A device may be configured to signal decoded picture buffer information according to one or more of the techniques described herein.
1. A method of decoding video data, the method comprising:
receiving a sequence parameter set; parsing a first syntax element in the sequence parameter set, wherein the first syntax element plus one specifies a maximum number of temporal sublayers that may be present in each coded video sequence referring to the sequence parameter set; determining whether a value of the first syntax element is greater than zero; and parsing a second syntax element in the sequence parameter set, only when the value of the first syntax element is greater than zero, wherein the second syntax element is used to control a presence of decoded picture buffer parameters in the sequence parameter set. 2. The method of 3. A device comprising one or more processors configured to:
receive a sequence parameter set; parse a first syntax element in the sequence parameter set, wherein the first syntax element plus one specifies a maximum number of temporal sublayers that may be present in each coded video sequence referring to the sequence parameter set; determine whether a value of the first syntax element is greater than zero; and parse a second syntax element in the sequence parameter set, only when the value of the first syntax element is greater than zero, wherein the second syntax element is used to control a presence of decoded picture buffer parameters in the sequence parameter set. 4. The device of 5. The device of 6. A device comprising one or more processors configured to:
signal a sequence parameter set, wherein the sequence parameter set includes: (i) a first syntax element, wherein the first syntax element plus one specifies a maximum number of temporal sublayers that may be present in each coded video sequence referring to the sequence parameter set, and (ii) a second syntax element, only when a value of the first syntax element is greater than zero, wherein the second syntax element is used to control a presence of decoded picture buffer parameters in the sequence parameter set.
This Nonprovisional application claims priority under 35 U.S.C. § 119 on provisional Application No. 62/863,776 on Jun. 19, 2019, No. 62/868,641 on Jun. 28, 2019, the entire contents of which are hereby incorporated by reference. This disclosure relates to video coding and more particularly to techniques for signaling decoded picture buffer information for coded video. Digital video capabilities can be incorporated into a wide range of devices, including digital televisions, laptop or desktop computers, tablet computers, digital recording devices, digital media players, video gaming devices, cellular telephones, including so-called smartphones, medical imaging devices, and the like. Digital video may be coded according to a video coding standard. Video coding standards define the format of a compliant bitstream encapsulating coded video data. A compliant bitstream is a data structure that may be received and decoded by a video decoding device to generate reconstructed video data. Video coding standards may incorporate video compression techniques. Examples of video coding standards include ISO/IEC MPEG-4 Visual and ITU-T H.264 (also known as ISO IEC MPEG-4 AVC) and High-Efficiency Video Coding (HEVC). HEVC is described in High Efficiency Video Coding (HEVC), Rec. ITU-T H.265, December 2016, which is incorporated by reference, and referred to herein as ITU-T H.265. Extensions and improvements for ITU-T H.265 are currently being considered for the development of next generation video coding standards. For example, the ITU-T Video Coding Experts Group (VCEG) and ISO/IEC (Moving Picture Experts Group (MPEG) (collectively referred to as the Joint Video Exploration Team (JVET)) are working to standardized video coding technology with a compression capability that significantly exceeds that of the current HEVC standard. The Joint Exploration Model 7 (JEM 7), Algorithm Description of Joint Exploration Test Model 7 OEM 7), ISO/IEC ITC1/SC29/WG11 Document: WET-G1001, July 2017, Torino, IT, which is incorporated by reference herein, describes the coding features that were under coordinated test model study by the JVET as potentially enhancing video coding technology beyond the capabilities of ITU-T H.265. It should be noted that the coding features of JEM 7 are implemented in JEM reference software. As used herein, the term JEM may collectively refer to algorithms included in JEM 7 and implementations of JEM reference software. Further, in response to a “Joint Call for Proposals on Video Compression with Capabilities beyond HEVC,” jointly issued by VCEG and MPEG, multiple descriptions of video coding tools were proposed by various groups at the 10thMeeting of ISO/IEC JTC1/SC29/WG11 16-20 Apr. 2018, San Diego, CA From the multiple descriptions of video coding tools, a resulting initial draft text of a video coding specification is described in “Versatile Video Coding (Draft 1),” 10thMeeting of ISO/IEC JTC1/SC29/WG11 16-20 Apr. 2018, San Diego, CA, document JVET-J1001-v2, which is incorporated by reference herein, and referred to as JVET-J1001. The current development of a next generation video coding standard by the VCEG and MPEG is referred to as the Versatile Video Coding (VVC) project. “Versatile Video Coding (Draft 5),” 14th Meeting of ISO/IEC JTC1/SC29/WG11 19-27 Mar. 2019, Geneva, CH, document JVET-N1001-v7, which is incorporated by reference herein, and referred to as JVET-N1001, represents the current iteration of the draft text, of a video coding specification corresponding to the VVC project. Video compression techniques enable data requirements for storing and transmitting video data to be reduced. Video compression techniques may reduce data requirements by exploiting the inherent redundancies in a video sequence. Video compression techniques may sub-divide a video sequence into successively smaller portions (i.e., groups of pictures within a video sequence, a picture within a group of pictures, regions within a picture, sub-regions within regions, etc.). Intra prediction coding techniques (e.g., spatial prediction techniques within a picture) and inter prediction techniques (i.e., inter-picture techniques (temporal)) may be used to generate difference values between a unit of video data to be coded and a reference unit of video data. The difference values may be referred to as residual data. Residual data may be coded as quantized transform coefficients. Syntax elements may relate residual data and a reference coding unit (e.g., intra-prediction mode indices, and motion information). Residual data and syntax elements may be entropy coded. Entropy encoded residual data and syntax elements may be included in data structures forming a compliant bitstream. In one example, a method of decoding video data, the method comprising: parsing a syntax element specifying a maximum number of temporal sublayers that may be present in a coded video sequence; determining whether a value of the syntax element specifying the maximum number of temporal sublayers that may be present in a coded video sequence is greater than zero; and conditionally parsing a syntax element indicating the presence of decoded picture buffer parameters only when it is determined that the value of the syntax element specifying the maximum number of temporal sublayers that may be present in a coded video sequence is greater than zero. In one example, a device comprising one or more processors configured to: parse a syntax element specifying a maximum number of temporal sublayers that may be present in a coded video sequence; determine whether a value of the syntax element specifying the maximum number of temporal sublayers that may be present in a coded video sequence is greater than zero; and conditionally parse a syntax element indicating the presence of decoded picture buffer parameters only when it is determined that the maximum number of temporal sublayers that may be present in a coded video sequence is greater than zero. In general, this disclosure describes various techniques for coding video data. In particular, this disclosure describes techniques for signaling decoded picture buffer information for coded video data. It should be noted that although techniques of this disclosure are described with respect to ITU-T H.264, ITU-T H.265, JEM, and JVET-N1001, the techniques of this disclosure are generally applicable to video coding. For example, the coding techniques described herein may be incorporated into video coding systems, (including video coding systems based on future video coding standards) including video block structures, intra prediction techniques, inter prediction techniques, transform techniques, filtering techniques, and/or entropy coding techniques other than those included in ITU-T H.265, JEM, and JVET-N1001. Thus, reference to ITU-T H.264, ITU-T H.265, JEM, and/or JVET-N1001 is for descriptive purposes and should not be construed to limit the scope of the techniques described herein. Further, it should be noted that incorporation by reference of documents herein is for descriptive purposes and should not be construed to limit or create ambiguity with respect to terms used herein. For example, in the case where an incorporated reference provides a different definition of a term than another incorporated reference and/or as the term is used herein, the term should be interpreted in a manner that broadly includes each respective definition and/or in a manner that includes each of the particular definitions in the alternative. In one example, a method of encoding video data comprises signaling a first value indicating a maximum required size of a decoded picture buffer for a corresponding first sub-layer of video and signaling a second value indicating a maximum required size of a decoded picture buffer for a corresponding second sub-layer of video, wherein the maximum required size of a decoded picture buffer for the corresponding second sub-layer of video is calculated as the sum of the first value and the second value. In one example, a device comprises one or more processors configured to signal a first value indicating a maximum required size of a decoded picture buffer for a corresponding first sub-layer of video and signal a second value indicating a maximum required size of a decoded picture buffer for a corresponding second sub-layer of video, wherein the maximum required size of a decoded picture buffer for the corresponding second sub-layer of video is calculated as the sum of the first value and the second value. In one example, a non-transitory computer-readable storage medium comprises instructions stored thereon that, when executed, cause one or more processors of a device to signal a first value indicating a maximum required size of a decoded picture buffer for a corresponding first sub-layer of video and signal a second value indicating a maximum required size of a decoded picture buffer for a corresponding second sub-layer of video, wherein the maximum required size of a decoded picture buffer for the corresponding second sub-layer of video is calculated as the sum of the first value and the second value. In one example, an apparatus comprises means for signaling a first value indicating a maximum required size of a decoded picture buffer for a corresponding first sub-layer of video and means for signaling a second value indicating a maximum required size of a decoded picture buffer for a corresponding second sub-layer of video, wherein the maximum required size of a decoded picture buffer for the corresponding second sub-layer of video is calculated as the sum of the first value and the second value. In one example, a method of decoding video data comprises parsing a first value indicating a maximum required size of a decoded picture buffer for a corresponding first sub-layer of video, parsing a second value indicating a maximum required size of a decoded picture buffer for a corresponding second sub-layer of video, and calculating the maximum required size of a decoded picture buffer for the corresponding second sub-layer of video as the sum of the first value and the second value. In one example, a device comprises one or more processors configured to parse a first value indicating a maximum required size of a decoded picture buffer for a corresponding first sub-layer of video, parse a second value indicating a maximum required size of a decoded picture buffer for a corresponding second sub-layer of video, and calculate the maximum required size of a decoded picture buffer for the corresponding second sub-layer of video as the sum of the first value and the second value. In one example, a non-transitory computer-readable storage medium comprises instructions stored thereon that, when executed, cause one or more processors of a device to parse a first value indicating a maximum required size of a decoded picture buffer for a corresponding first sub-layer of video, parse a second value indicating a maximum required size of a decoded picture buffer for a corresponding second sublayer of video, and calculate the maximum required size of a decoded picture buffer for the corresponding second sub-layer of video as the sum of the first value and the second value. In one example, an apparatus comprises means for parsing a first value indicating a maximum required size of a decoded picture buffer for a corresponding first sub-layer of video, means for parsing a second value indicating a maximum required size of a decoded picture buffer for a corresponding second sub-layer of video, and means for calculating the maximum required size of a decoded picture buffer for the corresponding second sub-layer of video as the sum of the first value and the second value. The details of one or more examples are set forth in the accompanying drawings and the description below. Other features, objects, and advantages will be apparent from the description and drawings, and from the claims. Video content includes video sequences comprised of a series of frames (or pictures). A series of frames may also be referred to as a group of pictures (GOP). Each video frame or picture may divided into one or more regions. Regions may be defined according to a base unit (e.g., a video block) and sets of rules defining a region. For example, a rule defining a region may be that a region must be an integer number of video blocks arranged in a rectangle. Further, video blocks in a region may be ordered according to a scan pattern (e.g., a raster scan). As used herein, the term video block may generally refer to an area of a picture or may more specifically refer to the largest array of sample values that may be predictively coded, sub-divisions thereof, and/or corresponding structures. Further, the term current video block may refer to an area of a picture being encoded or decoded. A video block may be defined as an array of sample values. It should be noted that in some cases pixel values may be described as including sample values for respective components of video data, which may also be referred to as color components, (e.g., luma (Y) and chroma (Cb and Cr) components or red, green, and blue components). It should be noted that in some cases, the terms pixel value and sample value are used interchangeably. Further, in some cases, a pixel or sample may be referred to as a pel. A video sampling format, which may also be referred to as a chroma format, may define the number of chroma samples included in a video block with respect to the number of luma samples included in a video block. For example, for the 4:2:0 sampling format, the sampling rate for the luma component is twice that of the chroma components for both the horizontal and vertical directions. A video encoder may perform predictive encoding on video blocks and sub-divisions thereof. Video blocks and sub-divisions thereof may be referred to as nodes. ITU-T H.264 specifies a macroblock including 16×16 luma samples. That is, in ITU-T H.264, a picture is segmented into macroblocks. ITU-T H.265 specifies an analogous Coding Tree Unit (CTU) structure (which may be referred to as a largest coding unit (LCU)). In ITU-T H.265, pictures are segmented into CTUs. In ITU-T H.265, for a picture, a CTU size may be set as including 16×16, 32×32, or 64×64 luma samples. In ITU-T H.265, a CTU is composed of respective Coding Tree Blocks (CTB) for each component of video data (e.g., luma (Y) and chroma (Cb and Cr). It should be noted that video having one luma component and the two corresponding chroma components may be described as having two channels, i.e., a luma channel and a chroma channel. Further, in ITU-T H.265, a CTU may be partitioned according to a quadtree (QT) partitioning structure, which results in the CTBs of the CTU being partitioned into Coding Blocks (CB). That is, in ITU-T H.265, a CTU may be partitioned into quadtree leaf nodes. According to ITU-T H.265, one luma CB together with two corresponding chroma CBs and associated syntax elements are referred to as a coding unit (CU). In ITU-T H.265, a minimum allowed size of a CB may be signaled. In ITU-T H.265, the smallest minimum allowed size of a luma CB is 8×8 luma samples. In ITU-T H.265, the decision to code a picture area using intra prediction or inter prediction is made at the CU level. In ITU-T H.265, a CU is associated with a prediction unit (PU) structure having its root at the CU. In ITU-T H.265, PU structures allow luma and chroma CBs to be split for purposes of generating corresponding reference samples. That is, in ITU-T H.265, luma and chroma CBs may be split into respective luma and chroma prediction blocks (PBs), where a PB includes a block of sample values for which the same prediction is applied. In ITU-T H.265, a CB may be partitioned into 1, 2, or 4 PBs. ITU-T H.265 supports PB sizes from 64×64 samples down to 4×4 samples. In ITU-T H.265, square PBs are supported for intra prediction, where a CB may form the PB or the CB may be split into four square PBs. In ITU-T H.265, in addition to the square PBs, rectangular PBs are supported for inter prediction, where a CB may by halved vertically or horizontally to form PBs. Further, it should be noted that in ITU-T H.265, for inter prediction, four asymmetric PB partitions are supported, where the CB is partitioned into two PBs at one quarter of the height (at the top or the bottom) or width (at the left or the right) of the CB. Intra prediction data (e.g., intra prediction mode syntax elements) or inter prediction data (e.g., motion data syntax elements) corresponding to a PB is used to produce reference and/or predicted sample values for the PB. JEM specifies a CTU having a maximum size of 256×256 luma samples. JEM specifies a quadtree plus binary tree (QTBT) block structure. In JEM, the QTBT structure enables quadtree leaf nodes to be further partitioned by a binary tree (BT) structure. That is, in JEM, the binary tree structure enables quadtree leaf nodes to be recursively divided vertically or horizontally. In JVET-N1001, CTUs are partitioned according a quadtree plus multi-type tree (QTMT or QT+MTT) structure. The QTMT in JVET-N1001 is similar to the QTBT in JEM. However, in JVET-N1001, in addition to indicating binary splits, the multi-type tree may indicate so-called ternary (or triple tree (TT)) splits. A ternary split divides a block vertically or horizontally into three blocks. In the case of a vertical TT split, a block is divided at one quarter of its width from the left edge and at one quarter its width from the right edge and in the case of a horizontal TT split a block is at one quarter of its height from the top edge and at one quarter of its height from the bottom edge. As described above, each video frame or picture may divided into one or more regions. For example, according to ITU-T H-265, each video frame or picture may be partitioned to include one or more slices and further partitioned to include one or more tiles, where each slice includes a sequence of CTUs (e.g., in raster scan order) and where a tile is a sequence of CTUs corresponding to a rectangular area of a picture. It should be noted that a slice, in ITU-T H.265, is a sequence of one or more slice segments starting with an independent slice segment and containing all subsequent dependent slice segments (if any) that precede the next independent slice segment (if any). A slice segment, like a slice, is a sequence of CTUs. Thus, in some cases, the terms slice and slice segment may be used interchangeably to indicate a sequence of CTUs arranged in a raster scan order. Further, it should be noted that in ITU-T H.265, a tile may consist of CTUs contained in more than one slice and a slice may consist of CTUs contained in more than one tile. However, ITU-T H.265 provides that one or both of the following conditions shall be fulfilled: (1) All CTUs in a slice belong to the same tile; and (2) All CTUs in a tile belong to the same slice. With respect to JVET-N1001, slices are required to consist of an integer number of bricks instead of only being required to consist of an integer number of CTUs. In JVET-N1001, a brick is a rectangular region of CTU rows within a particular tile in a picture. Further, in JVET-N1001, a tile may be partitioned into multiple bricks, each of which consisting of one or more CTU rows within the tile. A tile that is not partitioned into multiple bricks is also referred to as a brick. However, a brick that is a true subset of a tile is not referred to as a tile. As such, a slice including a set of CTUs which do not form a rectangular region of a picture may or may not be supported in some video coding techniques. Further, it should be noted that in some cases, a slice may be required to consist of an integer number of complete tiles and in this case is referred to as a tile group. The techniques described herein may applicable to bricks, slices, tiles, and/or tile groups. For intra prediction coding, an intra prediction mode may specify the location of reference samples within a picture. In ITU-T H.265, defined possible intra prediction modes include a planar (i.e., surface fitting) prediction mode, a DC (i.e., flat overall averaging) prediction mode, and 33 angular prediction modes (predMode: 2-34). In JEM, defined possible intra-prediction modes include a planar prediction mode, a DC prediction mode, and 65 angular prediction modes. It should be noted that planar and DC prediction modes may be referred to as non-directional prediction modes and that angular prediction modes may be referred to as directional prediction modes. It should be noted that the techniques described herein may be generally applicable regardless of the number of defined possible prediction modes. For inter prediction coding, a reference picture is determined and a motion vector (MV) identifies samples in the reference picture that are used to generate a prediction for a current video block. For example, a current video block may be predicted using reference sample values located in one or more previously coded picture(s) and a motion vector is used to indicate the location of the reference block relative to the current video block. A motion vector may describe, for example, a horizontal displacement component of the motion vector (i.e., MVx), a vertical displacement component of the motion vector (i.e., MVy), and a resolution for the motion vector (e.g., one-quarter pixel precision, one-half pixel precision, one-pixel precision, two-pixel precision, four-pixel precision). Previously decoded pictures, which may include pictures output before or after a current picture, may be organized into one or more to reference pictures lists and identified using a reference picture index value. Further, in inter prediction coding, uni-prediction refers to generating a prediction using sample values from a single reference picture and bi-prediction refers to generating a prediction using respective sample values from two reference pictures. That is, in uni-prediction, a single reference picture and corresponding motion vector are used to generate a prediction for a current video block and in bi-prediction, a first reference picture and corresponding first motion vector and a second reference picture and corresponding second motion vector are used to generate a prediction for a current video block. In bi-prediction, respective sample values are combined (e.g., added, rounded, and dipped, or averaged according to weights) to generate a prediction. Pictures and regions thereof may be classified based on which types of prediction modes may be utilized for encoding video blocks thereof. That is, for regions having a B type (e.g., a B slice), bi-prediction, uni-prediction, and intra prediction modes may be utilized, for regions having a P type (e.g., a P slice), uni-prediction, and intra prediction modes may be utilized, and for regions having an I type (e.g., an I slice), only intra prediction modes may be utilized. As described above, reference pictures are identified through reference indices. For example, for a P slice, there may be a single reference picture list, RefPicList0 and for a B slice, there may be a second independent reference picture list, RefPicList1, in addition to RefPicList0. It should be noted that for uni-prediction in a B slice, one of RefPicList0 or RefPicList1 may be used to generate a prediction. Further, it should be noted that during the decoding process, at the onset of decoding a picture, reference picture list(s) are generated from previously decoded pictures stored in a decoded picture buffer (DPB). Further, a coding standard may support various modes of motion vector prediction. Motion vector prediction enables the value of a motion vector for a current video block to be derived based on another motion vector. For example, a set of candidate blocks having associated motion information may be derived from spatial neighboring blocks and temporal neighboring blocks to the current video block. Further, generated (or default) motion information may be used for motion vector prediction. Examples of motion vector prediction include advanced motion vector prediction (AMVP), temporal motion vector prediction (TMVP), so-called “merge” mode, and “skip” and “direct” motion inference. Further, other examples of motion vector prediction include advanced temporal motion vector prediction (ATMVP) and Spatial-temporal motion vector prediction (STMVP). For motion vector prediction, both a video encoder and video decoder perform the same process to derive a set of candidates. Thus, for a current video block, the same set of candidates is generated during encoding and decoding. As described above, for inter prediction coding, reference samples in a previously coded picture are used for coding video blocks in a current picture. Previously coded pictures which are available for use as reference when coding a current picture are referred as reference pictures. It should be noted that the decoding order does not necessary correspond with the picture output order, i.e., the temporal order of pictures in a video sequence. In ITU-T H.265, when a picture is decoded it is stored to a decoded picture buffer (DPB) (which may be referred to as frame buffer, a reference buffer, a reference picture buffer, or the like). In ITU-T H.265, pictures stored to the DPB are removed from the DPB when they been output and are no longer needed for coding subsequent pictures. In ITU-T H.265, a determination of whether pictures should be removed from the DPB is invoked once per picture, after decoding a slice header, i.e., at the onset of decoding a picture. For example, referring to As described above, intra prediction data or inter prediction data is used to produce reference sample values for a block of sample values. The difference between sample values included in a current PB, or another type of picture area structure, and associated reference samples (e.g., those generated using a prediction) may be referred to as residual data. Residual data may include respective arrays of difference values corresponding to each component of video data. Residual data may be in the pixel domain. A transform, such as, a discrete cosine transform (DCT), a discrete sine transform (DST), an integer transform, a wavelet transform, or a conceptually similar transform, may be applied to an array of difference values to generate transform coefficients. It should be noted that in ITU-T H.265 and JVET-N1001, a CU is associated with a transform unit (TU) structure having its root at the CU level. That is, an array of difference values may be partitioned for purposes of generating transform coefficients (e.g., four 8×8 transforms may be applied to a 16×16 array of residual values). For each component of video data, such sub-divisions of difference values may be referred to as Transform Blocks (TBs). It should be noted that in some cases, a core transform and a subsequent secondary transforms may be applied (in the video encoder) to generate transform coefficients. For a video decoder, the order of transforms is reversed. A quantization process may be performed on transform coefficients or residual sample values directly (e.g., in the case, of palette coding quantization). Quantization approximates transform coefficients by amplitudes restricted to a set of specified values. Quantization essentially scales transform coefficients in order to vary the amount of data required to represent a group of transform coefficients. Quantization may include division of transform coefficients (or values resulting from the addition of an offset value to transform coefficients) by a quantization scaling factor and any associated rounding functions (e.g., rounding to the nearest integer). Quantized transform coefficients may be referred to as coefficient level values. Inverse quantization (or “dequantization”) may include multiplication of coefficient level values by the quantization scaling factor, and any reciprocal rounding or offset addition operations. It should be noted that as used herein the term quantization process in some instances may refer to division by a scaling factor to generate level values and multiplication by a scaling factor to recover transform coefficients in some instances. That is, a quantization process may refer to quantization in some cases and inverse quantization in some cases. Further, it should be noted that although in some of the examples below quantization processes are described with respect to arithmetic operations associated with decimal notation, such descriptions are for illustrative purposes and should not be construed as limiting. For example, the techniques described herein may be implemented in a device using binary operations and the like. For example, multiplication and division operations described herein may be implemented using bit shifting operations and the like. Quantized transform coefficients and syntax elements (e.g., syntax elements indicating a coding structure for a video block) may be entropy coded according to an entropy coding technique. An entropy coding process includes coding values of syntax elements using lossless data compression algorithms. Examples of entropy coding techniques include content adaptive variable length coding (CAVLC), context adaptive binary arithmetic coding (CABAC), probability interval partitioning entropy coding (PIPE), and the like. Entropy encoded quantized transform coefficients and corresponding entropy encoded syntax elements may form a compliant bitstream that can be used to reproduce video data at a video decoder. An entropy coding process, for example, CABAC, may include performing a binarization on syntax elements. Binarization refers to the process of converting a value of a syntax element into a series of one or more bits. These bits may be referred to as “bins.” Binarization may include one or a combination of the following coding techniques: fixed length coding, unary coding, truncated unary coding, truncated Rice coding, Golomb coding, k-th order exponential Golomb coding, and Golomb-Rice coding. For example, binarization may include representing the integer value of 5 for a syntax element as 00000101 using an 8-bit fixed length binarization technique or representing the integer value of 5 as 11110 using a unary coding binarization technique. As used herein each of the terms fixed length coding, unary coding, truncated unary coding, truncated Rice coding, Golomb coding, k-th order exponential Golomb coding, and Golomb-Rice coding may refer to general implementations of these techniques and/or more specific implementations of these coding techniques. For example, a Golomb-Rice coding implementation may be specifically defined according to a video coding standard. In the example of CABAC, for a particular bin, a context provides a most probable state (MPS) value for the bin (i.e., an MPS for a bin is one of 0 or 1) and a probability value of the bin being the MPS or the least probably state (LPS). For example, a context may indicate, that the MPS of a bin is 0 and the probability of the bin being 1 is 0.3. It should be noted that a context may be determined based on values of previously coded bins including bins in the current syntax element and previously coded syntax elements. For example, values of syntax elements associated with neighboring video blocks may be used to determine a context for a current bin. With respect to the equations used herein, the following arithmetic operators may be used:
Further, the following mathematical functions may be used:
With respect to the example syntax used herein, the following definitions of logical operators may be applied:
Further, the following relational operators may be applied:
Further, it should be noted that in the syntax descriptors used herein, the following descriptors may be applied:
As described above, video content includes video sequences comprised of a series of frames (or pictures) and each video frame or picture may be divided into one or more regions. A coded video sequence (CNS) may be encapsulated (or structured) as a sequence of access units, where each access unit includes video data structured as network abstraction layer (NAL) units. A bitstream may be described as including a sequence of NAL units forming one or more CVSs. It should be noted that multi-layer extensions enable a video presentation to include a base layer and one or more additional enhancement layers. For example, a base layer may enable a video presentation having a basic level of quality (e.g., a High Definition rendering and/or a 30 Hz frame rate) to be presented and an enhancement layer may enable a video presentation having an enhanced level of quality (e.g., an Ultra High Definition rendering and/or a 60 Hz frame rate) to be presented. An enhancement layer may be coded by referencing a base layer. That is, for example, a picture in an enhancement layer may be coded (e.g., using inter-layer prediction techniques) by referencing one or more pictures (including scaled versions thereof) in a base layer. Each NAL unit may include an identifier indicating a layer of video data the NAL unit is associated with. It should be noted that sub-bitstream extraction may refer to a process where a device receiving a compliant or conforming bitstream forms a new compliant or conforming bitstream by discarding and/or modifying data in the received bitstream. For example, sub-bitstream extraction may be used to form a new compliant or conforming bitstream corresponding to a particular representation of video (e.g., a high quality representation). Layers may also be coded independent of each other. In this case, there may not be an inter-layer prediction between two layers. Referring to the example illustrated in In JVET-N1001, parameter sets may be encapsulated as a special type of NAL unit or may be signaled as a message. NAL units including coded video data (e.g., a slice) may be referred to as VCL (Video Coding Layer) NAL units and NAL units including metadata (e.g., parameter sets) may be referred to as non-VCL NAL units. Further, JVET-N-1001 enables supplemental enhancement information (SEI) messages to be signaled. In JVET-N-1001, SEI messages assist in processes related to decoding, display or other purposes, however, SEI messages may not be required for constructing the luma or chroma samples by the decoding process. In JVET-N-1001, SEI messages may be signaled in a bitstream using non-VCL NAL units. Further, SEI messages may be conveyed by some means other than by being present in the bitstream (i.e., signaled out-of-band). An access unit may be called a layer access unit. As described above, multi-layer extensions enable a video presentation to include a base layer and one or more additional enhancement layers. It should be noted that in ITU-T H.265 a temporal true subset of a scalable layer is not referred to as a layer but referred to as a sub-layer or temporal sub-layer. That is, ITU-T H.265 provides the following definitions with respect to sub-layers:
The term sub-layer and temporal sub-layer may be used interchangeably. As described above, sub-bitstream extraction may be used to form a new bitstream corresponding to a particular representation of video. It should be noted that for a particular temporal video representation (e.g., a 60 Hz representation), sub-bitstream extraction may include extracting a base layer and one or more enhancement layers, where a highest temporal sub-layer identifier (e.g., HighestTid) can be used to specify a particular representation. That is, for example, a 60 Hz representation may be formed by extracting a 10 Hz temporal sub-layer identifier=0, a 30 Hz temporal sub-layer identifier=1, and a 60 Hz temporal sub-layer identifier=2. That is, each temporal sub-layer having a temporal sub-layer identifier less than equal to a target sub-layer, HighestTid, is extracted for the representation. JVET-N1001 defines NAL unit header semantics that specify the type of Raw Byte Sequence Payload (RBSP) data structure included in the NAL unit. Table 1 illustrates the syntax of the NAL unit header provided in JVET-N1001. JVET-N1001 provides the following definitions for the respective syntax elements illustrated in Table 1.
NOTE—NAL unit types in the range of 16 to 31, inclusive, have zero_tid_required_flag equal to 1, and consequently have TemporalId equal to 0. The value of TemporalId shall be the same for all VCL NAL units of a layer access unit. The value of TemporalId of a coded picture or a layer access unit is the value of the TemporalId of the VCL NAL units of the coded picture or the layer access unit. The value of TemporalId for non-VCL NAL units is constrained as follows:
NOTE—When the NAL, unit is a non-VCL NAL unit, the value of TemporalId is equal to the minimum value of the TemporalId values of all layer access units to which the non-VCL NAL unit applies. When NalUnitType is equal to PPS_NUT, TemporalId may be greater than or equal to the TemporalId of the containing layer access unit, as all picture parameter sets (PPSs) may be included in the beginning of a bitstream, wherein the first coded picture has TemporalId equal to 0. When NalUnitType is equal to PREFIX_SEI_NUT or SUFFIX_SEI_NUT, TemporalId may be greater than or equal to the TemporalId of the containing layer access unit, as an SEI NAL unit may contain information that applies to a bitstream subset that includes layer access units for which the TemporalId values are greater than the TemporalId of the layer access unit containing the SET NAL unit.
NOTE—The value of 127 for nuh_layer_id may be used to indicate an extended layer identifier in a future extension of this Specification. The value of nuh_layer_id shall be the same for all VCL NAL units of a coded picture. The value of nuh_layer_id of a coded picture is the value of the nuh_layer_id of the VCL NAL units of the coded picture.
With respect to the syntax element nal_unit_type_lsb, JVET-N-1001 provides the following:
The variable NalUnitType, which specifies the NAL unit type, i.e., the type of RBSP data structure contained in the NAL unit as specified in Table 2 is derived as follows:
NAL units that have NalUnitType in the range of UNSPEC28 . . . UNSPEC31, inclusive, for which semantics are not specified, shall not affect the decoding process specified in this Specification. NOTE—NAL unit types in the range of UNSPEC28 . . . SPEC31 may be used as determined by the application. No decoding process for these values of NalUnitType is specified in this Specification. Since different applications might use these NAL unit types for different purposes, particular care must be exercised in the design of encoders that generate NAL units with these NalUnitType values, and in the design of decoders that interpret the content of NAL units with these NalUnitType values. This Specification does not define any management for these values. These NalUnitType values might only be suitable for use in contexts in which “collisions” of usage (i.e., different definitions of the meaning of the NAL unit content for the same NalUnitType value) are unimportant, or not possible, or are managed—e.g., defined or managed in the controlling application or transport specification, or by controlling the environment in which bitstreams are distributed. For purposes other than determining the amount of data in the decoding units of the bitstream, decoders shall ignore (remove from the bitstream and discard) the contents of all NAL units that use reserved values of NalUnitType. NOTE—This requirement allows future definition of compatible extensions to this Specification. NOTE—A clean random access (CRA) picture may have associated RASL or RADL pictures present in the bitstream. NOTE—An instantaneous decoding refresh (IDR) picture having NalUnitType equal to IDR_N_LP does not have associated leading pictures present in the bitstream. An IDR picture having NalUnitType equal to IDR_W_RADL does not have associated RASL pictures present in the bitstream, but may have associated RADL pictures in the bitstream. It should be noted that generally, for example with respect to ITU-T H.265, an IRAP a picture is a picture that does not refer to any pictures other than itself for inter prediction in its decoding process. Typically, the first picture in the bitstream in decoding order must be an IRAP picture. In ITU-T H.265, an IRAP picture may be a broken link access (BLA) picture, a clean random access (CRA) picture or an instantaneous decoder refresh (IDR) picture. ITU-T H.265 describes the concept of a leading picture, which is a picture that precedes the associated IRAP picture in output order. ITU-T H.265 further describes the concept of a trailing picture which is a non-IRAP picture that follows the associated IRAP picture in output order. Trailing pictures associated with an IRAP picture also follow the IRAP picture in decoding order. For IDR pictures, there are no trailing pictures that require reference to a picture decoded prior to the IDR picture. ITU-T H.265 provides where a CRA picture may have leading pictures that follow the CRA picture in decoding order and contain inter picture prediction references to pictures decoded prior to the CRA picture. Thus, when the CRA picture is used as a random access point these leading pictures may not be decodable and are identified as random access skipped leading (RASL) pictures. BLA pictures may also be followed by RASL pictures. These RASL pictures are always discarded for BLA pictures and discarded for CRA pictures when they are non-decodable, i.e., when a decoder that starts its decoding process at a CRA point. The other type of picture that can follow an IRAP picture in decoding order and precede it in output order is the random access decodable leading (RADL) picture, which cannot contain references to any pictures that precede the IRAP picture in decoding order. As described above, in JVET-N-1001, non-VCL NAL units include respective parameter set NAL units. Table 3 illustrates the sequence parameter set syntax provided in JVET-N-1001. With respect to Table 3, JVET-N1001 provides the following semantics:
NOTE—There is no dependency in decoding processes between the colour planes having different colour_plane_id values. For example, the decoding process of a monochrome picture with one value of colour_plane_id does not use any data from monochrome pictures having different values of colour_plane_id for inter prediction. Depending on the value of separate_colour_plane_flag, the value of the variable ChromaArrayType is assigned as follows:
The conformance cropping window contains the luma samples with horizontal picture coordinates from SubWidthC*conf_win_left_offset to pic_width_in_luma_samples−(SubWidthC*conf_win_right_offset+1) and vertical picture coordinates from SubHeightC*conf_win_top_offset to pic_width_in_luma_samples−(SubHeightC*conf_win_bottom_offset+1), inclusive. The value of SubWidthC*(conf_win_left_offset+conf_win_right_offset) shall be less than pic_width_in_luma_samples, and the value of SubHeightC*(conf_win_top_offset+conf_win_bottom_offset) shall be less than pic_width_in_luma_samples. When ChromaArrayType is not equal to 0, the corresponding specified samples of the two chroma arrays are the samples having picture coordinates (x/SubWidthC, y/SubHeightC), where (x, y) are the picture coordinates of the specified luma samples. NOTE—The conformance cropping window offset parameters are only applied at the output. All internal decoding processes are applied to the uncropped picture size.
The value of log2_max_pic_order_cnt_lsb_minus4 shall be in the range of 0 to 12, inclusive.
When sps_max_latency_increase_plus1[i] is equal to 0, no corresponding limit is expressed. The value of sps_max_latency_increase_plus1[i] shall be in the range of 0 to 232−2, inclusive. When sps_max_latency_increase_plus1[i] is not present for in the range of 0 to sps_max_sub_layers_minus1−1, inclusive, due to sps_sub_layer_ordering_info_present_flag being equal to 0, it is inferred to be equal to sps_max_latency_increase_plus1[sps_max_sub_layers_minus1].
NOTE—For each value of listIdx (equal to 0 or 1), a decoder should allocate memory for a total number of num_ref_pic_lists_in_sps[i]+1 ref_pic_list_struct(listIdx, rplsIdx) syntax structures since there may be one ref_pic_list_struct(listIdx, rplsIdx) syntax structure directly signalled in the slice headers of a current picture.
The variables CtbLog2SizeY, CtbSizeY, MinCbLog2SizeY, MinCbSizeY, MinTbLog2SizeY, MaxTbLog2SizeY, MinTbSizeY, MaxTbSizeY, PicWidthInCtbsY, PieHeightInCtbsY, PicSizeInCtbsY, PicWidthInMinCbsY, PicHeightInMinCbsY, PicSizeInMinCbsY, PicSizeInSamplesY, PicWidthInSamplesC and PicHeightInSamplesC are derived as follows:
The variables CtbWidthC and CtbHeightC, which specify the width and height, respectively, of the array for each chroma CTB, are derived as follows:
For log2BlockWidth ranging from 0 to 4 and for log2BlockHeight ranging from 0 to 4, inclusive, the up-right diagonal scan order array initialization process as specified is invoiced with 1<<log2BlockWidth and 1<<log2BlockHeight as inputs, and the output is assigned to DiagScanOrder[log2BlockWidth][log2BlockHeight].
NOTE—When MinCbLog2SizeY is equal to 6 and sps_pcm_enabled_flag is equal to 1, PCM sample data-related syntax (pcm_flag, pcm_alignment_zero_bit syntax elements and pcm_sample( ) syntax structure) is not present in the CVS, because the maximum size of coding blocks that can convey PCM sample data-related syntax is restricted to be less than or equal to Min(CtbLog2SizeY, 5). Hence, MinCbLog2SizeY equal to 6 with sps_pcm_enabled_flag equal to 1 is not an appropriate setting to convey PCM sample data in the CVS.
The value of PcmBitDepthYshall be less than or equal to the value of BitDepthY.
The value of PcmBitDepthCshall be less than or equal to the value of BitDepthC. When ChromaArrayType is equal to 0, pcm_sample_bit_depth_chroma_minus1 is not used in the decoding process and decoders shall ignore its value.
The variable Log2MinIpcmCbSizeY is set equal to log2min_pcm_luma_coding_block_size_minus3+3. The value of Log2MinIpcmCbSizeY shall be in the range of Min(MinCbLog2Size2Y, 5) to Min(CtbLog2SizeY, 5), inclusive.
The variable Log2MaxIpcmCbSizeY is set equal to log2_diff_max_min_pcm_luma_coding_block_size+Log2MinIpcmCbSizeY. The value of Log2MaxIpcmCbSizeY shall be less than or equal to Min(CtbLog2SizeY, 5).
When pcm_loop_filter_disabled_flag is not present, it is inferred to be equal to 0.
The value of SpsLadfIntervalLowerBound[0] is set equal to 0. For each value of i in the range of 0 to sps_num_ladf_intervals_minus2, inclusive, the variable SpsLadfIntervalLowerBound[i+1] is derived as follows:
As described above, during the decoding process, at the onset of decoding a picture, reference picture list(s) are generated from previously decoded pictures stored in a decoded picture buffer (DPB). A parameter set may include information with respect to a DPB. For example, referring to Table 3, in JVET-N1001, SPS includes syntax element sps_max_dec_pic_buffering_minus1[i] which plus 1 specifies the maximum required size of the decoded picture buffer for the CVS in units of picture storage buffers when HighestTid is equal to syntax element sps_max_num_reorder_pics[i] which indicates the maximum allowed number of pictures that can precede any picture in the CVS in decoding order and follow that picture in output order when HighestTid is equal to i, and syntax element sps_max_latency_increase_plus1[i] which may be used to specify the maximum number of pictures that can precede any picture in the CVS in output order and follow that picture in decoding order when HighestTid is equal to i. Thus, based on the values of sps_max_dec_pic_buffering_minus1, sps_max_num_reorder_pics, and/or sps_max_latency_increase_plus[i], a video decoder may allocate resources for a DPB for a coded video sequence, e.g., a coded video sequence having a HighestTid equal to i. The signaling DPB information in JVET-N1001 is less than ideal. In particular, in JVET-N1001, each of syntax elements sps_max_dec_pic_buffering_minus1[i] and sps_max_num_reorder_pics[i] are coded using ne(v) coding and there is a strictly monotonic non-decreasing relationship between values for the parameters as a function of index i, That is, when there are multiple sub-layers
Communications medium 110 may include any combination of wireless and wired communication media, and/or storage devices. Communications medium 110 may include coaxial cables, fiber optic cables, twisted pair cables, wireless transmitters and receivers, routers, switches, repeaters, base stations, or any other equipment that may be useful to facilitate communications between various devices and sites. Communications medium 110 may include one or more networks. For example, communications medium 110 may include a network configured to enable access to the World Wide Web, for example, the Internet. A network may operate according to a combination of one or more telecommunication protocols. Telecommunications protocols may include proprietary aspects and/or may include standardized telecommunication protocols. Examples of standardized telecommunications protocols include Digital Video Broadcasting (DVB) standards, Advanced Television Systems Committee (ATSC) standards, Integrated Services Digital Broadcasting (ISDB) standards, Data Over Cable Service Interface Specification (DOCSIS) standards, Global System Mobile Communications (GSM) standards, code division multiple access (CDMA) standards, 3rd Generation Partnership Project (3GPP) standards, European Telecommunications Standards Institute (ETSI) standards, Internet Protocol (IP) standards, Wireless Application Protocol (WAP) standards, and Institute of Electrical and Electronics Engineers (IEEE) standards. Storage devices may include any type of device or storage medium capable of storing data. A storage medium may include a tangible or non-transitory computer-readable media. A computer readable medium may include optical discs, flash memory, magnetic memory, or any other suitable digital storage media. In some examples, a memory device or portions thereof may be described as non-volatile memory and in other examples portions of memory devices may be described as volatile memory. Examples of volatile memories may include random access memories (RAM), dynamic random access memories (DRAM), and static random access memories (SRAM). Examples of non-volatile memories may include magnetic hard discs, optical discs, floppy discs, flash memories, or forms of electrically programmable memories (EPROM) or electrically erasable and programmable (EEPROM) memories. Storage device(s) may include memory cards (e.g., a Secure Digital (SD) memory card), internal/external hard disk drives, and/or internal/external solid state drives. Data may be stored on a storage device according to a defined file format. Television service network 404 is an example of a network configured to enable digital media content, which may include television services, to be distributed. For example, television service network 404 may include public over-the-air television networks, public or subscription-based satellite television service provider networks, and public or subscription-based cable television provider networks and/or over the top or Internet service providers. It, should be noted that although in some examples television service network 404 may primarily be used to enable television services to be provided, television service network 404 may also enable other types of data and services to be provided according to any combination of the telecommunication protocols described herein. Further, it, should be noted that in some examples, television service network 404 may enable two-way communications between television service provider site 406 and one or more of computing devices 402A-402N. Television service network 404 may comprise any combination of wireless and/or wired communication media. Television service network 404 may include coaxial cables, fiber optic cables, twisted pair cables, wireless transmitters and receivers, routers, switches, repeaters, base stations, or any other equipment that may be useful to facilitate communications between various devices and sites. Television service network 404 may operate according to a combination of one or more telecommunication protocols. Telecommunications protocols may include proprietary aspects and/or may include standardized telecommunication protocols. Examples of standardized telecommunications protocols include DVB standards, ATSC standards, ISDB standards, DTMB standards, DMB standards, Data Over Cable Service Interface Specification (DOCSIS) standards, HbbTV standards, W3C standards, and UPnP standards. Referring again to Wide area network 408 may include a packet based network and operate according to a combination of one or more telecommunication protocols. Telecommunications protocols may include proprietary aspects and/or may include standardized telecommunication protocols. Examples of standardized telecommunications protocols include Global System Mobile Communications (GSM) standards, code division multiple access (CDMA) standards, 3rdGeneration Partnership Project. (3GPP) standards, European Telecommunications Standards Institute (ETSI) standards, European standards (EN), IP standards, Wireless Application Protocol (WAP) standards, and Institute of Electrical and Electronics Engineers (IEEE) standards, such as, for example, one or more of the IEEE 802 standards (e.g., Wi-Fi). Wide area network 408 may comprise any combination of wireless and/or wired communication media. Wide area network 408 may include coaxial cables, fiber optic cables, twisted pair cables, Ethernet cables, wireless transmitters and receivers, routers, switches, repeaters, base stations, or any other equipment that may be useful to facilitate communications between various devices and sites. In one example, wide area network 408 may include the Internet. Local area network 410 may include a packet based network and operate according to a combination of one or more telecommunication protocols. Local area network 410 may be distinguished from wide area network 408 based on levels of access and/or physical infrastructure. For example, local area network 410 may include a secure home network. Referring again to Referring again to Video encoder 500 may perform intra prediction coding and inter prediction coding of picture areas, and, as such, may be referred to as a hybrid video encoder. In the example illustrated in In the example illustrated in Referring again to Referring again to Referring again to Referring again to As described above, the signaling of DPB information in JVET-N1001 is less than ideal. In one example, according to the techniques herein,
When i is greater than 0, sps_max_dec_pic_buffering_minus1[i] shall be greater than or equal to sps_max dec_pic_buffering_minus1[i−1]. When sps_max_dec_pic_buffering_minus1[i] is not present for i in the range of 0 to sps_max_sub_layers_minus1−1, inclusive, due to sps_sub_layer_ordering_info_present_flag being equal to 0, it is inferred to be equal to sps_max_dec_pic_buffering_minus1[sps_max_sub_layers_minus1]. In one example, MaxDpbSize may be as defined below as provided in ITU-T H.265:
In another example, MaxDpbSize value may be different for different temporal sub-layer. Thus MaxDpbSize[i] may have different value for each i.
When i is greater than 0, sps_max_num_reorder_pics[i] shall be greater than or equal to sps_max_num_reorder_pics[i−1]. When sps_max_num_reorder_pics[i] is not present for i in the range of 0 to sps_max_sub_layers_minus1−1, inclusive, due to sps_sub_layer_ordering_info_present_flag being equal to 0, it is inferred to be equal to sps_max_num_reorder_pics[sps_max_sub_layers_minus1]. Further, in one example, the length of the sps_max_num_reorder_pics[i] syntax element may be Ceil(Log2(sps_max_dec_pic_buffering_minus1[i])) bits. In one example, according to the techniques herein, the maximum required size of the decoded picture buffer for the CVS in units of picture storage buffers when HighestTid is equal to i and/or the maximum allowed number of pictures that can precede any picture in the CVS in decoding order and follow that picture in output order when HighestTid is equal to i may be signaled using delta coding. Table 4 illustrates an example of syntax of a sequence parameter set, which may be signaled according to the techniques herein. With respect to Table 4, the semantics may be based on the semantics provided above with respect to Table 3, for syntax elements, sps_max_dec_pic_buffering_delta, sps_max_num_reorder_pics_delta, and sps_max_latency_increase_plus1 in one example, the following semantics may be used:
When sps_max_dec_pic_buffering_delta[i] is not present for i in the range of 0 to sps_max_sub_layers_minus1−1, inclusive, due to sps_sub_layer_ordering_info_present_flag being equal to 0, it is inferred to be equal to 0. The variable SpsMaxDecPicBuffering[i] is calculated as follows:
In another example, the variable SpsMaxDecPicBuffering[i] may be calculated as follows:
In another example, the variable SpsMaxNumReorder Pics [i] may be calculated as follows:
When sps_max_latency_increase_plus1[i] is not equal to 0, the value of SpsMaxLatencyPictures[i] is specified as follows:
When sps_max_latency_increase_plus1[i] is equal to 0, no corresponding limit is expressed. The value of sps_max_latency_increase_plus1[i] shall be in the range of 0 to 232−2, inclusive. When sps_max_latency_increase_plus1[i] is not present for i in the range of 0 to sps_max_sub_layers_minus1−1, inclusive, due to sps_sub_layer_ordering_info_present_flag being equal to 0, it is inferred to be equal to sps_max_latency_increase_plus1[sps_max_sub_layers_minus1]. It should be noted that based on the example semantics for
In one example, according to the techniques herein, syntax element
In another example, the condition if(!sps_max_sub_layers_minus1) may instead be written as if(sps_max_sub_layers_minus1>0) or some other similar test. With respect to Table 5, the semantics may be based on the semantics provided above with respect to Table 3, for syntax elements, sps_sub_layer_ordering_info_present_flag, sps_max_dec_pic_buffering_delta, sps_max_num_reorder_pics_delta, and sps_max_latency_increase_plus1 in one example, the following semantics may be used:
In another example: When not present sps_sub_layer_ordering_info_present_flag is inferred to be equal to 1.
When sps_max_latency_increase_plus1[i] is not equal to 0, the value of SpsMaxLatencyPictures[i] is specified as follows:
When sps_max_latency_increase_plus1[i] is equal to 0, no corresponding limit is expressed. The value of sps_max_latency_increase_plus1[i] shall be in the range of 0 to 232−2, inclusive. When sps_max_latency_increase_plus1[i] is not present for the range of 0 to sps_max_sub_layers_minus−1, inclusive, due to sps_sub_layer_ordering_info_present_flag being equal to 0, it is inferred to be equal to sps_max_latency_increase_plus1[sps_max_sub_layers_minus1]. In this manner, source device 102 represents an example of a device configured to signal a first value indicating a maximum required size of a decoded picture buffer for a corresponding first sub-layer of video and signal a second value indicating a maximum required size of a decoded picture buffer for a corresponding second sub-layer of video, wherein the maximum required size of a decoded picture buffer for the corresponding second sub-layer of video is calculated as the sum of the first value and the second value. Referring again to Referring again to Video decoder 124 may include any device configured to receive a bitstream (e.g., a sub-bitstream extraction) and/or acceptable variations thereof and reproduce video data therefrom. Display 126 may include any device configured to display video data. Display 126 may comprise one of a variety of display devices such as a liquid crystal display (LCD), a plasma display, an organic light emitting diode ((MED) display, or another type of display. Display 126 may include a High Definition display or an Ultra High Definition display. It should be noted that although in the example illustrated in In the example illustrated in As illustrated in Referring again to In one or more examples, the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium and executed by a hardware-based processing unit. Computer-readable media may include computer-readable storage media, which corresponds to a tangible medium such as data storage media, or communication media including any medium that facilitates transfer of a computer program from one place to another, e.g., according to a communication protocol, in this manner, computer-readable media generally may correspond to (1) tangible computer-readable storage media which is non-transitory or (2) a communication medium such as a signal or carrier wave. Data storage media may be any available media that can be accessed by one or more computers or one or more processors to retrieve instructions, code and/or data structures for implementation of the techniques described in this disclosure. A computer program product may include a computer-readable medium. By way of example, and not limitation, such computer-readable storage media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage, or other magnetic storage devices, flash memory, or any other medium that can be used to store desired program code in the form of instructions or data structures and that can be accessed by a computer. Also, any connection is properly termed a computer-readable medium. For example, if instructions are transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium. It should be understood, however, that computer-readable storage media and data storage media do not include connections, carrier waves, signals, or other transitory media, but are instead directed to non-transitory, tangible storage media. Disk and disc, as used herein, includes compact disc (CD), laser disc, optical disc, digital versatile disc (DVD), floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers Combinations of the above should also be included within the scope of computer-readable media. Instructions may be executed by one or more processors, such as one or more digital signal processors (DSPs), general purpose microprocessors, application specific integrated circuits (ASICs), field programmable logic arrays (FPGAs), or other equivalent integrated or discrete logic circuitry. Accordingly, the term “processor,” as used herein may refer to any of the foregoing structure or any other structure suitable for implementation of the techniques described herein. In addition, in some aspects, the functionality described herein may be provided within dedicated hardware and/or software modules configured for encoding and decoding, or incorporated in a combined codec. Also, the techniques could be fully implemented in one or more circuits or logic elements. The techniques of this disclosure may be implemented in a wide variety of devices or apparatuses, including a wireless handset, an integrated circuit (IC) or a set of ICs (e.g., a chip set). Various components, modules, or units are described in this disclosure to emphasize functional aspects of devices configured to perform the disclosed techniques, but do not necessarily require realization by different hardware units. Rather, as described above, various units may be combined in a codec hardware unit or provided by a collection of interoperative hardware units, including one or more processors as described above, in conjunction with suitable software and/or firmware. Moreover, each functional block or various features of the base station device and the terminal device used in each of the aforementioned embodiments may be implemented or executed by a circuitry, which is typically an integrated circuit or a plurality of integrated circuits. The circuitry designed to execute the functions described in the present specification may comprise a general-purpose processor, a digital signal processor (DSP), an application specific or general application integrated circuit (ASIC), a field programmable gate array (FPGA), or other programmable logic devices, discrete gates or transistor logic, or a discrete hardware component, or a combination thereof. The general-purpose processor may be a microprocessor, or alternatively, the processor may be a conventional processor, a controller, a microcontroller or a state machine. The general-purpose processor or each circuit described above may be configured by a digital circuit or may be configured by an analogue circuit. Further, when a technology of making into an integrated circuit superseding integrated circuits at the present time appears due to advancement of a semiconductor technology, the integrated circuit by this technology is also able to be used. Various examples have been described. These and other examples are within the scope of the following claims. In one example, a method of signaling decoded picture buffer (DPB) information for decoding video data, the method comprising: signaling a first value indicating a maximum required size of a decoded picture buffer for a corresponding first sub-layer of video; and signaling a second value indicating a maximum required size of a decoded picture buffer for a corresponding second sub-layer of video, wherein the maximum required size of a decoded picture buffer for the corresponding second sub-layer of video is calculated as the sum of the first value and the second value. In one example, a method of decoding video data, the method comprising: parsing a first value indicating a maximum required size of a decoded picture buffer for a corresponding first sub-layer of video; parsing a second value indicating a maximum required size of a decoded picture buffer for a corresponding second sub-layer of video; and calculating the maximum required size of a decoded picture buffer for the corresponding second sub-layer of video as the sum of the first value and the second value. In one example, the method, wherein the first value and the second value are included in a sequence parameter set. In one example, a device for coding video data, the device comprising one or more processors configured to perform any and all combinations of the steps. In one example, the device, wherein the device includes a video encoder. In one example, the device, wherein the device includes a video decoder. In one example, a system comprising: the device includes a video encoder; and the device includes a video decoder. In one example, an apparatus for coding video data, the apparatus comprising means for performing any and all combinations of the steps. In one example, a non-transitory computer-readable storage medium comprising instructions stored thereon that, when executed, cause one or more processors of a device for coding video data to perform any and all combinations of the steps. In one example, a method of decoding video data, the method comprising: parsing a syntax element specifying a maximum number of temporal sublayers that may be present in a coded video sequence; determining whether a value of the syntax element specifying the maximum number of temporal sublayers that may be present in a coded video sequence is greater than zero; and conditionally parsing a syntax element indicating the presence of decoded picture buffer parameters only when it is determined that the value of the syntax element specifying the maximum number of temporal sublayers that may be present in a coded video sequence is greater than zero. In one example, the method, further comprising inferring the value of the syntax element indicating the presence of decoded picture buffer parameters to be zero when it, is not parsed. In one example, the method, wherein the syntax element is included in a sequence parameter set. In one example, a device comprising one or more processors configured to: parse a syntax element specifying a maximum number of temporal sublayers that may be present in a coded video sequence; determine whether a value of the syntax element specifying the maximum number of temporal sublayers that may be present in a coded video sequence is greater than zero; and conditionally parse a syntax element indicating the presence of decoded picture buffer parameters only when it is determined that the maximum number of temporal sublayers that may be present in a coded video sequence is greater than zero. In one example, the device, wherein the one or more processors are further configured to infer the value of the syntax element indicating the presence of decoded picture buffer parameters to be zero when it is not parsed. In one example, the device, wherein the syntax element is included in a sequence parameter set. In one example, the device, wherein the device is a video decoder.CROSS REFERENCE
TECHNICAL FIELD
BACKGROUND ART
SUMMARY OF INVENTION
BRIEF DESCRIPTION OF DRAWINGS
DESCRIPTION OF EMBODIMENTS
nal_unit_header( ) { zero_tid_required_flag u(l) nuh_temporal_id_plus1 u(3) nal_unit_type_lsb u(4) nuh_layer_id u(7) nuh_reserved_zero_bit u(1) }
TemporalId=nuh_temporal_id_plus1−1
NalUnitType=(zero_tid_required_flag<<4)+nal_unit_type_lsb0 PPS_NUT Picture parameter set non-VCL pic_parameter_set_rosp( ) 1 AUD_NUT Access unit delimiter non-VCL access_unit_delimiter_rbsp( ) 2 PREFIX_SEI_NUT Supplemental enhancement information non-VCL 3 SUFFIX_SEI_NUT sei_tbsp( ) 4 APS_NUT Adaptation parameter set non-VCL adaptation_parameter_set_rbsp( ) 6 RSV_NVCL65 . . . Reserved non-VCL 5 . . . 7 RSV_NVCL7 8 TRAIL_NUT Coded slice of a non-STSA trailing picture VCL slice_layer_rbsp( ) 9 STSA_NUT Coded slice of an STSA picture VCL slice_layer_rbsp( ) 10 RADL_NUT Coded slice of a RADL picture VCL slice_layer_rbsp( ) 11 RASLNUT Coded slice of a RASL picture VCL slice_layer_rbsp( ) 12 . . . 15 RSV_VCL_12 . . . Reserved non-IRAP VCL NAL unit types VCL RSV_VCL_15 16 DPS_NUT Decoding parameter set non-VCL decoding_parameter_set_rbsp( ) 17 SPS_NUT Sequence parameter set non-VCL seq_parameter_set_rbsp( ) 18 EOS_NUT End of sequence non-VCL end_of seq_rbsp( ) 19 EOB_NUT End of bitstream non-VCL end_of_bitstream_rbsp( ) 20 VPS_NUT Video parameter set non-VCL video_parameter_set _rbsp( ) 21 . . . 23 RSV_NVCL21 . . . Reserved non-VCL RSV_NVCL23 24 IDR_W_RADL Coded slice of an IDR picture VCL 25 IDR_N_LP slice_layer_rbsp( ) 26 CRA_NUT Coded slice of a CRA picture VCL slice_layer_rbsp( ) 27 GRA_NUT Coded slice of a gradual random access picture VCL slice_layer_rbsp( ) 28 . . . 31 UNSPEC28 . . . Unspecified non-VCL UNSPEC31 seq_parameter_set_rbsp( ) { sps_decoding_parameter_set_id u(4) sps_video_parameter_set_id u(4) sps_max_sub_layers_minus1 u(3) sps_reserved_zero_5bits u(5) profile_tier_level( sps_max_sub_layers_ minus1 ) gra_enabled_flag u(1) sps_seq_parameter_set_id ue(v) chroma_format_idc ue(v) if( chroma_format idc = = 3 ) separate_colour_plane_flag u(1) pic_width_in_luma_samples ue(v) pic_height in_luma_samples ue(v) conformance_window_flag u(1) if( conformance_window_flag ) { conf_win_left_offset ue(v) conf_win_right_ offset ue(v) conf_win_top_offset ue(v) conf_win_bottom_offset ue(v) } bit_depth_lama_minus8 ue(v) bit_depth_chroma_minus8 ue(v) log2_max_pic_order_ent_lsb_minus4 ue(v) sps_sub_ layer_ordering_info _present_flag u(1) for( i = ( sps_sub_layer_ordering_info_present_flag ? 0 : sps_max_sub_layers_minus1 ); i <= sps_max_sub_layers_minus1; i++ ){ sps_max_dec_pic_ buffering_minus1[ i ] ue(v) sps_max_num_reorder_pics[ i ] ue(v) sps_max_lateney_increase_plus1[ i ] ue(v) } long_term_ref_pics_flag u(1) sps_idr_rpl_present_flag u(1) rpl1_same_as_rp10_flag u(1) for( i = 0; i < !rpl1_same_as_rpl0_flag ? 2 : 1; i++ ) { num_ref_pic_lists_in_sps[ i ] ue(v) for( j = 0; j < num_ref_pic_lists_in_sps[ i ]; j ++) ref_pic_list_struct( i, j ) } qtbtt_dual_tree_intra_flag u(1) log2_ctu_size_minus2 ue(v) log2_min_luma_coding_block_size_minus2 ue(v) partition_constraints_override_enabled_flag u(1) sps_log2_diff_min_qt_min_cb_intra_slice_luma ue(v) sps_log2_diff_min_qt_min_cb_inter_slice ue(v) sps_max_mtt_hierarchy_depth_inter_slice ue(v) sps_max_mtt_hierarchy_depth_intra_slice_luma ue(v) if( sps_max_mtt_hierarchy_depth_intra_slice_luma != 0) { sps_log2_diff_max_bt_min_gt_intra_slice_luma ue(v) sps_log2_diff_max_tt_min_qt_intra_slice_luma ue(v) } if( sps_max_mtt_hierarchy_depth_inter_slices != 0) { sps_log2_diff_max_bt_min_qt_inter_slice ue(v) sps_log2_diff_max_tt_mia_qt_inter_slice ue(v) } if( qtbtt_dual_tree_intra_flag ) { sps_log2_diff_min_qt_min_cb_intra_slice_chroma ue(v) sps max_mtt_hierarchy_depth_intra_slice_chroma ue(v) if ( sps_max_mtt_hierarchy_depth_intra slice chroma != 0 ) { sps_log2_diff_max_bt_min_qt_intra_slice_chroma ue(v) sps_log2_diff_max_tt_min_qt_intra_slice_chroma ue(v) } } sps_sao_enabled_flag u(1) sps_alf_enabled_flag u(1) sps_pcm_enabled_flag u(1) if( sps_pcm_enabled_flag ) { pcm_sample_bit_depth_luma_minus1 u(4) pcm_sample_bit_depth_chroma_minus1 u(4) log2_min_pcm_luma_coding_block_size_minus3 ue(v) log2_ diff_max_min_pcm_lama_coding_block_size ue(v) pcm_loop_filter_disabled_flag u(1) } if ( CtbSizeY / MinCbSizeY + 1) <= (pic_width_in_luma_samples / MinCbSizeY − l ) ) { sps_ref_wraparound_enabled_flag u(1) if sps_ref_wraparound_enabled_flag ) sps_ref_wraparound_offset_minus1 ue(v) } sps_temporal_mvp_enabled_flag u(1) if( sps_temporal_mvp_enabled_flag ) sps_sbtmvp_enabled_flag u(1) sps_amvr_enabled _flag u(1) sps_bdof_enabled_flag u(1) sps_smvd_enabled_flag u(1) sps_affine_amvr_enabled_flag u(1) sps dmvr_enabled_flag u(1) sps_mmvd_enabled_flag u(1) sps_isp_enabled_flag u(1) sps_mri enabled flag u(1) sps_mip_enabled_flag u(1) sps_cclm_enabled_flag u(1) if( sps_cclm_enabled_flag && chroma_format idc = = 1) sps_cclm_colocated_chroma_flag u(1) sps_mts_enabled_flag u(1) if( sps_mts_enabled_flag) { sps_explicit_mts_intra_enabled_flag u(1) sps_explicit_mts_inter_enabled_flag u(1) } sps_sbt_enabled_flag u(1) if( sps_sbt_enabled_flag ) sps_sbt_max_size_64_flag u(1) sps_affine_enabled_flag u(1) if( sps_affine_enabled_flag ) sps_affine_type_flag u(1) sps_bew_enabled_flag u(1) sps_ibc_enabled_flag u(1) sps_ciip_enabled_flag u(1) if( sps_mmvd_enabled_flag ) sps_fpel_mmvd_enabled_flag u(1) sps_triangle_enabled_flag u(1) sps_lmcs_enabled_flag u(1) sps_ladf_enabled_flag u(1) if (sps_ladf_enabled_flag) { sps_num_ladf_intervals_minus2 u(2) sps_ladf_lowest_interval_qp_offset se(v) for( i = 0; i < sps_num_ladf_intervals_minus2 + 1; i++ ) { sps_ladf_qp_offset[ i ] se(v) sps_ladf_delta_threshold_minus1[ i ] ue(v) } } timing_info_present_flag u(1) if( timing_info_present_flag) { num_units_in_tick u(32) time_scale u(32) hrd_parameters_present_flag u(1) if( hrd_parameters_present_flag ) hrd_parameters( sps_max_sub_layers_minus1 ) } vui_parameters_present_flag u(1) if( vui_parameters_present_flag ) vui_parameters( ) sps_extension_flag u(1) if( sps_extension_flag ) while( more_rbsp_data ) ) sps_extension_data_flag u(1) rbsp_trailing_bits( ) }
BitDepthY=8+bit_depth_luma_minus8
QpBdOffsetY=6 bit_depth_luma_minus8
BitDepthC=8+bit_depth_luma_minus8
QpBdOffsetC=6*bit_depth_chroma_minus8
MaxPicOrderCntLsb=2(log 2
SpsMaxLatencyPictures[
CtbLog2Size
CtbSize
MinCbLog2Size
MinCbSize
MinTbLog2Size
MaxTbLog2Size
MinTbSize
MaxTbSize
PicWidthInCtbs
PicHeightInCtbs
PicSizeInCtbs
PicWidthInMinCbs
PicHeightInMinCbs
PicSizeInMinCbs
PicSizeInSamples
PicWidthInSamples
PicHeightInSamples
CtbWidth
CtbHeight
MinQtLog2SizeIntra
MinQtLog2SizeInter
MinQtLog2SizeIntra
PcmBitDepthY=pcm_sample_bit_depth_luma_minus1+1
PcmBitDepthC=pcm_sample_bit_depth_chroma_minus1+1
MaxSbtSize=sps_sbt_max_size_64_flag?64:32
SpsLadfIntervalLowerBound[
if(PicSizeInSamples
MaxDpbSize=Min(4*maxDpbPicBuf,16)
else if(PicSizeInSamples
MaxDpbSize=Min(2*maxDpbPicBuf,16)
else if(PicSizeInSamples
MaxDpbSize=Min((4*maxDpbPicBuf)/3,16)
else
MaxDpbSize=maxDpbPicBufMax luma Max CPB size picture size MaxCPB (1000 bits) Max slice Max # Max # MaxLumaPs Main High segments of tile of tile Level (samples) tier tier per picture rows columns 1 36 864 350 — 16 1 1 2 122 880 1 500 — 16 1 1 2.1 245 760 3 000 — 20 1 1 3 552 960 6 000 — 30 2 2 3.1 983 040 10 000 — 40 3 3 4 2 228 224 12 000 30 000 75 5 5 4.1 2 228 224 20 000 50 000 75 5 5 5 8 912 896 25 000 100 000 200 11 10 5.1 8 912 896 40 000 160 000 200 11 10 5.2 8 912 896 60 000 240 000 200 11 10 6 35 651 584 60 000 240 000 600 22 20 6.1 35 651 584 120 000 480 000 600 22 20 6.2 35 651 584 240 000 800 000 600 22 20 seq_parameter_set_rbsp( ) { sps_decoding_parameter_set_id u(4) sps_video_parameter _set_id u(4) sps_max_sub_layers_minus1 u(3) sps_reserved_zero_5bits u(5) profile_tier_level( sps_max_sub_layers_minus1 ) . . . log2_max_pic_order_cnt_lsb_minus4 ue(v) sps_sub_layer_ordering_info_present_flag u(1) for( i = ( sps_sub_layer_ordering_info_present_flag ? 0 ; sps_max_sub_layers_minus1 ); i <= sps_max_sub_layers_minus1; i++ ) { sps_max_dec_pic_buffering_delta[ i ] ue(v) sps_max_num_reorder_pics_delta[i ] ue(v) sps_max_latency_increase_plus1[ i ] ue(v) } long_term_ref_pics_flag u(1) sps_idr_rpk_present_flag u(1) . . . }
if (
SpsMaxDecPicBuffering[
else
SpsMaxDecPicBuffering[
SpsMaxDecPicBuffering[
if (
SpsMaxNumReorderPics[
else
SpsMaxNumReorderPics[
SpsMaxNumReorderPics[
SpsMaxLatencyPictures[seq_parameter_set_rbsp ( ) { sps_decoding_parameter_set_id u(4) sps_video_parameter_set_id u(4) sps_max_sub_layers_minus1 u(3) sps_reserved_zero_5bits u(5) profile tier level( sps_max_sub_layers_minus1 ) ... log2_max_pic_order_ent_lsb_minus4 ue( v ) if( lsps_max_sub_layers_minus1) sps_sub_layer_ordering_info_present_flag u(1) for( i = ( sps_sub_layer_ordering_info_present flag ? 0 : sps_max_sub_lay ers_minus1 ); i <= sps_max_sub _layers_minus1; i++ ) { sps_max_dec_pie_buffering_delta[ i ] ue(v) sps_max_num_reorder_pics _delta[ i ] ue(v) sps_max_lateney_increase_plus1[ i ] ue(v) long_term_ref_pics_flag u(1) sps_idr_rpl_present_flag u(1) ... }
SpsMaxDecPicBuffering[
SpsMaxNumReorderPics[
SpsMaxLatencyPictures[SUMMARY