A deflection yoke having a capability of correcting a lateral inner pincushion distortion with a magnetic field generated by a deflecting coil itself is provided. The deflection yoke includes a saddle-type vertical deflecting coil including a screen side bend portion, a neck side bend portion and a cone portion connecting the screen side bend portion and the neck side bend portion and is installed to a cathode ray tube. When viewing the screen side bend portion of the vertical deflecting coil from a screen side of the cathode ray tube in a direction along the tube axis, a distance between the screen side bend portion and the tube axis is the minimum at a portion close to a diagonal direction of the screen. As a result, the lateral inner pincushion distortion can be corrected with a magnetic field generated by the deflecting coil itself with a simple configuration, without adding any component for correcting the distortion and increasing a deflecting power.
1. A deflection yoke installed on a cathode ray tube, comprising a saddle-type vertical deflecting coil including a screen side bend portion, a neck side bend portion and a cone portion connecting the screen side bend portion and the neck side bend portion,
wherein, when viewing the screen side bend portion of the vertical deflecting coil from a screen side of the cathode ray tube in a direction along a tube axis, the screen side bend portion includes portions located on either side across an axis passing through the tube axis and extending along a diagonal direction of a screen and having a distance from the tube axis longer than a distance at a portion in the diagonal direction of the screen from the tube axis. 2. The deflection yoke according to 3. The deflection yoke according to 4. The deflection yoke according to 5. The deflection yoke according to 6. The deflection yoke according to 7. The deflection yoke according to 8. A deflection yoke installed to a cathode ray tube, comprising a saddle-type vertical deflecting coil including a screen side bend portion, a neck side bend portion and a cone portion connecting the screen side bend portion and the neck side bend portion,
wherein, when viewing the screen side bend portion of the vertical deflecting coil from a screen side of the cathode ray tube in a direction along a tube axis, a distance from the tube axis is the minimum at a portion of the screen side bend portion close to a diagonal direction of a screen. 9. The deflection yoke according to 10. The deflection yoke according to 11. The deflection yoke according to 12. The deflection yoke according to 13. The deflection yoke according to 14. The deflection yoke according to
[0001] 1. Field of the Invention [0002] The present invention relates to a deflection yoke used for a cathode ray tube included in a television, a computer monitor and the like, and more particularly relates to a shape of a deflecting coil. [0003] 2. Related Background Art [0004] [0005] The deflection yoke 9 is assembled so that a horizontal deflecting coil 11 is located at the innermost position to contact with the cathode ray tube, and a separator 12, a vertical deflecting coil 13 and a core 14 are overlaid on the horizontal deflection coil 11 in the stated order. The separator 12 functions so as to insulate the horizontal deflecting coil 11 from the vertical deflecting coil 13 and fix them. [0006] The horizontal deflecting coil and the vertical deflecting coil are saddle-type coils, and are each made up of a bend portion at a side of the front panel 1 (hereafter referred to as a “screen side bend portion”); a bend portion at a side of the electron gun 7 (hereafter referred to as a “neck side bend portion”); and a cone portion that connects the screen side bend portion and the neck side bend portion. Note here that the bend portion also is referred to as an arc portion. [0007] [0008] [0009] Conventionally, well-known technology for correcting the lateral pincushion distortion 16 includes a method making use of a lateral pincushion distortion correction circuit that uses a configuration employing a pincushion transformer and for modulating a power supply voltage of a horizontal deflecting circuit in a TV set or a computer monitor set. These technologies are, for example, disclosed in JP6(1994)-315094 A and JP9(1997)-181931 A. [0010] [0011] However, according to the correction method disclosed in JP 7(1995)-39163 U, the magnets are added newly so as to correct the lateral inner pincushion distortion, which increases the number of components so that the structure would be complicated and also increases the number of assembling processes. Furthermore, if an error occurs during installation of the magnets, this error would cause a variation in the correction capability, which leads to a problem of a variation in the degree of a distortion of the displayed image. According to the correction method disclosed in JP 9(1997)-149283 A, the correction coil is added newly and the horizontal and vertical deflecting currents are used for the current supply of the coil, which would cause a problem of an increase in the deflecting power. [0012] Also, since color cathode ray tubes used for the recent TVs and computer monitors are required to have a flatter screen and save space, the cathode ray tubes with a wider deflection angle have been developed. As a result, the deflection aberration is increased, so that the increase in the lateral inner pincushion distortion becomes a problem. [0013] Therefore, with the foregoing in mind, it is an object of the present invention to provide a deflection yoke having the capability of correcting a lateral inner pincushion distortion in a simple configuration with a magnetic field generated by a deflecting coil itself, without adding a component for compensating the distortion and increasing a deflecting power. [0014] To fulfill the above-stated object, a first deflection yoke according to the present invention, which is installed on a cathode ray tube, includes a saddle-type vertical deflecting coil including a screen side bend portion, a neck side bend portion and a cone portion connecting the screen side bend portion and the neck side bend portion. When viewing the screen side bend portion of the vertical deflecting coil from a screen side of the cathode ray tube in a direction along a tube axis, the screen side bend portion includes portions located on either side across an axis passing through the tube axis and extending along a diagonal direction of a screen and having a distance from the tube axis longer than a distance at a portion in the diagonal direction of the screen from the tube axis. [0015] Next, a second deflection yoke according to the present invention, which is installed to a cathode ray tube, includes a saddle-type vertical deflecting coil including a screen side bend portion, a neck side bend portion and a cone portion connecting the screen side bend portion and the neck side bend portion. When viewing the screen side bend portion of the vertical deflecting coil from a screen side of the cathode ray tube in a direction along the tube axis, a distance from the tube axis is the minimum at a portion close to a diagonal direction of the screen of the screen side bend portion. [0016] [0017] [0018] [0019] [0020] [0021] [0022] [0023] [0024] [0025] [0026] [0027] [0028] [0029] According to the first invention of the present invention, the screen side bend portion includes portions located on either side across an axis passing through a tube axis and extending along a diagonal direction of a screen and having a distance from the tube axis longer than a distance between a portion located on the axis and the tube axis. According to the second invention of the present invention, a distance from the tube axis is the minimum at a portion of the screen side bend portion in a diagonal direction of the screen. With these configurations, a component X of a Lorentz force acting on an electron beam residing in a deflecting region becomes larger relatively at the portion in the diagonal direction of the screen, which results in a lateral inner pincushion distortion being smaller relative to a lateral pincushion distortion. Therefore, when the lateral pincushion distortion is corrected using the conventionally well-known lateral pincushion distortion correction circuit, the amount of remaining lateral inner pincushion distortion can be made small. [0030] In the above-stated first invention, it is preferable that the distances recited therein are distances between the tube axis and an outer edge of the screen side bend portion corresponding to the respective portions. [0031] In addition, it is preferable that the distances recited therein are distances between the tube axis and an inner edge of the screen side bend portion corresponding to the respective portions. [0032] In the above-stated second invention, it is preferable that, when drawing a perpendicular line from an outer edge of the screen side bend portion to the tube axis, a length of the perpendicular line is the minimum at the portion in the diagonal direction of the screen. [0033] In addition, it is preferable that, when drawing a perpendicular line from an inner edge of the screen side bend portion to the tube axis, a length of the perpendicular line is the minimum at the portion in the diagonal direction of the screen. [0034] Further, in the above-stated first and second inventions, it is preferable that an edge portion of the screen side bend portion facing the screen side defines a single plane. In this configuration, the deflecting coil is formed so that the distance from the tube axis is longer at the portion in the diagonal direction of the screen than the other portions. [0035] Moreover, it is preferable that an edge portion of the screen side bend portion facing the screen side is located on different planes between a portion close to the diagonal direction of the screen and the other portions. With this configuration, only the portion close to the diagonal direction of the screen is recessed toward the electron gun side, and the entire screen side bend portion can be configured along a separator, so that the distance from the tube axis can be made minimum at the portion of the screen side bend portion close to the diagonal direction of the screen. In addition, the entire of the screen side bend portion can be brought into intimate contact with the outer surface of the cathode ray tube or the separator, which does not cause a decrease in the efficiency of the deflecting energy. [0036] In addition, it is preferable that the portion close to the diagonal direction of the screen is in approximately a straight line form, as viewed from the screen side of the cathode ray tube in the direction along the tube axis. With this configuration also, the distance from the tube axis can be made minimum at the portion of the screen side bend portion close to the diagonal direction of the screen. [0037] Furthermore, it is preferable that the portion close to the diagonal direction of the screen is configured with at least a segment of a circle defining a convex protrusion toward the tube axis. With this configuration also, the distance from the tube axis can be made minimum at the portion of the screen side bend portion close to the diagonal direction of the screen. [0038] The following describes embodiments of the present invention applied to a vertical deflecting coil, with reference to the drawings. Since the basic configuration of the cathode ray tube and the deflection yoke as described referring to [0039] Embodiment 1 [0040] [0041] The vertical deflecting coil 20 is made up of a screen side bend portion 51, a neck side bend portion 53, and a saddle-type cone portion 52 connecting the screen side bend portion 51 and the neck side bend portion 53. [0042] An edge portion of the screen side bend portion 51 that faces the screen may be located on a plane orthogonal to the tube axis of the cathode ray tube. When viewing this portion from the screen side, as shown in [0043] More specifically, as shown in [0044] Although [0045] Note here that the diagonal direction is a direction along the diagonal line of the screen. Also, the portion close to the diagonal direction is an area of the screen side bend portion located around the axis passing through the tube axis and extending along the diagonal direction. More specifically, when pivoting the axis along the diagonal direction about 10 degrees clockwise and counterclockwise about a point on the tube axis, the portion close to the diagonal direction is defined as the area where the pivoted axis and the screen side bend portion overlap with each other. [0046] Although the above-described example deals with the case of the first quadrant, the screen side bend portion has the configuration having the minimum distance at the portion close to the diagonal direction also in the second (upper left), the third (lower left) and the fourth (lower right) quadrants. [0047] To realize this configuration, the portion 51 [0048] The following describes a function of correcting a lateral inner pincushion distortion using the vertical deflecting coil of the present invention. [0049] where e denotes the amount of electric charge, Vy denotes a Y component of the speed of an electron, and Bz denotes a Z component of the magnetic field. [0050] According to the present invention, the shape of the screen side bend portion 51 is contrived so that the Lorentz force Fx is increased or decreased for each position on the screen. [0051] As shown in [0052] In addition, since the distance from the portion 51 [0053] In this way, according to the present invention, the lateral pincushion distortion is increased as compared with the conventional one, while the lateral inner pincushion distortion is decreased as compared with the conventional one. Therefore, the lateral pincushion distortion and the lateral inner pincushion distortion can be corrected appropriately at the same time using the conventionally well-known lateral pincushion distortion correction circuit. According to the present invention, the lateral inner pincushion distortion becomes smaller relative to the lateral pincushion distortion. Accordingly, when the lateral pincushion distortion is corrected so as to be a straight line using the above-stated lateral pincushion distortion correction circuit conventionally used, the amount of correction for the lateral pincushion distortion is increased compared with the conventional case, but a smaller amount of correction for the lateral inner pincushion distortion to be corrected concurrently is sufficient compared with the conventional case. Therefore, the lateral inner pincushion distortion does not remain after the correction of the lateral pincushion distortion as in the case of the conventional one ( [0054] Embodiment 2 [0055] [0056] Unlike Embodiment 1 where the edge portion of the screen side bend portion 51 that faces the screen is located on a single plane orthogonal to the tube axis, an edge portion of the screen side bend portion 51 that faces the screen in this embodiment is located not on the same plane, but a portion close to a diagonal line of the display screen and the other portions are located on different planes from each other as shown in [0057] In the screen side bend portion 51, the portion 51 [0058] Therefore, when forming the screen side bend portion 51 so that the contour of the entire inner surface is along the separator, then the shape of the screen side bend portion 51 as viewed from the screen side becomes like in [0059] [0060] As in the case of Embodiment 1, the magnitude correlation among the Lorentz forces Fx acting on the electron beams becomes Fxa>Fxb and Fxa>Fxc, whereby the lateral inner pincushion distortion can be mitigated. [0061] In the case of Embodiment 1, in order to set the distance between the tube axis and the portion 51 [0062] Embodiment 3 [0063] [0064] In this embodiment, the thickness t in the tube axis direction of the screen side bend portion 51 is made larger at the portion 51 [0065] As in the case of Embodiments 1 and 2, the magnitude correlation among the Lorentz forces Fx acting on the electron beams becomes Fxa>Fxb and Fxa>Fxc, whereby the lateral inner pincushion distortion can be mitigated. [0066] As forms for making the thickness t in the tube axis direction of the portion 51 [0067] In addition, according to this embodiment, since the inner edge of the screen side bend portion 51 is in the form of a segment of a circle like Embodiment 2, the entire contour of the screen side bend portion 51 can be brought into intimate contact with the separator 12. [0068] Embodiment 4 [0069] [0070] In this embodiment, a space 100 where coil winding is not present is formed at each of portions in the screen side bend portion 51 close to the X axis and the Y axis. By providing these spaces 100, the thus obtained configuration substantially is the same as in that the distance from the tube axis is made minimum at the portion 51 [0071] According to this embodiment, the magnitude correlation among the Lorentz forces Fx acting on the electron beams becomes Fxa>Fxb and Fxa >Fxc, whereby the lateral inner pincushion distortion can be mitigated. [0072] Also, the provision of the spaces 100 can produce the effect of increasing the surface area of the deflecting coil, which can enhance the thermal dissipation therefrom and can suppress an increase in the temperature of the deflecting coil. [0073] Embodiment 5 [0074] [0075] Embodiment 6 [0076] In the above-described embodiments, the distance from the screen side bend portion to the tube axis becomes the minimum at the portion close to the diagonal direction of the screen. Meanwhile, the screen side bend portion of Embodiment 6 includes portions located on either side across the axis passing through the tube axis and extending along the diagonal direction of the screen, and having a distance from the tube axis longer than a distance between a portion located on the axis and the tube axis. [0077] [0078] This dimensional relationship is the same as in the above-stated embodiments. However, according to this embodiment, although the length 31 [0079] It is preferable that the length 31 [0080] Note here that although this embodiment deals with the distance between the tube axis and the inner edge of the screen side bend portion, the same applies to the case of the distance between the tube axis and the outer edge of the screen side bend portion. Furthermore, this embodiment can be combined with any one of Embodiments 2 to 5. [0081] [0082] According to this embodiment, the length of the line 26 is 55.972 mm, the length of the line 27 is 55.633 mm, the length of the line 28 is 63.374 mm, the length of the line 29 is 56.962 mm, the length 30 is 61.458 mm, and the length 31 is 47.622 mm. In this way, the length of the line 27 at the portion close to the diagonal direction is shorter than the lengths of the line 28 at the portion close to the X axis and the line 29 at the portion close to the Y axis. [0083] Having such a dimensional relationship, the bend portion is, as shown in [0084] In the case of the conventional deflection yoke having a screen side bend portion in the form of approximately a circle ( [0085] As stated above, according to the present invention, the magnetic field generated by the vertical deflecting coil itself allows the lateral inner pincushion distortion to be mitigated relatively. Therefore, without adding a surplus component and increasing the deflecting power, the lateral inner pincushion distortion can be mitigated using the general lateral pincushion distortion correction circuit. [0086] It should be noted here that a vertical pincushion distortion also can be corrected by applying the present invention to a horizontal deflecting coil. [0087] In this way, according to the present invention, without the need to add a surplus component such as a correcting coil and a magnet, the deflection yoke in a simple configuration is provided, which includes the deflecting coil that generates the magnetic field to mitigate the lateral inner pincushion distortion as a deflected image distortion. [0088] The invention may be embodied in other forms without departing from the spirit or essential characteristics thereof The embodiments disclosed in this application are to be considered in all respects as illustrative and not limiting. The scope of the invention is indicated by the appended claims rather than by the foregoing description, and all changes which come within the meaning and range of equivalency of the claims are intended to be embraced therein. BACKGROUND OF THE INVENTION
SUMMARY OF THE INVENTION
BRIEF DESCRIPTION OF THE DRAWINGS
DETAILED DESCRIPTION OF THE INVENTION