bug, A pesticidal composition was prepared by thoroughly mixing about 0.04 weight % of compound I with about 0.20 weight % of emamectin benzoate. The active compounds were formulated in a 10% acetone solution with 0.025% non-ionic surfactant, TWEEN® 20. Bioassays were performed for each different active solution. Bean pieces (about one inch-long) were used for the tests. Four bean pieces were placed in each tested active solution and left there for 10 minutes. Bean pieces were taken out of the active solution, and each piece was placed in a well in a 32-well tray and allowed to air dry. Three third-instar nymphs of Western plant bug, As shown in table 6, the observed percent control of the pesticidal composition against A pesticidal composition may be prepared by thoroughly mixing compound I (weight %) or compound II (weight %) with emamectin benzoate (weight %). The bioassays may be performed for different active compounds against Diamondback Moth, The bioassays may be performed for different active compounds against South American Brown Stink Bug, The bioassays may be performed for different active compounds against Western Plant Bug, The observed percent control of the pesticidal composition against Diamondback Moth, The observed percent control of the pesticidal composition against South American Brown Stink Bug, The observed percent control of the pesticidal composition against Western Plant Bug, While the present disclosure may be susceptible to various modifications and alternative forms, specific embodiments have been described by way of example in detail herein. However, it should be understood that the present disclosure is not intended to be limited to the particular forms disclosed. Rather, the present disclosure is to cover all modifications, equivalents, and alternatives falling within the scope of the present disclosure as defined by the following appended claims and their legal equivalents.CROSS-REFERENCE TO RELATED APPLICATION
TECHNICAL FIELD
BACKGROUND
DETAILED DESCRIPTION
1 20:1 to 1:20 2 15:1 to 1:15 3 10:1 to 1:10 4 5:1 to 1:5 5 4:1 to 1:4 6 3:1 to 1:3 7 2:1 to 1:2 8 1:1 20 X, Y X, Y 15 X, Y X, Y X, Y 10 X,Y X, Y 5 X, Y X,Y X, Y X, Y 4 X, Y X, Y X, Y X, Y 3 X,Y X, Y X, Y X, Y X, Y X, Y 2 X, Y X, Y X, Y X, Y 1 X, Y X, Y X, Y X, Y X, Y X, Y X, Y X, Y 1 2 3 4 5 10 15 20 Pesticide (I or II) (X) Parts by weight 0.04 0.00002 ≦2048:1 0.04 0.000156 ≦256:1 0.0025 0.000039 ≦64:1 0.0025 0.000078 ≦32:1 0.000625 0.000039 ≦16:1 EXAMPLES
Example 1
Preparation of 3-((3,3,3-trifluoropropyl)thio)propanoyl chloride
Example 2
Preparation of N-(3-chloro-1-(pyridin-3-yl)-1H-pyrazol-4-yl)-N-ethyl-3-((3,3,3-trifluoropropyl)thio)propanamide (I)
Example 3
Preparation of N-(3-chloro-1-(pyridin-3-yl)-1H-pyrazol-4-yl)-N-ethyl-3-((3,3,3-trifluoropropyl)sulfinyl)propanamide (II)
Example 4
Determination of the Existence of Synergic Effect
Example 5
Synergistic Effect of N-(3-chloro-1-(pyridin-3-yl)-1H-pyrazol-4-yl)-N-ethyl-3-((3,3,3-trifluoropropyl)thio)propanamide (I) and Emamectin Benzoate Against Diamondback Moth,
Example 5A
Compound I 0.0025 4.35% Emamectin Benzoate 0.000078 91.3% Compound I (+) Emamectin 0.0025 + 0.000078 100% Benzoate Observed Action Compound I (+) Emamectin 0.0025 + 0.000078 91.7% Benzoate Colby's Expected Action Compound I (+) Emamectin 0.0025 + 0.000078 8.3% Benzoate Differences: Observed vs. Expected Example 5B
Compound I 0.0025 4.35% Emamectin Benzoate 0.000039 73.91% Compound I (+) Emamectin 0.0025 + 0.000039 95.65% Benzoate Observed Action Compound I (+) Emamectin 0.0025 + 0.000039 75.00% Benzoate Colby's Expected Action Compound I (+) Emamectin 0.0025 + 0.000039 20.65% Benzoate Differences: Observed vs. Expected Example 5C
Compound I 0.000625 0% Emamectin Benzoate 0.000039 73.91% Compound I (+) Emamectin 0.000625 + 0.000039 82.61% Benzoate Observed Action Compound I (+) Emamectin 0.000625 + 0.000039 73.90% Benzoate Colby's Expected Action Compound I (+) Emamectin 0.000625 + 0.000039 8.71% Benzoate Differences: Observed vs. Expected Example 6
Synergistic Effect of N-(3-chloro-1-(pyridin-3-yl)-1H-pyrazol-4-yl)-N-ethyl-3-((3,3,3-trifluoropropyl)thio)propanamide (I) and Emamectin Benzoate Against South American Brown Stink Bug,
Compound I 0.04 8% Emamectin Benzoate 0.000156 25% Compound I (+) Emamectin 0.04 + 0.000156 42% Benzoate Observed Action Compound I (+) Emamectin 0.04 + 0.000156 31% Benzoate Colby's Expected Action Compound I (+) Emamectin 0.04 + 0.000156 11% Benzoate Differences: Observed vs. Expected Example 7
Synergistic Effect of N-(3-chloro-1-(pyridin-3-yl)-1H-pyrazol-4-yl)-N-ethyl-3-((3,3,3-trifluoropropyl)thio)propanamide (I) and Emamectin Benzoate Against Western Plant Bug,
Compound I 0.04 0% Emamectin Benzoate 0.20 0% Compound I (+) Emamectin 0.04 + 0.20 17% Benzoate Observed Action Compound I (+) Emamectin 0.04 + 0.20 0% Benzoate Colby's Expected Action Compound I (+)Emamectin 0.04 + 0.20 17% Benzoate Differences: Observed vs. Expected Example 8
Synergistic Effect of N-(3-chloro-1-(pyridin-3-yl)-1H-pyrazol-4-yl)-N-ethyl-3-((3,3,3-trifluoropropyl)thio)propanamide (I) or N-(3-chloro-1-(pyridin-3-yl)-1H-pyrazol-4-yl)-N-ethyl-3-((3,3,3-trifluoropropyl)sulfinyl)propanamide (II) and Emamectin Benzoate