A kinetic pump has a tangential axially inner inlet means and a tangential discharge and with a rotor having vanes forming fluid channels to move fluid from inlet to discharge. Unlike centrifugal pumps, the volute is eliminated or restricted only to the discharge port sector, and the vanes, hence fluid channels, are oriented so as to be tangent to the inlet port axial cylindrical fluid entry zone. The removal of the volute makes the pump to be positive displacement, since the fluid is contained within the chambers enclosed by vanes, except for when passing the discharge port. The tangential orientation of the vanes allows the fluid, driven by atmospheric pressure to enter the chambers and fill the chambers both by the NPSH and by centrifugal force. The boundaries to the chambers are the fluid passages, and at the axial inner chamber surface by a cylindrical isobar formed by the divergent centrifugal force field, and at the axially outer surface, by an isobar corresponding to the outer distance from the axis at the tangential discharge port. This allows the pump to be filled by NPSH and gain rotational energy from the rotor, resulting in a focused tangential discharge of high velocity. By making the pump positive displacement the rotation can be increased dramatically without cavitation. This pump is an improvement over centrifugal pumps for head pressure, power and cost, and can also provide power transmission by jet action. By the use of multiple discharge ports, if at the same isobar, power is increased, and by the use of multiple discharge ports at different isobars or different axial locations, pumping efficiency is increased when matched to a specific drive power in conditions of changing pressure and flow requirements.
1. A fluid kinetic pump comprising a rotor element having a shaft and an axially inner cylindrical cavity and an axially outer cylindrical surface, and having at least one fluid passage between said axially inner cavity surface and said axially outer surface, and such that said fluid passage intersects said cylindrical inner rotor cavity tangentially in the direction of rotation, and the width of said fluid passage at said intersection is greatest within said fluid passage; and said rotor element is fixed for rotation within an approximately cylindrical cavity of a housing member and rotating in close proximity to said cavity walls of said housing member, and said housing member having at least one axially inner intake means to cause fluid to flow tangentially into said inner rotor cavity in the direction of rotation of said rotor, and said cylindrical cavity of said housing member also having at least one tangential discharge port through said approximately cylindrical chamber wall of said housing; and such that during rotation, fluid enters said fluid passages in said rotor tangentially and is contained by said passage walls and by cylindrical fluid isobar on the axially inner surface of said fluid passage, and by another cylindrical fluid isobar at said tangential discharge port location, said isobars being caused by centrifugal force; and said fluid passage having said containment of fluid except during the sector when it passes said tangential discharge port, and such that during rotation, fluid enters the pump tangentially in the direction of rotation, changes rotational energy within said fluid passage in said rotor, and is discharged by momentum tangentially through said tangential discharge port through said approximately cylindrical chamber wall of said housing. 2. A motor as in claim one in which the fluid enters the intake plenum under pressure and is forced from the intake plenum into the passages between adjacent vanes, the vanes being shaped such that they do not intersect the intake plenum tangentially, but at a small angle and such the fluid is forced into the passages where it is discharged tangentially from the axially outer fluid passage since the vanes are tangent to an axially outer circle of revolution and causing the fluid to exit the pump tangentially so that at start up there is a force of jet action out of the tangential passages which provides torque to the rotor, and as the rotor reaches speed the fluid proceeds from the intake plenum tangentially and with inertia and acts against the rotor passages, which slow the fluid velocity, due to acting against the initial direction of flow as like a propeller, such that the fluid loses energy and the rotor gains energy, and such that at discharge, the fluid has a high velocity with respect to the fluid passage walls, but a low velocity with respect to the earth. 3. A pump as in 4. A pump as in 5. A pump as on 6. A pump as in 7. A pump as in 8. A pump as in 9. A pump as in 10. A pump as in 11. A pump as in 12. A pump as in 13. A pump as in 14. A fluid pump as in
[0001] This invention is a continuation-in-part to my previous patent, Rotary Variable Expansible Chamber Kinetic Hybrid Pump [0002] 1. Field of Invention [0003] This invention relates to kinetic liquid pumps as an improvement means in order to obtain greater performance, including higher head pressures at high flow rates, as well as allowing performance and efficiency in varying flow and pressure requirements with a single pump. [0004] Traditionally, centrifugal pumps have dominated the kinetic liquid pumping field; however, the geometry of centrifugal pumps presents some problem areas, which I have endeavored to correct with this invention. The areas I am referring to are typical to centrifugal pump geometry. [0005] 2. Description of Prior Art [0006] A typical centrifugal pump has an axial intake and a volute surrounding the rotor as a discharge. The intake always communicates with the discharge. Pumping is provided by force from vanes, which spiral outward in increasing angle with a radius from the axis of rotation. Diverging fluid channels are formed between adjacent vanes with a narrow opening at the intake side and a wide opening at the axially outer extremity. This geometry causes some problems in pumping fluids. A first problem exists at the entrance to the fluid channels due to the proximity of adjacent vanes constituting a flow restriction. By Bernoulli's Law, as the fluid is restricted, the velocity is increased, and the pressure drops. Since the pressure at this point is the lowest in the system, any further pressure drop may go below the fluid vapor pressure, causing the liquid to vaporize and cause cavitation in the pump, an undesirable state, which can cause pump damage and failure. This problem is referred to by the industry as “suction specific speed,” meaning that the rotational speed of the pump is restricted by this problem. A second problem in geometry is that the vanes at this point are at an angle, which is beginning more radial and as the rotor diameter is increased becomes more tangential. This is probably because the vanes are expected to act in a similar manner to a propeller with changing pitch to continuously accelerate the fluid, in this case radially outward into the discharge volute. Having the vanes act as a radial propeller creates some problems such as contributing to the formation of vacuum on the side of the vane not acting on the fluid and further being a cause of cavitation, and on the leading face of the vane, the force of the vane on the fluid causes shear and causes the fluid to assume a rolling motion as it traverses the divergent fluid passage between vanes. This causes a rolling vortex of increasing diameter as the fluid approaches the end of the fluid passage and enters the volute. The main problem to this is that as the vortex enters the volute, the direction of motion of the outer velocity vector of the vortex is in the opposite direction to the flow in the volute toward discharge. This was verified by a computer simulation, which showed a total reversal of direction due to this effect, when micro particles simulate the liquid. This particular failure is called “re-circulation” within the industry. Another paradox is the divergent nature of the fluid passage between vanes. Because the passage is divergent, the fluid is slowing down, again due to Bernoulli's Law. But the rotor vanes are trying to speed it up. This accounts for most of the development of vortices in the passages apparently. [0007] The apparent objective of the centrifugal geometry is to force the fluid axially outward into the volute by action of the vane fan blades. One has to then ask if this is a good objective. Pushing the fluid outward in a 360 degree manner into a volute, which then converts the radial direction of flow to a single direction, seems illogical, at least to this inventor, as it doesn't directly move the fluid flowing in the same direction, which is out the discharge duct. This geometry is similar to a light bulb, which requires various reflectors to try to collimate the light beam rather than have it already focused. It is like the difference between a light bulb and a laser. [0008] Finally, the centrifugal pump does not appear to take advantage of the other engine, which works to drive the pump, the atmospheric pressure engine. It attempts to overcome the atmospheric engine by force, rather than by taking advantage of naturally occurring forces. I have attempted to rectify these problems seen with the prior art in as simple and as logical ways as possible, primarily by changing the vane geometry, and by making the pump positive displacement by eliminating the volute which allows the pressure to build within the fluid chamber, becoming stratified in an axial pressure gradient. And forming cylindrical isobars, which can replace solid surfaces. These isobars, which replace solid surfaces, can be used to locate extra discharge ports, which, if equipped with valves, allow the pump to change performance characteristics, simply by opening and closing of two valves. Thus, the chosen isobar determines the actual pumping chamber size, as well as pressure and flow, irrespective of the solid axial boundaries. It is interesting to note that the axially inner ports may be changed from discharge to suction, also simply opening and closing valves. [0009] [0010] I have included the following prior art: U.S. Pat. No. 2,982,224, which shows a kinetic positive displacement pump. U.S. Pat. No. 3,560,106 Sahlstrom 1971 which is a centrifugal pump for slurries. [0011] U.S. Pat. No. 1,28,7920 Duda which is a centrifugal pump having a tangential intake means. U.S. Pat. No. 1,215,881 Siemen 1917 which is a kinetic pump with self priming means. [0012] Although centrifugal pumps are in wide use, the geometry poses some problems, such as cavitation, as well as “re-circulation”. This invention is a solution to these problems and is accomplished by simple geometric changes, which radically change the operating parameters. [0013] The first change is to make the pump positive displacement by eliminating the volute. The second change is to make the vanes intercept the intake fluid tangentially. The third change is to make the fluid not only enter the rotor chambers tangentially, but also the discharge to be a focused tangential high velocity stream. This results in having the pump filled primarily by atmospheric force by the NPSH, during which the rotor does not interact with the fluid appreciably by force of impact, but accelerates the fluid to rotor speed within enclosed chambers. [0014] This eliminates suction specific speed requirements, and results in extending the rotational velocity limit to that of the limit of NPSH in the intake hose. This extends the pressure and power capability significantly. [0015] This is a case where seemingly small changes in structure effect large changes in the mathematics and physics of operation and performance. [0016] The invention is mathematically simpler than centrifugal pumps since the radial component has been eliminated from the rotor discharge, and the performance closely follows the theoretical mathematics, being positive displacement. The increase in the power of these pumps makes it useful in power transmission by momentum, as with a marine jet drive. [0017] The use of multiple axially spaced discharge ports located on specific isobars within the pumping chamber, results in a transformable pump, which can operate either as a low pressure, high flow, or as a high pressure, low flow pump, resulting in a great improvement when used in conditions of varying head pressure requirements. [0018] 1. It is an objective to provide a kinetic pump which is also positive displacement and which discharges the fluid tangentially at rotor tip velocity through one or more discharge ports in order to increase fluid momentum and gain higher head pressures, by creating a virtual axially inner sub-chamber boundary, which is an isobar, caused by centrifugal force. There are advantages to this method, in terms of higher momentum, higher rotational speeds, and increased power. [0019] 2. It is objective to provide a kinetic pump, which avoids cavitation by avoiding restrictions in the rotor chamber ducts and by avoiding unnecessary internal fluid velocities but maximizing and focusing the tangential discharge velocity. This is done by designing the inner rotor tips to intersect the fluid tangentially, or at an acute angle, and thus avoiding interaction with the rotor, within that zone. The advantage to this is that the fluid enters the rotor chambers primarily driven by the net positive suction head and there is little chance of cavitation. This also has the advantage of higher rotational speeds. [0020] 3. It is an objective to be able to restrict the flow rate of the pump without restricting the pressure by shaping the rotor chambers such that fluid can be metered out by a sector of the rotor chamber, much as is done in a gear pump. The advantage to this is that the pump may provide high head pressures with less power requirement, since the capacity is less. [0021] 4. It is an objective to provide a kinetic pump with fewer vanes, hence fewer chambers. This has an advantage in having less friction between the fluid and the vane surface. This has further advantages in simplicity, cost, and by being more robust. [0022] 5. It is an objective to have a pump in which the discharge velocity is the rotor tip velocity and thus the power of the pump is proportional to the cube of the rotor tip velocity. The advantage to this is that a very high power density is available in a small package. [0023] 6. It is a further objective to multiply the power of the pump by adding extra discharge ports, which may require increasing the suction cross-sectional area. The advantages of such a powerful pump are found in such uses as require both head pressure and flow, such as fire control, pressure blasting, hydraulic mining, and jet propulsion. [0024] 7. It is an objective to provide such a high power jet water propulsion system for marine use. The primary advantage to this is that the pump power is proportional to the cube of the drive rpm, which means the torque curve of the drive engine can intersect the pump torque curve at an ideal speed, and the engine will be delivering maximum torque and power, rather than minimal. [0025] 8. It is an objective to provide a kinetic pump in which the vanes are subject neither to cavitation on the inner vane tip, nor to vortices forming off the outer vane tips. The advantage to this is obvious; to prevent the pump from self-destruction. [0026] 9. It is objective to allow the pump to rotate with a pressure gradient from low on the axial inward portion to high on the axially outward portion, such that the outer periphery is a pressurized ring except as it passes the discharge port, where the pressure aids the discharge flow which is high as the pressure is released. In this way, the pump is a centrifugal force pump, whereas a centrifugal pump is primarily an inclined plane radial propeller. The advantage to this over the centrifugal pump is that there is almost no slippage at the axial outer surface, since all parts are rotating at the same pressure at any axial distance from axial center, and where the internal pressure at the axially outer zone tends to aid, rather than retard the flow. [0027] 10. It is an objective to have a pump which can have either open vanes driven by a rotor hub, vanes connected to the rotor on one side, or to have a rotor in which the chambers are enclosed on the sides. The advantage to having the vanes open to both housing walls is threefold, less friction, less potential leakage to the backside of the rotor connection, and less pressure on the shaft seal. The advantage to having the vanes attached to the rotor on one face is primarily strength and durability and ability to pass debris with some density and ability to absorb impact. The enclosed rotor chamber can be an advantage in adjusting friction and specific speed. If the chamber passage between the vanes of the rotor is large in cross-sectional area, there will be little friction, and then the part of the chamber at the rotor tips can be decreased in width and cross-sectional area. This is an advantage for pumps of large diameter but little capacity turning at high rotational speeds so as to obtain very high head pressures. [0028] 11. It is an object to be able to raise fluid pressures and flow rates by increasing fluid velocity which is rotor vane tip velocity by either raising rotational velocity or by increasing the rotor diameter. The advantage to this is to be able to reach very high head pressures, since the geometry appears unaffected by cavitation. There is a distinct advantage in reaching high head pressures without staging. Although staging is possible with this pump, it is not thought to be an advantage. It can also be an advantage to use gears or other means to each higher rotational velocity. [0029] 12. It is an objective to be able to increase or decrease the capacity by either increasing the capacity by increasing the rotational speed, the rotor diameter, the vane width, the discharge port sector, by the rotor chamber duct shape, or by the rotor vane angle. The advantage to this is versatility of use. [0030] 13. It is an object of the invention that high head pressures may be attained without either staging or supercharging in most cases. Both staging and supercharging involve more machinery. This device is simple and higher pressure and flow rates may be accomplished simply by increasing the intake hose and port size or number. [0031] 14. It is an object to provide a fluid motor in which the high pressure fluid enters the motor tangentially axially nearer the axis of rotation and is slowed by interaction with the vane surfaces, delivering torque to the rotor, and being discharged with a high velocity with respect to the vane surfaces but little velocity with respect to the earth. [0032] 15. It is an object to provide a pump, which can pump slurries, sludge's, liquids containing solids as well as viscous mixtures. It is an object to provide multiple intake ports in the pump for the handling of slurries and sludge, which allows the water and the mixture to be regulated by having valves to adjust the water intake supply. This has an advantage in the simplicity of operation better suction and the regulation of the slurry consistency. [0033] 16. It is an object to provide a versatile pump, which has multiple functions, based upon ports being placed at different pressure isobars within the pressure gradient inside the fluid passages between vanes. This has two distinct functional advantages;(a) that contaminants may be removed from the fluid centrifugal force, separating clean fluid from contaminated fluid;(b) that when the different isobaric ports are provided with valves, the user may choose a port location, which suits the pumping requirement, hence enjoy greater pumping efficiency. Since kinetic pumps, such as centrifugal pumps, have fixed geometry relating to specific pressure vs, flow curve; they are only efficient over a relatively small portion of the curve. This presents a problem since pressure requirements vary widely. Thus it is of great advantage to be able to shift gears, so to speak, from an efficient high pressure, low flow pump, to an efficient low-pressure high flow pump at will. [0034] 17. It is on object to provide a kinetic pump with can simultaneously pump a fluid and separate out fluids or solids of different density. This can be of great advantage to a fuel pump, where the pumped fluid through one discharge port is clean and impurities such as water and rust pass through another discharge at a different pressure. [0035] 18. It is an object to provide a pump, which has the multiple capabilities of providing motive thrust to a vehicle, while at the same time pumping a selected density material into said vehicle, and discarding the less dense material with the pumped fluid, such as in a gold dredge. This can have a number of advantages when dredging the sea floor having sand with flour gold. The sand is not taken on board for processing and only the concentrate is pumped aboard a barge. The barge is anchored to swivel and the vehicle is tethered, and travels in circles about the barge powered by the jet action of the pump. By adjusting the tether radius every revolution, a large circular area may be accurately covered with minimal effort. [0036] [0037] [0038] [0039] [0040] [0041] [0042] [0043] [0044] [0045] [0046] [0047] [0048] [0049] [0050] [0051] [0052] [0053] [0054] [0055] [0056] [0057] [0058] [0059] [0060] [0061] [0062] [0063] [0064] [0065] [0066] 1. Housing member with chamber, port. [0067] 2. Housing member with rotor, shaft. [0068] 3. Rotor. [0069] 4. Shaft. [0070] 5. Bearing. [0071] 6. Seal. [0072] 7. Vane. [0073] 8. Intake fitting. [0074] 9. Intake. [0075] 10. Intake plenum. [0076] 11. Opening at axial inner vane tip cylinder of revolution or outer boundary of intake plenum. [0077] 12. Vane angle to 11. [0078] 13. Rotor cone. [0079] 14. Radial vanes on rotor cone. [0080] 15. Fluid channel between vanes. [0081] 16. Isobar. [0082] 17. Enclosed chamber. [0083] 18. Tangential discharge. [0084] 19. Angle of vane with cylindrical axially outer surface of housing element chamber. [0085] 20. Tangential intake. [0086] 21. Vane shape for motor. [0087] 22. Spiral vanes on intake fitting. [0088] 23. Path of dense particles. [0089] 24. Isobar. [0090] 25. Axially high pressure limit. [0091] 26. Axially outer port. [0092] 27. Secondary intake ducts. [0093] 28. Flange. [0094] 30. Axially inner tangential discharge port. [0095] 31. Axially intermediate tangential discharge port. [0096] 32. Axially outer tangential discharge port. [0097] 33. Bow of boat. [0098] 34. Bottom of boat. [0099] 35. Intake through bottom of boat. [0100] 36. Pump. [0101] 37. Valve. [0102] 38. Engine. [0103] 39. Outboard engine. [0104] 40. Handle [0105] 41. Stern of boat. [0106] 42. Suction duct [0107] 43. Carriage frame [0108] 44. Hydraulic motor driven with line from barge. [0109] 45. Sea floor. [0110] 46. Wheels on carriage. [0111] 47. Rotating agitation bar attached to shaft 4. [0112] 48. Setting tank with filter. [0113] 49. Barge. [0114] 50. Anchor to seafloor. [0115] 51. Rotation fluid flywheel shown by crosshatch. [0116] 52. Hose to barge from port 26. [0117] 53. Tether between barge and carriage. [0118] In [0119] Having achieved a fluid direction that is largely tangential, i.e. in the same rotary direction that the vanes are traveling, the fluid proceeds through the opening between vanes 7 at 11, the outer cylindrical boundary of the intake plenum 10. It is important to note that at this entry into the fluid channels 15, between vanes 7, the vane tip 12 is tangential to 11 and so the fluid is moving in approximately the same direction as the vane tip 12. This necessarily means that not only is the direction the same, but that the velocity difference at 11 is much less than normally seen in centrifugal and other kinetic pumps. This means that the fluid enters at a velocity magnitude which is proportional to that of the net positive suction head, while the vane tip 11 velocity is the that of the vane tip at that rotor diameter caused by the rotor rotational velocity since the velocity vectors are in approximately the same direction, there is a relative velocity of tangential rotor velocity at the inner tip 12 minus the fluid velocity caused by atmospheric pressure, the NPSH. Then while the rotor is tending to intersect the tangential intake flow, it does so at a very acute angle, and beginning at NPSH velocity, crosses the boundary of the intake plenum at 11 and continues tangentially toward the outer chamber wall of housing element 1 and thus fills the space between the adjacent vanes 7, the axially outer chamber wall, and the axially inner boundary 11. It is important that the fluid is allowed to fill the chambers almost totally by force of the atmospheric engine which creates the NPSH, and not by being forced by reaction against the vanes, which can create turbulent flow, or at least cause a rolling vortex in the fluid traveling toward the outer chamber wall, which in a centrifugal 1 pump is a volute. It is also important to note that in this pump, the opening at the entrance to the channel between the vanes 15 is the distance 11, which is larger than any successive distance within the channel 15 and hence the entrance to the channel 15 is not a restriction which would cause an increase of velocity and a drop in pressure, from Bernoulli's Law, which can result in pressure of the fluid and creating cavitation. Thus cavitation is avoided by this geometry. [0120] Then as the chambers are filled primarily by the momentum of the fluid, and since the angle on the vanes 7 increases from tangential at the fluid entrance to channel 15 to more radial at the axially outer vanes position at 19, the vanes have little direct contact with the fluid since although the vane is traveling faster than the fluid, it is also angled back starting at zero angle and increasing to about 60 degree in [0121] As the fluid loses all the radial velocity and is captured by the vanes 7 and the housing 1 chamber wall, it is also captured on the axial inner surface by an isobar 16 shown by a phantom line. It is captured by the divergent force field of centrifugal force, much as a full bucket of water is contained by the convergent force field of the earth's gravity. Since the fluid is totally contained by the chamber 17 it is at rest with respect to the rotor and only has rotational velocity. As such, the pump becomes positive displacement by definition, since the fluid is contained, then displaced. This is quite similar to the displacement in an external gear pump, which is not acting against a pressure head. The contained fluid is then carried by the rotor around the cylindrical chamber wall in housing element 1 to where it is ejected by its own momentum through tangential discharge 18. Unlike centrifugal pumps, the fluid, which, is contained in the enclosed chambers 17, develops a pressure gradient due to centrifugal force, which is low at the axially inner portion of chamber 15 but high near the axially outer cylindrical wall of the chamber of housing element 1. As the enclosed chamber passes the rotary valve tangential discharge port 18, the pressure is relieved and converted into velocity. Just prior to crossing the tangential discharge port, the fluid has rotational momentum, but also, being in an enclosed rotating chamber, it has pressure due to centrifugal force. The fluid, which is contained, is at rest with respect to the rotor. But as the chamber begins to pass the port 18, it begins to lose pressure, and to gain velocity. The chamber resembles a tank with a spigot at the bottom, which is opened and a stream with velocity comes from the spigot. Then if the tank is traveling at rotor velocity, and the spigot is aimed toward the direction of motion, the velocity of the fluid will be the rotor velocity plus the spigot velocity, resulting in a very high tangential discharge velocity. [0122] Thus, in [0123] [0124] [0125] Having the capacity easily regulated as in [0126] [0127] [0128] [0129] [0130] However, the result is the same, the momentum of the fluid is decreased resulting in torque and work being done by the motor. The rotational speed the rotor may attain is largely a function of the pitch of vanes 19. If the trajectory of the pressure fluid is tangential, it must totally reverse its direction and leave the channels 15 tangentially in the opposite direction. However, the fluid is inertial and tends to proceed tangentially in the direction it left from intake plenum 10 traveling only a short distance in which it loses its momentum. But to achieve that, the rotor vanes 19, as shown in [0131] [0132] [0133] [0134] [0135] [0136] [0137] Fluid enters at intake port 10 and is discharged in one of the three ports 30, 31, or 32, in which the fluid exits the fluid chamber 15 tangentially, but with also an axial component. The ducts leading from ports are equipped with valves, such as ball valves, as shown in [0138] [0139] [0140] [0141] [0142] By having ports 30 and 31, the efficiency of the pump is increased if the pressure requirement is low and the pump is discharging at 32, there is no point to the high velocity since it consumes power as power consumption is proportional to flow times pressure, so while the pump described in [0143] [0144] [0145] The shape of the pumping chamber pumping chamber housing is such that the centrifugal force which is developed within the fluid passages 15 between vanes 7 as shown in will cause more dense matter to accumulate along the boundary between vanes 7 and housing member 1 at 33 in [0146] [0147] [0148] [0149] [0150] [0151] Accordingly, the reader will see that by some relatively simple, but logical, changes to the basic structure of centrifugal pumps, the mode of operation of the pump as well as performance is dramatically changed It is a change from an open unfocused divergent system to a focused system, which by the concept of containment becomes positive displacement. [0152] This patent application describes a positive displacement tangential kinetic pump with very high power density. [0153] It also describes a pump in which higher head pressures are available without excessive capacity and the ability to meter out flow like other positive displacement pumps. [0154] It describes a pump, which is suitable to be used as a propulsion device. [0155] It describes a pump which can separate a mixture of fluids of different densities, and which can remove solid and more dense particles while pumping the cleaned fluid [0156] It describes a pump, which can be used to simultaneously provide a motive power and separate out dense particles such as gold [0157] It describes a pump, which has the features, as aforementioned, and can also be simply changed in mode from a high-pressure low flow device to a device with low-pressure high flow, simply by opening or closing valves. [0158] It describes a motor, which has the basic operation of the pump, except that the rotor takes energy from the fluid rather than delivering it, and such a motor being unusual in having a very high specific speed and as such is useful for hydroelectric power production. [0159] So the scope of the invention is broadly described from a high power kinetic pump, to a high pressure pump, to a propulsion pump, to a centrifuge pump, to a general pump incorporating high flow and low pressure and thus being very efficient in terms of the drive motor, to a hydro motor, to a marine drive, to a gold dredge. This has been accomplished through simple but rational changes and the use of the principle of pressure stratification or isobars, within the pumping chamber in order to accomplish the objectives. Cross-Reference to Related Applications, application Ser. No. 10/279,799
BACKGROUND
SUMMARY
OBJECTS AND ADVANTAGES
IN THE DRAWINGS:
IN THE FIGURES PARTS ARE, INDICATED BY THE FOLLOWING NUMBERS
Operation of the Pump
Conclusions, Ramifications, and Scope