патент
№ US 0011918612
МПК A61K39/295

Synergistic bacterial compositions and methods of production and use thereof

Авторы:
Matthew R. Henn Kevin Daniel Litcofsky Anthony Mario D'Onofrio
Все (10)
Правообладатель:
Все (2)
Номер заявки
17588122
Дата подачи заявки
28.01.2022
Опубликовано
05.03.2024
Страна
US
Как управлять
интеллектуальной собственностью
Чертежи 
7
Реферат

[0000]

Provided are therapeutic compositions containing microbial populations for prevention, treatment and reduction of symptoms associated with a dysbiosis of a mammalian subject such as a human.

Формула изобретения

1. A composition comprising: (a) a first species of an isolated bacterium capable of forming a spore, (b) a second species of isolated bacterium capable of forming a spore, (c) a third species of isolated bacterium capable of forming a spore, and (d) a capsule;

wherein the capsule encapsulates the first species, the second species, and the third species;

wherein the first species, the second species, and the third species of bacteria are not identical;

wherein the first species is Clostridium orbiscindens, the second species is Clostridium bolteae, and the third species is Lachnospiraceae bacterium 5_1_57FAA, wherein the Clostridium orbiscindens comprises a 16S rDNA sequence that is at least 97% identical to the sequence set forth in SEQ ID NO: 609;

and wherein a combination of the first species, the second species, and the third species is capable of decreasing and/or inhibiting the growth and/or colonization of at least one type of pathogenic bacteria.

2. The composition of claim 1, wherein the at least one type of pathogenic bacteria is selected from the group consisting of Yersinia, Vibrio, Treponema, Streptococcus, Staphylococcus, Shigella, Salmonella, Rickettsia, Orientia, Pseudomonas, Providencia, Proteus, Propionibacterium, Neisseria, Mycoplasma, Mycobacterium, Morganella, Listeria, Leptospira, Legionella, Klebsiella, Helicobacter, Haemophilus, Fusobacterium, Francisella, Escherichia, Ehrlichia, Enterococcus, Coxiella, Corynebacterium, Clostridium Chlamydia, Chlamydophila, Campylobacter, Burkholderia, Brucella, Borrelia, Bordetella, Bifidobacterium, Bacillus, multi-drug resistant bacteria, carbapenem-resistant Enterobacteriaceae (CRE), extended spectrum beta-lactam resistant Enterococci (ESBL), and vancomycin-resistant Enterococci (VRE).

3. The composition of claim 1, wherein the combination of the first species, the second species, and the third species is capable of synergistically inhibiting the growth and/or colonization of the at least one type of pathogenic bacteria.

4. A single dose unit comprising the composition of claim 1.

5. The composition of claim 2, wherein the at least one type of pathogenic bacteria is Clostridium difficile.

6. The composition of claim 1, wherein one or more of the first species, the second species, and the third species are in the form of spores.

7. The composition of claim 1, wherein the capsule is enterically coated.

8. The composition of claim 1, which further comprises glycerol.

9. The composition of claim 1, wherein the Clostridium orbiscindens comprises a 16S rDNA sequence that is at least 98% identical to the sequence set forth in SEQ ID NO: 609.

10. The composition of claim 1, wherein the Clostridium orbiscindens comprises a 16S rDNA sequence that is at least 99% identical to the sequence set forth in SEQ ID NO: 609.

11. The composition of claim 1, wherein the Clostridium orbiscindens comprises the 16S rDNA sequence set forth in SEQ ID NO: 609.

12. The composition of claim 1, wherein the Clostridium bolteae comprises a 16S rDNA sequence that is at least 97% identical to the sequence set forth in SEQ ID NO: 559.

13. The composition of claim 1, wherein the Clostridium bolteae comprises a 16S rDNA sequence that is at least 98% identical to the sequence set forth in SEQ ID NO: 559.

14. The composition of claim 1, wherein the Clostridium bolteae comprises a 16S rDNA sequence that is at least 99% identical to the sequence set forth in SEQ ID NO: 559.

15. The composition of claim 1, wherein the Clostridium bolteae comprises the 16S rDNA sequence set forth in SEQ ID NO: 559.

16. The composition of claim 1, wherein the Lachnospiraceae bacterium 5_1_57FAA comprises a 16S rDNA sequence that is at least 97% identical to the sequence set forth in SEQ ID NO: 1054.

17. The composition of claim 1, wherein the Lachnospiraceae bacterium 5_1_57FAA comprises a 16S rDNA sequence that is at least 98% identical to the sequence set forth in SEQ ID NO: 1054.

18. The composition of claim 1, wherein the Lachnospiraceae bacterium 5_1_57FAA comprises a 16S rDNA sequence that is at least 99% identical to the sequence set forth in SEQ ID NO: 1054.

19. The composition of claim 1, wherein the Lachnospiraceae bacterium 5_1_57FAA comprises the 16S rDNA sequence set forth in SEQ ID NO: 1054.

Описание

CROSS REFERENCE TO RELATED APPLICATIONS

[0001]

This application is a divisional application of U.S. patent application Ser. No. 16/230,807, filed Dec. 21, 2018 (currently allowed), which is a divisional application of U.S. patent application Ser. No. 15/039,007, filed May 24, 2016 (now U.S. Pat. No. 10,258,655, issued on Apr. 16, 2019), which is the National Stage of International Application No. PCT/US2014/067491, filed Nov. 25, 2014, which claims the benefit of U.S. Provisional Patent Application No. 61/908,698, filed Nov. 25, 2013; U.S. Provisional Patent Application No. 61/908,702, filed Nov. 25, 2013; and U.S. Provisional Patent Application No. 62/004,187, filed May 28, 2014, the entire disclosures of which are hereby incorporated by reference in their entirety for all purposes.

REFERENCE TO A SEQUENCE LISTING SUBMITTED ELECTRONICALLY

[0002]

The content of the electronically submitted sequence listing in ASCII text file (Name: 4268_0390006_Seqlisting_ST25.txt; Size: 4,152,838 bytes; and Date of Creation: Jan. 28, 2022) filed with the application is herein incorporated by reference in its entirety.

BACKGROUND

[0003]

Mammals are colonized by microbes in the gastrointestinal (GI) tract, on the skin, and in other epithelial and tissue niches such as the oral cavity, eye surface and vagina. The gastrointestinal tract harbors an abundant and diverse microbial community. It is a complex system, providing an environment or niche for a community of many different species or organisms, including diverse strains of bacteria. Hundreds of different species may form a commensal community in the GI tract in a healthy person, and this complement of organisms evolves from the time of birth to ultimately form a functionally mature microbial population by about 3 years of age. Interactions between microbial strains in these populations and between microbes and the host, e.g., the host immune system, shape the community structure, with availability of and competition for resources affecting the distribution of microbes. Such resources may be food, location and the availability of space to grow or a physical structure to which the microbe may attach. For example, host diet is involved in shaping the GI tract flora.

[0004]

A healthy microbiota provides the host with multiple benefits, including colonization resistance to a broad spectrum of pathogens, essential nutrient biosynthesis and absorption, and immune stimulation that maintains a healthy gut epithelium and an appropriately controlled systemic immunity. In settings of ‘dysbiosis’ or disrupted symbiosis, microbiota functions can be lost or deranged, resulting in increased susceptibility to pathogens, altered metabolic profiles, or induction of proinflammatory signals that can result in local or systemic inflammation or autoimmunity. Thus, the intestinal microbiota plays a significant role in the pathogenesis of many diseases and disorders, including a variety of pathogenic infections of the gut. For example, subjects become more susceptible to pathogenic infections when the normal intestinal microbiota has been disturbed due to use of broad-spectrum antibiotics. Some of these diseases and disorders are chronic conditions that significantly decrease a subject's quality of life and ultimately some can be fatal.

[0005]

Fecal transplantation has been shown to sometimes be an effective treatment for subjects suffering from severe or refractory GI infections and other disorders by repopulating the gut with a diverse array of microbes that control key pathogens by creating an ecological environment inimical to their proliferation and survival. Such approaches have demonstrated potential to decrease host susceptibility to infection. Fecal transplantation, however, is generally used only for recurrent cases because it has the potential to transmit infectious or allergenic agents between hosts, involves the transmission of potentially hundreds of unknown strains from donor to subject, and is difficult to perform on a mass scale. Additionally, fecal transplantation is inherently nonstandardized and different desired and/or undesired material may be transmitted in any given donation. Thus, there is a need for defined compositions that can be used to decrease susceptibility to infection and/or that facilitate restoration of a healthy gut microbiota.

[0006]

In addition, practitioners have a need for safe and reproducible treatments for disorders currently treated on an experimental basis using fecal transplantation. Summary of the invention

[0007]

To meet the need for safe, reproducible treatments for disorders that can be modulated by the induction of a healthy GI microbiome and to treat diseases associated with the GI microbiome, Applicants have designed bacterial compositions of isolated bacterial strains with a plurality of functional properties, in particular that are useful for treating dysbiosis (e.g., restoring a GI microbiome to a state of health), and for treating disorders associated with infection or imbalance of microbial species found in the gut that are based on Applicants discoveries related to those bacterial strains and analysis and insights into properties related to those strains and combinations of those strains, leading to the inventions disclosed herein.

[0008]

In a first aspect, provided are compositions comprising an effective amount of a bacterial composition comprising at least a first type of isolated bacterium capable of forming a spore, a second type of isolated bacterium capable of forming a spore and optionally a third type of isolated bacterium capable of forming a spore, wherein the first type, the second type and the optional third type are not identical, and wherein at least two of the first type, the second type and the optional third type are capable of synergistically decreasing and/or inhibiting the growth and/or colonization of at least one type of pathogenic bacteria. In some embodiments, the bacterial composition comprises at least about 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 types of isolated bacteria capable of forming spores. In other embodiments, the bacterial composition comprises at least about 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 types of isolated bacteria not containing at least one sporulation-associated gene. In further embodiments, the bacterial composition comprises at least about 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 types of isolated bacteria in spore form. In further embodiments, the bacterial composition comprises at least about 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 types of isolated bacteria in vegetative form. In further embodiments, the bacterial composition comprises at least about 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 types of isolated bacteria in spore form, and wherein the bacterial composition further comprises at least about 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 types of isolated bacteria in vegetative form. In further embodiments, the bacterial composition comprises at least about 5 types of isolated bacteria and at least about 20% of the isolated bacteria are capable of forming spores or are in spore form. In further embodiments, the bacterial composition comprises at least about 5 types of isolated bacteria and at least 2 of the isolated bacteria are capable of forming spores or are in spore form. In further embodiments, the first type, second type and optional third type are present in the composition in approximately equal concentrations. In further embodiments, the first type and the third type are present in the composition in approximately equal concentrations. In further embodiments, the second type and the third type are present in the composition in approximately equal concentrations. In further embodiments, the first type is present in the composition in at least about 150% the concentration of the second type and/or the third type. In further embodiments, the first type, second type and optional third type are individually present in the composition in at least about 150% the concentration of the third type. In further embodiments, the composition consists essentially of between two and about twenty types of isolated bacteria, wherein at least two types of the isolated bacteria are independently capable of spore formation. In further embodiments, at least two types of the isolated bacteria are in spore form. In further embodiments, the first, second and third types are independently selected from Table 1. In further embodiments, the first, second and third types comprise an operational taxonomic unit (OTU) distinction. In further embodiments, the OTU distinction comprises 16S rRDNA sequence similarity below about 95% identity. In further embodiments, the first, second and third types independently comprise bacteria that comprise 16S rDNA sequence at least 95% identical to 16S rDNA sequence present in a bacterium selected from Table 1.

[0009]

In another aspect, provided are compositions comprising an effective amount of a bacterial composition comprising a first type of isolated bacterium; a second type of isolated bacterium; and a third type of isolated bacterium, wherein at least one of the first, second and third types are capable of forming a spore, wherein the first, second and third types are not identical, and wherein a combination of at least two of the first, second and third types are inhibitory to at least one type of pathogenic bacteria. In some embodiments, a combination of the first, second and third types is capable of being inhibitory to the pathogenic bacterium. In other embodiments, a combination of the first, second and third types is capable of being cytotoxic or cytostatic to the pathogenic bacterium. In further embodiments, a combination of the first, second and third types is capable of being cytotoxic or cytostatic to the pathogenic bacterium. In further embodiments, a combination of the first, second and third types is capable of inhibiting proliferation of the pathogenic bacterial present at a concentration at least equal to the concentration of the combination of the first, second and third types. In further embodiments, the pathogenic bacterium is selected from the group consisting of Yersinia, Vibrio, Treponema, Streptococcus, Staphylococcus, Shigella, Salmonella, Rickettsia, Pseudomonas, Neisseria, Mycoplasma, Mycobacterium, Listeria, Leptospira, Legionella, Helicobacter, Haemophilus, Francisella, Escherichia, Enterococcus, Klebsiella, Corynebacterium, Clostridium, Chlamydia, Chlamydophila., Campylobacter, Brucella, Borrelia, and Bordetella, in further embodiments, the first, second and third types synergistically interact. In further embodiments, at least one of the first, second and third types are capable of independently forming a spore. In further embodiments, at least two of the first, second and third types are capable of independently forming a spore. In further embodiments, the first, second and third types are capable of independently forming a spore.

[0010]

In further embodiments, wherein the first, second and third types are capable of functionally populating the gastrointestinal tract of a human subject to whom the composition is administered. In further embodiments, the functional populating of the gastrointestinal tract comprises preventing a dysbiosis of the gastrointestinal tract. In further embodiments, the functional populating of the gastrointestinal tract comprises treating a dysbiosis of the gastrointestinal tract. In further embodiments, the functional populating of the gastrointestinal tract comprises reducing the severity of a dysbiosis of the gastrointestinal tract. In further embodiments, the functional populating of the gastrointestinal tract comprises reducing one or more symptoms of a dysbiosis of the gastrointestinal tract. In further embodiments, the functional populating of the gastrointestinal tract comprises preventing colonization of the gastrointestinal tract by a pathogenic bacterium. In further embodiments, the functional populating of the gastrointestinal tract comprises reducing colonization of the gastrointestinal tract by a pathogenic bacterium. In further embodiments, the functional populating of the gastrointestinal tract comprises reducing the number of one or more types of pathogenic bacteria in the gastrointestinal tract. In further embodiments, the functional populating of the gastrointestinal tract comprises increasing the number of one or more non-pathogenic bacteria in the gastrointestinal tract. Also provided are single dose units comprising the bacterial compositions provided herein, for example, dose units comprising at least 1×107, 1×108, 1×109, 1×1010, 1×1011, or 1×1012colony forming units (CFUs) of viable bacteria. Also provided are pharmaceutical formulations comprising an effective amount of the compositions provided herein, and further comprising an effective amount of an anti-bacterial agent, a pharmaceutical formulation comprising an effective amount of the bacterial composition, and further comprising an effective amount of an anti-fungal agent, a pharmaceutical formulation comprising an effective amount of the bacterial composition, and further comprising an effective amount of an anti-viral agent, and a pharmaceutical formulation comprising an effective amount of the bacterial composition, and further comprising an effective amount of an anti-parasitic agent.

[0011]

In another aspect, provided are methods comprising administering to a human subject in need thereof an effective amount of the bacterial compositions, and further comprising administering to the human subject an effective amount of an anti-biotic agent. In some embodiments, the bacterial composition and the anti-biotic agent are administered simultaneously. In other embodiments, the bacterial composition is administered prior to administration of the anti-biotic agent. In further embodiments, provided are methods in which the number of pathogenic bacteria present in the gastrointestinal tract of the human subject is not detectably increased or is detectably decreased over a period of time. In other embodiments, the human subject is diagnosed as having a dysbiosis of the gastrointestinal tract. In other embodiments, the human subject is diagnosed as infected with a pathogenic bacterium selected from the group consisting of Yersinia, Vibrio, Treponema, Streptococcus, Staphylococcus, Shigella, Salmonella, Rickettsia, Pseudomonas, Neisseria, Mycoplasma, Mycobacterium, Listeria, Leptospira, Legionella, Helicobacter, Haemophilus, Francisella, Escherichia, Enterococcus, Klebsiella, Corynebacterium, Clostridium, Chlamydia, Chlamydophila, Campylobacter, Brucella, Borrelia, and Bordetella. In other embodiments, the anti-bacterial agent is administered to the human subject prior to administration of the bacteria composition. In other embodiments, the number of pathogenic bacteria present in or excreted from the gastrointestinal tract of the human subject is detectably reduced within two weeks of administration of the bacterial composition.

[0012]

In another aspect, provided are methods of functionally populating the gastrointestinal tract of a human subject, comprising administering to the subject an effective amount of the bacterial composition of the present invention, under conditions such that the first, second and third types functionally populate the gastrointestinal tract of the human subject. In some embodiments, the bacterial composition is orally administered, rectally administered, or the combination of orally and rectally administered. In other embodiments, the bacterial composition is topically or nasally administered or inhaled.

[0013]

Also provided are methods of preparing a comestible product, comprising combining with a comestible carrier the bacterial compositions of the present invention, wherein the comestible product is substantially free of non-comestible materials.

[0014]

In one aspect, provided are compositions comprising an effective amount of a bacterial composition comprising at least a first type of isolated bacterium capable of forming a spore and a second type of isolated bacterium capable of forming a spore, wherein the first type, second type and optional third type are not identical, and wherein at least one of the first type, second type and optional third type are capable of decreasing and/or inhibiting the growth and/or colonization of at least one type of pathogenic bacteria. In an embodiment, the bacterial composition comprises at least about 3, 4, 5, 6, 7, 8, 9 or 10 types of isolated bacteria. In an embodiment, the bacterial composition comprises at least about 3, 4, 5, 6, 7, 8, 9, or 10 types of isolated bacteria and at least 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 of the isolated bacteria are capable of forming spores. In an embodiment, the bacterial composition comprise at least about 5 types of isolated bacteria and at least 2 of the isolated bacteria are capable of forming spores. In an embodiment, the bacterial composition comprises i) at least about 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 or more types of isolated bacteria capable of forming spores, ii) at least about 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 or more types of isolated bacteria not known to be capable of forming spores, or iii) any combination of i) and ii). In an embodiment, the first type, the second type and the optional third type are present in the composition in approximately equal concentrations or activity levels. I n an embodiment, the first type, the second type and the optional third type are present in the composition in not substantially equal concentrations. In an embodiment, the first type is present in the composition in at least about 150% the concentration of the second type, or wherein the second type is present in the composition in at least about 150% the concentration of the first type. In an embodiment, the composition consists essentially i) between two and about twenty types of isolated bacteria, wherein at least two types of isolated bacteria are independently capable of spore formation; ii) between two and about twenty types of isolated bacteria, wherein at least two types of isolated bacteria not known to be capable of spore formation, or iii) any combination of i) and ii). In an embodiment, the first type of isolated bacterium and the second type of isolated bacterium are selected from Table 1. In an embodiment, the first type of isolated bacterium, the second type of isolated bacterium and the optional third type of isolated bacterium comprise an operational taxonomic unit (OTU) distinction. In an embodiment, the OTU distinction comprises 16S rDNA sequence similarity below about 95% identity. In an embodiment, the first type of isolated bacterium and the second type of isolated bacterium independently comprise bacteria that comprise 16S rDNA sequence at least 95% identical to 16S rDNA sequence present in a bacterium selected from Table 1. In an embodiment, a combination of the first type, second type and optional third type are: i) cytotoxic, ii) cytostatic, iii) capable of decreasing the growth of the pathogenic bacterium, iv) capable of inhibiting the growth of the pathogenic bacterium, v) capable of decreasing the colonization of the pathogenic bacterium, vi) capable of inhibiting the colonization of the pathogenic bacterium, or vii) any combination of i)-vi). In an embodiment, the combination is capable of inhibiting proliferation of the pathogenic bacteria present at a concentration at least equal to the concentration of the combination of the first type, the second type and the optional third type. In an embodiment, the combination is capable of inhibiting proliferation of the pathogenic bacterial present at a concentration at least about twice the concentration of the combination of the first type, the second type and the optional third type. In an embodiment, the combination is capable of inhibiting proliferation of the pathogenic bacterial present at a concentration at least about ten times the concentration of the combination of the first type, the second type and the optional third type. In an embodiment, the combination is capable of proliferating in the presence of the pathogenic bacteria. In an embodiment, the pathogenic bacterium is selected from the group consisting of Yersinia, Vibrio, Treponema, Streptococcus, Staphylococcus, Shigella, Salmonella, Rickettsia, Orientia, Pseudomonas, Providencia, Proteus, Propionibacterium, Neisseria, Mycoplasma, Mycobacterium, Morganella, Listeria, Leptospira, Legionella, Klebsiella, Helicobacter, Haemophilus, Fusobacterium, Francisella, Escherichia, Ehrlichia, Enterococcus, Coxiella, Corynebacterium, Clostridium, Chlamydia, Chlamydophila, Campylobacter, Burkholderia, Brucella, Borrelia, Bordetella, Bifidobacterium, Bacillus, multi-drug resistant bacteria, carbapenem-resistant Enterobacteriaceae (CRE), extended spectrum beta-lactam resistant Enterococci (ESBL), and vancomycin-resistant Enterococci (VRE). In an embodiment, the first type, the second type and the optional third type synergistically interact. In an embodiment, the first type, the second type and the optional third type synergistically interact to inhibit the pathogenic bacterium. In an embodiment, the composition comprises a combination of bacteria described in any row of Table 4a or Table 4b, or a combination of bacteria described in any row of Table 4a that has a ++++ or a +++ designation, or a combination of bacteria described in any row of Table 4a that has a 75thpercentile designation.

[0015]

In another aspect, provided are compositions comprising an effective amount of a bacterial composition comprising at least a first type of isolated bacterium, a second type of isolated bacterium and an optional third type of isolated bacterium, wherein only one of the first type, the second type and the optional third type is capable of forming a spore, and wherein at least one of the first type, the second type and the optional third type is capable of decreasing the growth and/or colonization of at least one type of pathogenic bacteria.

[0016]

In another aspect, provided are compositions comprising an effective amount of a bacterial composition comprising at least a first type of isolated bacterium, a second type of isolated bacterium and an optional third type of isolated bacterium, wherein the first type, the second type and the optional third type are not spores or known to be capable of forming a spore, and wherein at least one of the first type, the second type and the optional third type are capable of decreasing the growth and/or colonization of at least one type of pathogenic bacteria.

[0017]

In an embodiment, at least one of the first type, second type and optional third type are capable of reducing the growth rate of at least one type of pathogenic bacteria. In an embodiment, at least one of the first type, second type and optional third type are cytotoxic to at least one type of pathogenic bacteria. In an embodiment, at least one of the first type, second type and optional third type are cytostatic to at least one type of pathogenic bacteria. In an embodiment, the first type, second type and optional third type are selected from Table 1. In an embodiment, the first type, second type and optional third type comprise different species. In an embodiment, the first type, second type and optional third type comprise different genera. In an embodiment, the first type, second type and optional third type comprise different families. In an embodiment, the first type, second type and optional third type comprise different orders. In an embodiment, the first type, second type and optional third type comprise a combination of bacteria described in any row of Table 4a or Table 4b, a combination of bacteria described in any row of Table 4a that has a ++++ or a +++ designation, or any or of Table 4a that has a 75thpercentile designation.

[0018]

In another aspect, provided are compositions comprising an effective amount of a bacterial composition comprising at least a first type of isolated bacterium and a second type of isolated bacterium, wherein: i) the first type, second type and optional third type are independently capable of forming a spore; ii) only one of the first type, second type and optional third type is capable of forming a spore or iii) neither the first type nor the second type is capable of forming a spore, wherein the first type, second type and optional third type are not identical, wherein the first type, second type and optional third type are capable of functionally populating the gastrointestinal tract of a human subject to whom the composition is administered. In an embodiment, the first type, second type and optional third type comprise a combination of bacteria described in any row of Table 4a or Table 4b, a combination of bacteria described in any row of Table 4a that has a ++++ or a +++ designation, or any or of Table 4a that has a 75thpercentile designation. In an embodiment, the functional populating of the gastrointestinal tract comprises preventing a dysbiosis of the gastrointestinal tract. In an embodiment, the functional populating of the gastrointestinal tract comprises treating a dysbiosis of the gastrointestinal tract. In an embodiment, the functional populating of the gastrointestinal tract comprises reducing the severity of a dysbiosis of the gastrointestinal tract. In an embodiment, the functional populating of the gastrointestinal tract comprises reducing one or more symptoms of a dysbiosis of the gastrointestinal tract. In an embodiment, the functional populating of the gastrointestinal tract comprises preventing growth and/or colonization of the gastrointestinal tract by a pathogenic bacterium. In an embodiment, the functional populating of the gastrointestinal tract comprises reducing growth and/or colonization of the gastrointestinal tract by a pathogenic bacterium. In an embodiment, the functional populating of the gastrointestinal tract comprises reducing the number of one or more types of pathogenic bacteria in the gastrointestinal tract. In an embodiment, the functional populating of the gastrointestinal tract comprises increasing the number of one or more non-pathogenic bacteria in the gastrointestinal tract. In an embodiment, the bacterial composition comprises 0, 1, 2, 3 or greater than 3 types of isolated bacteria capable of forming spores. In an embodiment, the bacterial composition comprises at least about 5 types of isolated bacteria capable of forming spores. In an embodiment, the bacterial composition comprises at least about 7 types of isolated bacteria capable of forming spores. In an embodiment, the first type, second type and optional third type are present in the composition in not substantially equal concentrations. In an embodiment, the first type, second type and optional third type are present in the composition in approximately equal concentrations. In an embodiment, the first type is present in the composition in at least about 150% the concentration of the second type. In an embodiment, the second type is present in the composition in at least about 150% the concentration of the first type. In an embodiment, the composition consists essentially of between two and about ten types of isolated bacteria, wherein at least one type of isolated bacteria are independently capable of spore formation. In an embodiment, the first type of isolated bacterium and the second type of isolated bacterium are selected from Table 1. In an embodiment, the first type of isolated bacterium, the second type of isolated bacterium and the optional third type of isolated bacterium comprise an operational taxonomic unit (OTU) distinction. In an embodiment, the OTU distinction comprises 16S rDNA sequence similarity below about 95% identity. In an embodiment, the first type of isolated bacterium and the second type of isolated bacterium independently comprise bacteria that comprise 16S rDNA sequence at least 95% identical to 16S rDNA sequence present in a bacterium selected from Table 1. In an embodiment, a combination of the first type, second type and optional third type are cytotoxic or cytostatic to the pathogenic bacterium. In an embodiment, the combination is capable of inhibiting proliferation of the pathogenic bacteria present at a concentration at least equal to the concentration of the combination of the first type, second type and optional third type. In an embodiment, the combination is capable of inhibiting proliferation of the pathogenic bacterial present at a concentration at least about twice the concentration of the combination of the first type, second type and optional third type. In an embodiment, the combination is capable of inhibiting proliferation of the pathogenic bacteria present at a concentration at least about ten times the concentration of the combination of the first type, second type and optional third type. In an embodiment, the pathogenic bacterium is selected from the group consisting of Yersinia, Vibrio, Treponema, Streptococcus, Staphylococcus, Shigella, Salmonella, Rickettsia, Orientia, Pseudomonas, Providencia, Proteus, Propionibacterium, Neisseria, Mycoplasma, Mycobacterium, Morganella, Listeria, Leptospira, Legionella, Klebsiella, Helicobacter, Haemophilus, Fusobacterium, Francisella, Escherichia, Ehrlichia, Enterococcus, Coxiella, Corynebacterium, Clostridium, Chlamydia, Chlamydophila, Campylobacter, Burkholderia, Brucella, Borrelia, Bordetella, Bifidobacterium, Bacillus, multi-drug resistant bacteria, Carbapenem-resistant Enterobacteriaceae (CRE), extended spectrum beta-lactam resistant Enterococci (ESBL), and vancomycin-resistant Enterococci (VRE). In an embodiment, the first type, second type and optional third type synergistically interact to be cytotoxic to the pathogenic bacterium. In an embodiment, wherein the first type, second type and optional third type synergistically interact to be cytostatic to the pathogenic bacterium.

[0019]

In another aspect, provided are single dose units comprising the compositions of the present invention. In an embodiment, the dose unit comprises at least 1×104, 1×105, 1×106, 1×107, 1×108, 1×109, 1×1010, 1×1011or greater than 1×1011colony forming units (CFUs) of either spores or vegetative bacterial cells. In an embodiment, the dose unit comprises a pharmaceutically acceptable excipient, an enteric coating or a combination thereof. In an embodiment, the dose unit further comprises a drug selected from corticosteroids, mesalazine, mesalamine, sulfasalazine, sulfasalazine derivatives, immunosuppressive drugs, cyclosporin A, mercaptopurine, azathiopurine, prednisone, methotrexate, antihistamines, glucocorticoids, epinephrine, theophylline, cromolyn sodium, anti-leukotrienes, anti-cholinergic drugs for rhinitis, anti-cholinergic decongestants, mast-cell stabilizers, monoclonal anti-IgE antibodies, vaccines, and combinations thereof, wherein the drug is present in an amount effective to modulate the amount and/or activity of at least one pathogen. In an embodiment, the dose unit is formulated for oral administration, rectal administration, or the combination of oral and rectal administration, or is formulated for topical, nasal or inhalation administration. In an embodiment, the dose unit comprises a of bacteria described in any row of Table 4a or Table 4b, a combination of bacteria described in any row of Table 4a that has a ++++ or a +++ designation, or any or of Table 4a that has a 75thpercentile designation.

[0020]

In another aspect, provided are kits comprising in one or more containers: a first purified population of a first type of bacterial spores substantially free of viable vegetal bacterial cells; a second purified population of a second type of bacterial spores substantially free of viable vegetal bacterial cells; and optionally a third purified population of a third type of bacterial spores substantially free of viable vegetal bacterial cells, wherein the first type, second type and optional third type of bacterial spores are not identical, and wherein the first type, second type and optional third type of bacterial spores, when co-localized in a target region of a gastrointestinal tract of a human subject in need thereof, are capable of functionally populating the gastrointestinal tract. In an embodiment, the first purified population and the second purified population are present in a single container. In an embodiment, the first purified population, the second purified population and the optional third purified population present in two or optionally three containers. In an embodiment, the first purified population and the second purified population are lyophilized or substantially dehydrated. In an embodiment, the kit further comprises in one or more containers an effective amount of an anti-bacterial agent, an effective amount of an anti-viral agent, an effective amount of an anti-fungal agent, an effective amount of an anti-parasitic agent, or a combination thereof in one or more containers. In an embodiment, the kit further comprises a pharmaceutically acceptable excipient or diluent. In an embodiment, the first purified population, the second purified population and the optional third purified population comprise a combination of bacteria described in any row of Table 4a or Table 4b, a combination of bacgeria described in any row of Table 4a that has a ++++ or a +++ designation, or any or of Table 4a that has a 75thpercentile designation.

[0021]

Also provided are pharmaceutical formulations comprising an effective amount of the compositions of the invention, and further comprising an effective amount of an anti-bacterial agent, an effective amount of an anti-fungal agent, an effective amount of an anti-viral agent, an effective amount of an anti-parasitic agent.

[0022]

Also provided are comestible products comprising a first purified population of a first type of bacterial spores, a second purified population of a second type of bacterial spores and optionally a third purified population of a third type of bacterial spores, wherein the first type, second type and optional third type of bacterial spores are not identical, wherein the comestible product is substantially free of viable vegetal bacterial cells, and wherein the first type, second type and optional third type of bacterial spores, when administered to a human subject in need thereof are capable of functionally populating the gastrointestinal tract of the human subject. In an embodiment, the comestible product comprises a food or food additive, a beverage or beverage additive, or a medical food. In an embodiment, the comestible product comprises at least 1×104, 1×105, 1×106, 1×107, 1×108, 1×109, 1×1010, 1×1011or greater than 1×1011colony forming units (CFUs) of viable spores. In an embodiment, the comestible product comprises a first type of bacterial spores and a second type of bacterial spores selected from Table 1, or where the first type of bacterial spores and the second type of bacterial spores independently comprise bacterial spores that comprise 16S rDNA sequence at least 95% identical to 16S rDNA sequence present in a bacterium selected from Table 1. In an embodiment, the first purified population, the second purified population and the optional third purified population comprise a combination of bacteria described in any row of Table 4a or Table 4b, a combination of bacteria described in any row of Table 4a that has a ++++ or a +++ designation, or any row of Table 4a that has a 75thpercentile designation.

[0023]

Also provided are methods comprising administering to a human subject in need thereof an effective amount of a bacterial composition comprising at least a first type of isolated bacterium, a second type of isolated bacterium and optionally a third type of isolated bacterium, wherein: the first type, second type and optional third type are independently capable of forming a spore; only one of the first type, second type and optional third type is capable of forming a spore; or none of the first type, the second type and optional third type is capable of forming a spore, wherein the first type, second type and optional third type are not identical, and wherein at least one of the first type, second type and optional third type exert an inhibitory-effect on a pathogenic bacterium present in the gastrointestinal tract of the human subject, such that the number of pathogenic bacteria present in the gastrointestinal tract is not detectably increased or is detectably decreased over a period of time. In an embodiment, the composition comprise a combination of bacteria described in any row of Table 4a or Table 4b, a combination of bacteria described in any row of Table 4a that has a ++++ or a +++ designation, or any or of Table 4a that has a 75thpercentile designation. In an embodiment, the human subject is diagnosed as having a dysbiosis of the gastrointestinal tract. In an embodiment, the human subject is diagnosed as infected with a pathogenic bacterium selected from the group consisting of Yersinia, Vibrio, Treponema, Streptococcus, Staphylococcus, Shigella, Salmonella, Rickettsia, Orientia, Pseudomonas, Providencia, Proteus, Propionibacterium, Neisseria, Mycoplasma, Mycobacterium, Morganella, Listeria, Leptospira, Legionella, Klebsiella, Helicobacter, Haemophilus, Fusobacterium, Francisella, Escherichia, Ehrlichia, Enterococcus, Coxiella, Corynebacterium, Clostridium, Chlamydia, Chlamydophila, Campylobacter, Burkholderia, Brucella, Borrelia, Bordetella, Bifidobacterium, Bacillus, multi-drug resistant bacteria, Carbapenem-resistant Enterobacteriaceae (CRE), extended spectrum beta-lactam resistant Enterococci (ESBL), and vancomycin-resistant Enterococci (VRE). In an embodiment, the bacterial composition is administered simultaneously with i) an antibiotic, ii) a prebiotic, or iii) a combination of i) and ii). In an embodiment, the bacterial composition is administered prior to administration of i) an antibiotic, ii) a prebiotic, or iii) a combination of i) and ii). In an embodiment, the bacterial composition is administered subsequent to administration of i) an antibiotic, ii) a prebiotic, or iii) a combination of i) and ii). In an embodiment, the number of pathogenic bacterium present in or excreted from the gastrointestinal tract of the human subject is detectably reduced within one month, within two weeks, or within one week of administration of the bacterial composition. In an embodiment, the number of pathogenic bacterium present in or excreted from the gastrointestinal tract of the human subject is detectably reduced within three days, two days or one day of administration of the bacterial composition. In an embodiment, the human subject is detectably free of the pathogenic bacterium within one month, two weeks, one week, three days or one day of administration of the bacterial composition. In an embodiment, the bacterial composition comprises at least about 3, 4, 5, 6, 7, 8, 9, or 10 types of isolated bacteria. In an embodiment, the bacterial composition comprises at least about 3, 4, 5, 6, 7, 8, 9, or 10 types of isolated bacteria and at least 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 of the isolated bacteria are capable of forming spores. In an embodiment, the bacterial composition comprises at least about 5 types of isolated bacteria and at least 2 of the isolated bacteria are capable of forming spores. In an embodiment, the bacterial composition comprises: i) at least about 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 or more types of isolated bacteria capable of forming spores, ii) at least about 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 or more types of isolated bacteria not known to be capable of forming spores, or iii) any combination of i) and ii). In an embodiment, the bacterial composition comprises at least about 5 types of isolated bacteria and at least 1 of the isolated bacteria are capable of forming spores. In an embodiment, the bacterial composition comprises at least about 5 types of isolated bacteria and at least 1 of the isolated bacteria is not capable of forming spores. In an embodiment, the bacterial composition comprises at least about 3, 4, 5, 6, 7, 8, 9 or 10 types of isolated bacteria, wherein i) at least 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 types of isolated bacteria are capable of forming spores, ii) at least 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 types of isolated bacteria are not capable of forming spores, or iii) any combination of i) and ii). In an embodiment, the first type, second type and optional third type are present in the composition in approximately equal concentrations. In an embodiment, the first type, second type and optional third type are present in the composition in not substantially equal concentrations. In an embodiment, the first type is present in the composition in at least about 150% the concentration of the second type, or wherein the second type is present in the composition in at least about 150% the concentration of the first type. In an embodiment, the composition consists essentially of between two and about ten types of isolated bacteria, wherein at least two types of isolated bacteria are independently capable of spore formation. In an embodiment, the composition consists essentially of between two and about ten types of isolated bacteria, wherein at least two types of isolated bacteria are not capable of spore formation. In an embodiment, the first type of isolated bacterium and the second type of isolated bacterium are selected from Table 1. In an embodiment, the first type of isolated bacterium, the second type of isolated bacterium and the optional third type of isolated bacterium comprise an operational taxonomic unit (OTU) distinction. In an embodiment, the OTU distinction comprises 16S rDNA sequence similarity below about 95% identity. In an embodiment, the first type of isolated bacterium and the second type of isolated bacterium independently comprise bacteria that comprise 16S rDNA sequence at least 95% identical to 16S rDNA sequence present in a bacterium selected from Table 1. In an embodiment, a combination of the first type, second type and optional third type are cytotoxic or cytostatic to the pathogenic bacterium. In an embodiment, the combination is capable of inhibiting proliferation of the pathogenic bacterial present at a concentration at least equal to the concentration of the combination of the first type, second type and optional third type. In an embodiment, the combination is capable of inhibiting proliferation of the pathogenic bacterial present at a concentration at least about twice the concentration of the combination of the first type, second type and optional third type. In an embodiment, the combination is capable of inhibiting proliferation of the pathogenic bacterial present at a concentration at least about ten times the concentration of the combination of the first type, second type and optional third type. In an embodiment, the pathogenic bacterium is selected from the group consisting of Yersinia, Vibrio, Treponema, Streptococcus, Staphylococcus, Shigella, Salmonella, Rickettsia, Orientia, Pseudomonas, Providencia, Proteus, Propionibacterium, Neisseria, Mycoplasma, Mycobacterium, Morganella, Listeria, Leptospira, Legionella, Klebsiella, Helicobacter, Haemophilus, Fusobacterium, Francisella, Escherichia, Ehrlichia, Enterococcus, Coxiella, Corynebacterium, Clostridium, Chlamydia, Chlamydophila, Campylobacter, Burkholderia, Brucella, Borrelia, Bordetella, Bifidobacterium, Bacillus, multi-drug resistant bacteria, Carbapenem-resistant Enterobacteriaceae (CRE), extended spectrum beta-lactam resistant Enterococci (ESBL), and vancomycin-resistant Enterococci (VRE). In an embodiment, the first type, second type and optional third type synergistically interact to be cytotoxic to the pathogenic bacterium. In an embodiment, the first type, second type and optional third type synergistically interact to be cytostatic to the pathogenic bacterium.

[0024]

Also provided are methods of functionally populating the gastrointestinal tract of a human subject, comprising administering to the subject an effective amount of a bacterial composition comprising at least a first type of isolated bacterium, a second type of isolated bacterium, and optionally a third type of isolated bacterium wherein i) the first type, second type and optional third type are independently capable of forming a spore; ii) only one of the first type, second type and optional third type is capable of forming a spore or iii) none of the first type, the second type and the optional third type is capable of forming a spore, wherein the first type, second type and optional third type are not identical, under conditions such that the first type, second type and optional third type functionally populate the gastrointestinal tract of the human subject. In an embodiment, the composition comprises a combination of bacteria described in any row of Table 4a or Table 4b, a combination of bacteria described in any row of Table 4a that has a ++++ or a +++ designation, or any row of Table 4a that has a 75thpercentile designation. In an embodiment, the bacterial composition is orally administered, rectally administered, or the combination of orally and rectally administered. In an embodiment, the bacterial composition is topically or nasally administered or inhaled. In an embodiment, the first type of isolated bacteria and the second type of isolated bacteria are selected from Table 1. In an embodiment, the bacterial composition consists essentially of spores, wherein the spores comprise spores of the first type of isolated bacteria, spores of the second type of isolated bacteria and spores of the optional third type of isolated bacteria. In an embodiment, the first type of isolated bacteria and the second type of isolated bacteria independently comprise bacterial spores that comprise 16S rDNA sequence at least 95% identical to 16S rDNA sequence present in a bacterium selected from Table 1. In an embodiment, the functional populating of the gastrointestinal tract comprises preventing a dysbiosis of the gastrointestinal tract. In an embodiment, the functional populating of the gastrointestinal tract comprises treating a dysbiosis of the gastrointestinal tract. In an embodiment, the functional populating of the gastrointestinal tract comprises reducing the severity of a dysbiosis of the gastrointestinal tract. In an embodiment, the functional populating of the gastrointestinal tract comprises reducing one or more symptoms of a dysbiosis of the gastrointestinal tract. In an embodiment, the functional populating of the gastrointestinal tract comprises preventing colonization of the gastrointestinal tract by a pathogenic bacterium. In an embodiment, the functional populating of the gastrointestinal tract comprises reducing colonization of the gastrointestinal tract and/or growth by a pathogenic bacterium. In an embodiment, wherein the functional populating of the gastrointestinal tract comprises reducing the number of one or more types of pathogenic bacteria in the gastrointestinal tract. In an embodiment, the functional populating of the gastrointestinal tract comprises increasing the number of one or more non-pathogenic bacteria in the gastrointestinal tract. In an embodiment, the bacterial composition comprises at least about 3, 5, 7 or 9 types of isolated bacteria capable of forming spores. In an embodiment, the bacterial composition comprises at least about 5 types of isolated bacteria and at least 20% of the isolated bacteria are capable of forming spores. In an embodiment, the bacterial composition comprises at least about 5 types of isolated bacteria and at least 2 of the isolated bacteria are capable of forming spores. In an embodiment, the bacterial composition comprises at least about 3, 4, 5, 6, 7, 8, 9 or 10 types of isolated bacteria, wherein i) at least 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 types of isolated bacteria are capable of forming spores, ii) at least 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 types of isolated bacteria are not capable of forming spores, or iii) any combination of i) and ii). In an embodiment, the first type, second type and optional third type are present in the composition in approximately equal concentrations. In an embodiment, the first type, second type and optional third type are present in the composition in not substantially equal concentrations. In an embodiment, the first type is present in the composition in at least about 150% the concentration of the second type, or wherein the second type is present in the composition in at least about 150% the concentration of the first type. In an embodiment, the composition consists essentially of between two and about ten types of isolated bacteria, wherein i) at least one type of isolated bacteria is capable of spore formation, ii) at least one type of isolated bacteria is not capable of spore formation, or iii) a combination of i) and ii). In an embodiment, a combination of the first type, second type and optional third type are inhibitory to the pathogenic bacterium. In an embodiment, the combination reduces the growth rate of the pathogenic bacterium. In an embodiment, the combination is cytostatic or cytotoxic to the pathogenic bacterium. In an embodiment, the combination is capable of inhibiting growth of the pathogenic bacterial present at a concentration at least equal to the concentration of the combination of the first type, second type and optional third type. In an embodiment, the combination is capable of inhibiting growth of the pathogenic bacterial present at a concentration at least about twice the concentration of the combination of the first type, second type and optional third type. In an embodiment, the combination is capable of inhibiting proliferation of the pathogenic bacterial present at a concentration at least about ten times the concentration of the combination of the first type, second type and optional third type. In an embodiment, the pathogenic bacterium is selected from the group consisting of Yersinia, Vibrio, Treponema, Streptococcus, Staphylococcus, Shigella, Salmonella, Rickettsia, Orientia, Pseudomonas, Providencia, Proteus, Propionibacterium, Neisseria, Mycoplasma, Mycobacterium, Morganella, Listeria, Leptospira, Legionella, Klebsiella, Helicobacter, Haemophilus, Fusobacterium, Francisella, Escherichia, Ehrlichia, Enterococcus, Coxiella, Corynebacterium, Clostridium, Chlamydia, Chlamydophila, Campylobacter, Burkholderia, Brucella, Borrelia, Bordetella, Bifidobacterium, Bacillus, multi-drug resistant bacteria, Carbapenem-resistant Enterobacteriaceae (CRE), extended spectrum beta-lactam resistant Enterococci (ESBL), and vancomycin-resistant Enterococci (VRE). In an embodiment, the first type, second type and optional third type synergistically interact to reduce or inhibit the growth of the pathogenic bacterium. In an embodiment, the first type, second type and optional third type synergistically interact to reduce or inhibit the colonization of the pathogenic bacterium. In an embodiment, the method comprises administering to the human subject a single dose unit comprising at least 1×104, 1×105, 1×106, 1×107, 1×108, 1×109, 1×1010, 1×1011or greater than 1×1011colony forming units (CFUs) of viable bacteria. In an embodiment, the dose unit comprises a bacterial population substantially in the form of spores. In an embodiment, the dose unit comprises a pharmaceutically acceptable excipient and/or an enteric coating. In an embodiment, the unit dose is formulated for oral administration, rectal administration, or the combination of oral and rectal administration. In an embodiment, the unit dose is formulated for topical or nasal administration or for inhalation.

[0025]

In another aspect, provided are methods of reducing the number of pathogenic bacteria present in the gastrointestinal tract of a human subject, comprising administering to the subject an effective amount of a pharmaceutical formulation comprising an effective amount of the composition of the present disclosure, and further comprising an effective amount of an anti-microbial agent, under conditions such that the number of pathogenic bacteria present in the gastrointestinal tract of the human subject is reduced within about one month of administration of the pharmaceutical formulation. In an embodiment, the number of pathogenic bacteria present in the gastrointestinal tract of the human subject is reduced within about two weeks of administration of the pharmaceutical formulation. In an embodiment, the number of pathogenic bacteria present in the gastrointestinal tract of the human subject is reduced within about one week of administration of the pharmaceutical formulation. In an embodiment, the number of pathogenic bacteria present in the gastrointestinal tract of the human subject is reduced within about three days of administration of the pharmaceutical formulation. In an embodiment, the number of pathogenic bacteria present in the gastrointestinal tract of the human subject is reduced within about one day of administration of the pharmaceutical formulation. In an embodiment, the anti-microbial agent comprises anti-bacterial agent. In an embodiment, the anti-microbial agent comprises anti-fungal agent. In an embodiment, the anti-microbial agent comprises anti-viral agent. In an embodiment, the anti-microbial agent comprises anti-parasitic agent.

[0026]

In another aspect, provided are methods of preparing a comestible product, comprising combining with a comestible carrier a first purified population comprising at least a first type of isolated bacterium, a second purified population comprising at least a second type of isolated bacterium and optionally a third purified population comprising at least a third type of isolated bacterium, wherein: i) the first type, second type and optional third type are independently capable of forming a spore; ii) only one of the first type, second type and optional third type is capable of forming a spore or iii) none of the first type, the second type and the optional third type is capable of forming a spore, wherein the first type, second type and optional third type of bacteria are not identical, wherein the comestible product is substantially free of non-comestible materials. In an embodiment, at least one of the first purified population, the second purified population and the optional third purified population consist essentially of viable spores. In an embodiment, the first purified population, the second purified population and the optional third purified population consist essentially of viable spores. In an embodiment, the comestible product is substantially free of viable vegetal bacterial cells. In an embodiment, the viable spores, when the comestible product is consumed by a human subject in need thereof, are capable of functionally populating the gastrointestinal tract of the human subject. In an embodiment, the comestible product comprises a food or food additive. In an embodiment, the comestible product comprises a beverage or beverage additive. In an embodiment, the comestible product comprises a medical food. In an embodiment, the comestible product comprises at least 1×10, 1×105, 1×106, 1×107, 1×108, 1×109, 1×1010, 1×1011or greater than 1×1011colony forming units (CFUs) of viable spores. In an embodiment, the first purified population, the second purified population and the optional third purified population comprise a combination of bacteria described in any row of Table 4a or Table 4b, or any row of Table 4a that has a ++++ designation or a +++ designation, or any row of Table 4a that has a 75thpercentile designation. In an embodiment, spores are of a bacterium selected from Table 1. In an embodiment, the first purified population and the second purified population independently comprise bacterial spores that comprise 16S rDNA sequence at least 95% identical to 16S rDNA sequence present in a bacterium selected from Table 1.

[0027]

Also provided are methods of reducing the abundance of a pathogen in the gastrointestinal tract of a subject comprising administering a composition of in a therapeutically effective amount and allowing the bacterial composition to compete with the pathogen in the gastrointestinal tract of a subject.

[0028]

Further provided are methods of treating diarrhea comprising administering a bacterial composition in a therapeutically effective amount and allowing the bacterial composition to reduce the diarrheal effect of a pathogen in the gastrointestinal tract of a subject. In an embodiment, the pathogen is Yersinia, Vibrio, Treponema, Streptococcus, Staphylococcus, Shigella, Salmonella, Rickettsia, Orientia, Pseudomonas, Providencia, Proteus, Propionibacterium, Neisseria, Mycoplasma, Mycobacterium, Morganella, Listeria, Leptospira, Legionella, Klebsiella, Helicobacter, Haemophilus, Fusobacterium, Francisella, Escherichia, Ehrlichia, Enterococcus, Coxiella, Corynebacterium, Clostridium, Chlamydia, Chlamydophila, Campylobacter, Burkholderia, Brucella, Borrelia, Bordetella, Bifidobacterium, Bacillus, multi-drug resistant bacteria, Carbapenem-resistant Enterobacteriaceae (CRE), extended spectrum beta-lactam resistant Enterococci (ESBL), and vancomycin-resistant Enterococci (VRE). In an embodiment, the pathogen is Clostridium difficile, Salmonella spp., pathogenic Escherichia coli, or vancomycin-resistant Enterococcus spp. In an embodiment, the pathogen is Clostridium difficile. In an embodiment, the composition is administered orally. In an embodiment the composition comprises a combination of bacteria described in any row of Table 4a, or Table 4b, or any row of Table 4a that has a ++++ designation or a +++ designation, or any row of Table 4a that has a 75thpercentile designation.

[0029]

In some aspects, the invention relates to a composition comprising a network ecology selected from Table 10. In some embodiments, the network ecology comprises network clades provided in Table 10. In other embodiments, the network ecology comprises network OTUs provided in Table 10. In some cases the composition comprises Blautia producta, Clostridium disporicum, Clostridium innocuum, Clostridium mayombei, Clostridium orbiscindens, Clostridium symbiosum, and Lachnospiraceae bacterium 5_1_57FAA. In some embodiments, the composition the composition is effective for treating at least one sign or symptom of a dysbiosis, for example, the is effective for reducing at least one sign or symptom of infection or dysbiosis associated with C. difficile, Klebsiella pneumonii, Morganella morganii, or vancomycin-resistant Enterococci (IRE).

[0030]

In another aspect, the invention relates to a composition comprising a bacterial heterotrimer selected from a heterotrimer identified in Table 4a, Table 4b, or Table 12, such that the heterotrimer can e.g., inhibit growth of a pathobiont in a CivSim assay.

[0031]

In some aspects, the invention relates to a composition comprising a bacterial heterotrimer selected from a heterotrimer identified in Table 14, Table 15, Table 16, Table 17, Table 17, Table 18, Table 19, Table 20, or Table 21, such that the organisms of the heterotrimer can augment and/or engraft in a human gastrointestinal tract. In some embodiments, the engraftment and/or augmentation can occur after administration of the composition to a human having a dysbiosis. In some embodiments, the dysbiosis is associated with the presence of C. difficile in the gastrointestinal tract of the human.

[0032]

Additional objects and advantages will be set forth in part in the description which follows, and in part will be obvious from the description, or may be learned by practice of the embodiments. The objects and advantages will be realized and attained by means of the elements and combinations particularly pointed out in the appended claims.

[0033]

It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the claims.

[0034]

The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate several embodiments and together with the description, serve to further explain the embodiments.

BRIEF DESCRIPTION OF TABLES

[0035]

Table 1 is a list of Operational Taxonomic Units (OTU) with taxonomic assignments made to genus, species, and phylogenetic clade. Clade membership of bacterial OTUs is based on 16S sequence data. Clades are defined based on the topology of a phylogenetic tree that is constructed from full-length 16S sequences using maximum likelihood methods familiar to individuals with ordinary skill in the art of phylogenetics. Clades are constructed to ensure that all OTUs in a given clade are: (i) within a specified number of bootstrap supported nodes from one another, and (ii) within 5% genetic similarity. OTUs that are within the same clade can be distinguished as genetically and phylogenetically distinct from OTUs in a different clade based on 16S-V4 sequence data, while OTUs falling within the same clade are closely related. OTUs falling within the same clade are evolutionarily closely related and may or may not be distinguishable from one another using 16S-V4 sequence data. Members of the same clade, due to their evolutionary relatedness, play similar functional roles in a microbial ecology such as that found in the human gut. Compositions substituting one species with another from the same clade are likely to have conserved ecological function and therefore are useful in the present invention. All OTUs are denoted as to their putative capacity to form spores and whether they are a pathogen or pathobiont (see Definitions for description of “Pathobiont”). NIAID (National Institute of Allergy and infectious Disease) Priority Pathogens are denoted as ‘Category-A’, ‘Category-B’, or ‘Category-C’, and opportunistic pathogens are denoted as ‘OP’. OTUs that are not pathogenic or for which their ability to exist as a pathogen is unknown are denoted as ‘N’. The ‘SEQ ID Number’ denotes the identifier of the OTU in the Sequence Listing File and ‘Public DB Accession’ denotes the identifier of the OTU in a public sequence repository.

[0036]

Table 2 provides phylogenetic clades and their members determined using 16S full-length and V4 sequencing.

[0037]

Table 3 is a list of human diseases, disorders and conditions for which the provided bacterial compositions are useful.

[0038]

Table 4a. Provides representative combinations of the present invention tested in vitro.

[0039]

Table 4b. Provides representative combinations of the present invention tested in vitro

[0040]

Table 5 provides data from testing of representative ternary OTU combinations of the present invention in a CivSim assay and in vivo.

[0041]

Table 6 provides data on the ability of a 15 member bacterial composition to inhibit VRE in vitro.

[0042]

Table 7 provides data on the ability of a 15 member bacterial composition to inhibit K. pneumoniae in vitro.

[0043]

Table 8 provides data on the ability of a 15 member bacterial composition to inhibit M. morganii in vitro.

[0044]

Table 9 provides data demonstrating the efficacy of combinations of the present invention against C. difficile infection in a preventive murine model.

[0045]

Table 10. Provides exemplary combinations of the present invention that were tested against C. difficile infection in a preventive murine model.

[0046]

Table 11. Provides bacterial OTUs associated with a bacterial composition used to treat patients with C. difficile associated diarrheal disease, and to OTUs comprising the OTUs undergo engraftment and ecological augmentation to establish a more diverse microbial ecology in patients post-treatment. OTUs that comprise an augmented ecology are not present in the patient prior to treatment and/or exist at extremely low frequencies such that they do not comprise a significant fraction of the total microbial carriage and are not detectable by genomic and/or microbiological assay methods. OTUs that are members of the engrafting and augmented ecologies were identified by characterizing the OTUs that increase in their relative abundance post treatment and that respectively are: (i) present in the ethanol-treated spore preparation and absent in the patient pretreatment, or (ii) absent in the ethanol-treated spore preparation, but increase in their relative abundance through time post treatment with the preparation due to the formation of favorable growth conditions by the treatment. Notably, augmenting OTUs can grow from low frequency reservoirs in the subject, or be introduced from exogenous sources such as diet. OTUs that comprise a “core” composition in the treatment bacterial composition are denoted.

[0047]

Table 12 provides bacterial compositions that exhibited inhibition against C. difficile as measured by a mean log inhibition greater than the 99% confidence interval (C.I.) of the null hypothesis (see Example 6, ++++) and that are identified in at least one spore ecology treatment or in a human subject microbiome after treatment with a composition.

[0048]

Table 13 provides exemplary of 4-mer to 10-mer bacterial compositions that were comprised in a bacterial therapy administered to subjects with C. difficile-associated diarrheal disease.

[0049]

Table 14 provides exemplary ternary OTUs that either engrafted or augmented in at least one patient (of 29 that responded to treatment) after treatment with a spore ecology composition. Each ternary combination was either in all doses or the organisms of the ternary combination were present together in all subjects at some post-treatment time.

[0050]

Table 15 provides exemplary OTUs that engrafted in at least one subject. The ternary combinations were found in 95% of the doses of administered spore ecology compositions.

[0051]

Table 16 provides exemplary OTUs that augmented in at least one patient post treatment with a spore ecology composition. The ternary combinations were found together in at least 75% of the subjects at some post-treatment timepoint.

[0052]

Table 17 provides exemplary OTU combinations that were present in at least 75% of the doses of administered spore ecology compositions. All administered doses containing the listed ternary combinations had the OTU Clostridiales sp. SM4/1 as either augmenting or engrafting in the subjects given doses containing the ternary composition.

[0053]

Table 18 provides exemplary ternary OTU combinations that were present in at least 75% of the doses of administered spore ecology compositions. All administered doses containing the listed ternary combinations had the OTU Clostridiales sp. SSC/2 as either augmenting or engrafting in the subjects given a composition containing the ternary combination.

[0054]

Table 19 provides exemplary ternary combinations of OTUs that were present in at least 75% of the doses of administered spore ecology compositions. All administered doses containing the listed ternary combinations had the OTU Clostridium sp. NML 04A032 as either augmenting or engrafting in the subjects given a composition containing the ternary combination.

[0055]

Table 20 provides exemplary ternary combinations of OTUs that were present in at least 75% of the doses of administered spore ecology compositions. All administered doses containing the listed ternary combinations had the OTUs Clostridium sp. NML 04A032, Ruminococcus lactaris, and Ruminococcus torques as either augmenting or engrafting in the subjects given a composition containing the ternary combination.

[0056]

Table 21 provides exemplary ternary combinations of OTUs that are present in at least 75% of the doses of administered spore ecology compositions. All administered doses containing the listed ternary combinations had the OTUs Eubacterium rectale, Faecalibacterium prausnitzii, Oscillibacter sp. G2, Ruminococcus lactaris, and Ruminococcus torques as either augmenting or engrafting in the subjects given a composition containing the ternary combination.

[0057]

Table 22 provides alternate names of organisms found in OTUs of the embodiments of the present invention.

BRIEF DESCRIPTION OF FIGURES

[0058]

FIG. 1 shows an exemplary phylogenetic tree and the relationship of OTUs and Clades B, C, D, and E represent OTUs, also known as leaves in the tree. Clade 1 comprises OTUs A and B, Clade 2 comprises OTUs C, D and E, and Clade 3 is a subset of Clade 2 comprising OTUs D and E. Nodes in a tree that define clades in the tree can be either statistically supported or not statistically supported. OTUs within a clade are more similar to each other than to OTUs in another clade; the robustness the clade assignment is denoted by the degree of statistical support for a node upstream of the OTUs in the clade.

[0059]

FIG. 2 provides a schematic of 16S rDNA gene and denotes the coordinates of hypervariable regions 1-9 (V1-V9), according to an embodiment of the invention. Coordinates of V1-V9 are 69-99, 137-242, 433-497, 576-682, 822-879, 986-1043, 1117-1173, 1243-1294, and 1435-1465 respectively, based on numbering using E. coli system of nomenclature defined by Brosius et al., Complete nucleotide sequence of a 16S ribosomal RNA gene (16S rRNA) from Escherichia coli, PNAS 75(10):4801-4805 (1978).

[0060]

FIG. 3 highlights in bold the nucleotide sequences for each hypervariable region in the exemplary reference E. coli 16S sequence (SEQ ID NO: 2047) described by Brosius et al., supra.

[0061]

FIG. 4 provides representative combinations of the present invention tested in vitro and their respective inhibition of pathogen growth.

[0062]

FIG. 5 shows an in vivo hamster Clostridium difficile relapse prevention model to validate efficacy of network ecology bacterial composition, according to an embodiment of the invention.

[0063]

FIG. 6 shows the increase in the total microbial diversity (measured using the Chao-1 diversity index) in the gut of human subjects with recurrent Clostridium difficile associated disease pretreatment and post-treatment with a microbial spore ecology.

[0064]

FIG. 7 shows the compositional change in the microbiome (measured using the Bray-Curtis PCoA metric) in the gut of human subjects with recurrent Clostridium difficile associated disease pretreatment and post-treatment with a microbial spore ecology.

DEFINITIONS

[0065]

As used herein, the term “antioxidant” refers to, without limitation, any one or more of various substances such as beta-carotene (a vitamin A precursor), vitamin C, vitamin E, and selenium that inhibit oxidation or reactions promoted by Reactive Oxygen Species (“ROS”) and other radical and non-radical species. Additionally, antioxidants are molecules capable of slowing or preventing the oxidation of other molecules. Non-limiting examples of antioxidants include astaxanthin, carotenoids, coenzyme Q10 (“CoQ10”), flavonoids, glutathione, Goji (wolfberry), hesperidin, lactowoltberry, lignan, lutein, lycopene, polyphenols, selenium, vitamin A, vitamin C, vitamin E, zeaxanthin, or combinations thereof.

[0066]

“Backbone Network Ecology” or simply “Backbone Network” or “Backbone” are compositions of microbes that form a foundational composition that can be built upon or subtracted from to optimize a Network Ecology or Functional Network Ecology to have specific biological characteristics or to comprise desired functional properties, respectively. Microbiome therapeutics can be comprised of these “Backbone Networks Ecologies” in their entirety, or the “Backbone Networks” can be modified by the addition or subtraction of “R-Groups” to give the network ecology desired characteristics and properties. “R-Groups” as used herein, can be defined in multiple terms including, but not limited to: individual OTUs, individual or multiple OTUs derived from a specific phylogenetic clade or a desired phenotype such as the ability to form spores, or functional bacterial compositions that comprise. “Backbone Networks” can comprise a computationally derived Network Ecology in its entirety or can be subsets of the computed network that represent key nodes in the network that contributed to efficacy such as but not limited to a composition of Keystone OTUs. The number of organisms in the human gastrointestinal tract, as well as the diversity between healthy individuals, is indicative of the functional redundancy of a healthy gut microbiome ecology. See The Human Microbiome Consortia. 2012. Structure, function and diversity of the healthy human microbiome. Nature 486: 207-214. This redundancy makes it highly likely that non-obvious subsets of OTUs or functional pathways (i.e., “Backbone Networks”) are critical to maintaining states of health and or catalyzing a shift from a dysbiotic state to one of health. One way of exploiting this redundancy is through the substitution of OTUs that share a given clade (see below) or of adding members of a clade not found in the Backbone Network.

[0067]

“Bacterial Composition” refers to a consortium of microbes comprising two or more OTUs. Backbone Network Ecologies, Functional Network Ecologies, Network Classes, and Core Ecologies are all types of bacterial compositions. A “Bacterial Composition” can also refer to a composition of enzymes that are derived from a microbe or multiple microbes. As used herein, Bacterial Composition includes a therapeutic microbial composition, a prophylactic microbial composition, a Spore Population, a Purified Spore Population, or ethanol treated spore population.

[0068]

“Clade” refers to the OTUs or members of a phylogenetic tree that are downstream of a statistically valid node in a phylogenetic tree (FIG. 1). The clade comprises a set of terminal leaves in the phylogenetic tree (i.e., tips of the tree) that are a distinct monophyletic evolutionary unit and that share some extent of sequence similarity. Clades are hierarchical. In one embodiment, the node in a phylogenetic tree that is selected to define a clade is dependent on the level of resolution suitable for the underlying data used to compute the tree topology. Exemplary clades are delineated in Table 1 and Table 2. As used herein, clade membership of bacterial OTUs is based on 16S sequence data. Clades are defined based on the topology of a phylogenetic tree that is constructed from full-length 16S sequences using maximum likelihood methods familiar to individuals with ordinary skill in the art of phylogenetics. Clades are constructed to ensure that all OTUs in a given clade are (i) within a specified number of bootstrap supported nodes from one another, and (ii) within 5% genetic identity. OTUs that are within the same clade can be distinguished as genetically and phylogenetically distinct from OTUs in a different clade based on 16S-V4 sequence data, while OTUs falling within the same clade are closely related. OTUs falling within the same clade are evolutionarily closely related and may or may not be distinguishable from one another using 16S-V4 sequence data. Members of the same clade, due to their evolutionary relatedness, play or are predicted to play similar functional roles in a microbial ecology such as that found in the human gut. In some embodiments, one OTU from a clade can be substituted in a composition by a different OTU from the same clade.

[0069]

The “Colonization” of a host organism includes the non-transitory residence of a bacterium or other microscopic organism. As used herein, “reducing colonization” of a host subject's gastrointestinal tract (or any other microbiotal niche) by a pathogenic or non-pathogenic bacterium includes a reduction in the residence time of the bacterium the gastrointestinal tract as well as a reduction in the number (or concentration) of the bacterium in the gastrointestinal tract or adhered to the luminal surface of the gastrointestinal tract. The reduction in colonization can be permanent or occur during a transient period of time. Reductions of adherent pathogens can be demonstrated directly, e.g., by determining pathogenic burden in a biopsy sample, or reductions may be measured indirectly, e.g., by measuring the pathogenic burden in the stool of a mammalian host.

[0070]

A “Combination” of two or more bacteria includes the physical co-existence of the two bacteria, either in the same material or product or in physically connected products, as well as the temporal co-administration or co-localization of the two bacteria.

[0071]

The term “consisting essentially of” as used herein conforms to the definition as provided in the Manual of Patent Examination and Procedure (MPEP; March 2014). The basic and novel characteristics of inventions claimed herein include the ability to catalyze changes in a microbiome ecology of a mammalian subject, e.g., a human, from dysbiotic to a more normative state, and to promote engraftment and augmentation of microbiome component as set out in the specification, e.g., see Tables 14-21. A more normative state can include, in a non-limiting example, a decrease in a sign or symptom of a disease or disorder associated with a dysbiosis.

[0072]

“Cytotoxic” activity of bacterium includes the ability to kill a bacterial cell, such as a pathogenic bacterial cell. A “cytostatic” activity or bacterium includes the ability to inhibit, partially or fully, growth, metabolism, and/or proliferation of a bacterial cell, such as a pathogenic bacterial cell. Cytotoxic activity may also apply to other cell types such as but not limited to Eukaryotic cells.

[0073]

“Dimer” refers to a combination of bacteria that is comprised of two OTUs. The descriptions “homodimer” and “heterodimer” refer to combinations where the two OTUs are the same or different, respectively.

[0074]

“Dysbiosis” refers to a state of the microbiota or microbiome of the gut or other body area, including mucosal or skin surfaces in which the normal diversity and/or function of the ecological network is disrupted. Any disruption from a preferred (e.g., ideal) state of the microbiota can be considered a dysbiosis, even if such dysbiosis does not result in a detectable decrease in health. This state of dysbiosis may be unhealthy, it may be unhealthy under only certain conditions, or it may prevent a subject from becoming healthier. Dysbiosis may be due to a decrease in diversity, the overgrowth of one or more pathogens or pathobionts, symbiotic organisms able to cause disease only when certain genetic and/or environmental conditions are present in a subject, or the shift to an ecological network that no longer provides a beneficial function to the host and therefore no longer promotes health.

[0075]

“Ecological Niche” or simply “Niche” refers to the ecological space in which an organism or group of organisms occupies. Niche describes how an organism or population or organisms responds to the distribution of resources, physical parameters (e.g., host tissue space) and competitors (e.g., by growing when resources are abundant, and when predators, parasites and pathogens are scarce) and how it in turn alters those same factors (e.g., limiting access to resources by other organisms, acting as a food source for predators and a consumer of prey).

[0076]

“Germinant” is a material or composition or physical-chemical process capable of inducing vegetative growth of a bacterium that is in a dormant spore form, or group of bacteria in the spore form, either directly or indirectly in a host organism and/or in vitro.

[0077]

“Inhibition” of a pathogen or non-pathogen encompasses the inhibition of any desired function or activity of the bacterial compositions of the present invention. Demonstrations of inhibition, such as decrease in the growth of a pathogenic bacterium or reduction in the level of colonization of a pathogenic bacterium are provided herein and otherwise recognized by one of ordinary skill in the art. Inhibition of a pathogenic or non-pathogenic bacterium's “growth” may include inhibiting the increase in size of the pathogenic or non-pathogenic bacterium and/or inhibiting the proliferation (or multiplication) of the pathogenic or non-pathogenic bacterium. Inhibition of colonization of a pathogenic or non-pathogenic bacterium may be demonstrated by measuring the amount or burden of a pathogen before and after a treatment. An “inhibition” or the act of “inhibiting” includes the total cessation and partial reduction of one or more activities of a pathogen, such as growth, proliferation, colonization, and function. Inhibition of function includes, for example, the inhibition of expression of pathogenic gene products such as a toxin or invasive pilus induced by the bacterial composition.

[0078]

“Isolated” encompasses a bacterium or other entity or substance that has been (1) separated from at least some of the components with which it was associated when initially produced (whether in nature or in an experimental setting), and/or (2) produced, prepared, purified, and/or manufactured by the hand of man. Isolated bacteria include those bacteria that are cultured, even if such cultures are not monocultures. Isolated bacteria may be separated from at least about 10%, about 20%, about 30%, about 40%, about 50%, about 60%, about 70%, about 80%, about 90%, or more of the other components with which they were initially associated. In some embodiments, isolated bacteria are more than about 80%, about 85%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, about 99%, or more than about 99% pure. In some embodiments, isolated bacteria are separated from 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or more of the other components with which they were initially associated. In some embodiments, isolated bacteria are more than 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or more than 99% pure. As used herein, a substance is “pure” if it is substantially free of other components. The terms “purify,” “purifying” and “purified” refer to a bacterium or other material that has been separated from at least some of the components with which it was associated either when initially produced or generated (e.g., whether in nature or in an experimental setting), or during any time after its initial production. A bacterium or a bacterial population may be considered purified if it is isolated at or after production, such as from a material or environment containing the bacterium or bacterial population, or by passage through culture, and a purified bacterium or bacterial population may contain other materials up to about 10%, about 20%, about 30%, about 40%, about 50%, about 60%, about 70%, about 80%, about 90%, or above about 90% and still be considered “isolated.” In other embodiments, a purified bacterium or bacterial population may contain other materials up to 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 90% and still be considered “isolated.” In some embodiments, purified bacteria and bacterial populations are more than about 80%, about 85%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, about 99%, or more than about 99% pure. In some embodiments, purified bacteria and bacterial populations are more than 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or more than 99% pure. In the instance of bacterial compositions provided herein, the one or more bacterial types present in the composition can be independently purified from one or more other bacteria produced and/or present in the material or environment containing the bacterial type. Bacterial compositions and the bacterial components thereof are generally purified from residual habitat products.

[0079]

“Keystone OTU” or “Keystone Function” refers to one or more OTUs or Functional Pathways (e.g., KEGG or COG pathways) that are common to many network ecologies or functional network ecologies and are members of networks that occur in many subjects (i.e., are pervasive). Due to the ubiquitous nature of Keystone OTUs and their associated Functions Pathways, they are central to the function of network ecologies in healthy subjects and are often missing or at reduced levels in subjects with disease. Keystone OTUs and their associated functions may exist in low, moderate, or high abundance in subjects. “Non-Keystone OTU” or “non-Keystone Function” refers to an OTU or Function that is observed in a Network Ecology or a Functional Network Ecology and is not a keystone OTU or Function.

[0080]

“Microbiota” refers to the community of microorganisms that occur (sustainably or transiently) in and on an animal subject, typically a mammal such as a human, including eukaryotes, archaea, bacteria, and viruses (including bacterial viruses, i.e., phage).

[0081]

“Microbiome” refers to the genetic content of the communities of microbes that live in and on the human body, both sustainably and transiently, including eukaryotes, archaea, bacteria, and viruses (including bacterial viruses (i.e., phage)), wherein “genetic content” includes genomic DNA, RNA such as ribosomal RNA, the epigenome, plasmids, and all other types of genetic information.

[0082]

“Microbial Carriage” or simply “Carriage” refers to the population of microbes inhabiting a niche within or on humans. Carriage is often defined in terms of relative abundance. For example, OTU1 comprises 60% of the total microbial carriage, meaning that OTU1 has a relative abundance of 60% compared to the other OTUs in the sample from which the measurement was made. Carriage is most often based on genomic sequencing data where the relative abundance or carriage of a single OTU or group of OTUs is defined by the number of sequencing reads that are assigned to that OTU/s relative to the total number of sequencing reads for the sample. Alternatively, Carriage may be measured using microbiological assays.

[0083]

“Microbial Augmentation” or simply “augmentation” refers to the establishment or significant increase of a population of microbes that are (i) absent or undetectable (as determined by the use of standard genomic and microbiological techniques) from the administered therapeutic microbial composition, (ii) absent, undetectable, or present at low frequencies in the host niche (for example: gastrointestinal tract, skin, anterior-nares, or vagina) before the delivery of the microbial composition, and (iii) are found after the administration of the microbial composition or significantly increased, for example, 2-fold, 5-fold, 1×1021×10, 1×104, 1×105, 1×106, 1×107, or greater than 1×108, in cases where they were present at low frequencies. The microbes that comprise an augmented ecology can be derived from exogenous sources such as food and the environment, or grow out from micro-niches within the host where they reside at low frequency. The administration of a bacterial microbial composition induces an environmental shift in the target niche that promotes favorable conditions for the growth of these commensal microbes. In the absence of treatment with a bacterial composition, the host can be constantly exposed to these microbes; however, sustained growth and the positive health effects associated with the stable population of increased levels of the microbes comprising the augmented ecology are not observed.

[0084]

“Microbial Engraftment” or simply “engraftment” refers to the establishment of OTUs present in the bacterial composition in a target niche that are absent in the treated host prior to treatment. The microbes that comprise the engrafted ecology are found in the therapeutic microbial composition and establish as constituents of the host microbial ecology upon treatment. Engrafted OTUs can establish for a transient period of time, or demonstrate long-term stability in the microbial ecology that populates the host post treatment with a bacterial composition. The engrafted ecology can induce an environmental shift in the target niche that promotes favorable conditions for the growth of commensal microbes capable of catalyzing a shift from a dysbiotic ecology to one representative of a health state.

[0085]

As used herein, the team “Minerals” is understood to include boron, calcium, chromium, copper, iodine, iron, magnesium, manganese, molybdenum, nickel, phosphorus, potassium, selenium, silicon, tin, vanadium, zinc, or combinations thereof.

[0086]

“Network Ecology” refers to a consortium of clades or OTUs that co-occur in some number of subjects. As used herein, a “network” is defined mathematically by a graph delineating how specific nodes (i.e., clades or OTUs) and edges (connections between specific clades or OTUs) relate to one another to define the structural ecology of a consortium of clades or OTUs. Any given Network Ecology will possess inherent phylogenetic diversity and functional properties. A Network Ecology can also be defined in terms of its functional capabilities where for example the nodes would be comprised of elements such as, but not limited to, enzymes, clusters of orthologous groups (COGS; http://www.ncbi.nlm.nih.gov/books/NBK21090/), or KEGG Orthology Pathways (www.genome.jp/kegg/); these networks are referred to as a “Functional Network Ecology”. Functional Network Ecologies can be reduced to practice by defining the group of OTUs that together comprise the functions defined by the Functional Network Ecology.

[0087]

“Network Class” and “Network Class Ecology” refer to a group of network ecologies that in general are computationally determined to comprise ecologies with similar phylogenetic and/or functional characteristics. A Network Class therefore contains important biological features, defined either phylogenetically or functionally, of a group (i.e., a cluster) of related network ecologies. One representation of a Network Class Ecology is a designed consortium of microbes, typically non-pathogenic bacteria, that represents core features of a set of phylogenetically or functionally related network ecologies seen in many different subjects. In some occurrences, a Network Class, while designed as described herein, exists as a Network Ecology observed in one or more subjects. Network Class ecologies are useful for reversing or reducing a dysbiosis in subjects where the underlying, related Network Ecology has been disrupted.

[0088]

To be free of “non-comestible products” means that a bacterial composition or other material provided herein does not have a substantial amount of a non-comestible product, e.g., a product or material that is inedible, harmful or otherwise undesired in a product suitable for administration, e.g., oral administration, to a human subject. Non-comestible products are often found in preparations of bacteria from the prior art.

[0089]

“Operational taxonomic units” and “OTU” (or plural, “OTUs”) refer to a terminal leaf in a phylogenetic tree and is defined by a nucleic acid sequence, e.g., the entire genome, or a specific genetic sequence, and all sequences that share sequence identity to this nucleic acid sequence at the level of species. In some embodiments the specific genetic sequence may be the 16S sequence or a portion of the 16S sequence. In other embodiments, the entire genomes of two entities are sequenced and compared. In another embodiment, select regions such as multilocus sequence tags (MLST), specific genes, or sets of genes may be genetically compared. In 16S embodiments, OTUs that share ≥97% average nucleotide identity across the entire 16S or some variable region of the 16S are considered the same OTU. See e.g., Claesson et al., 2010. Comparison of two next-generation sequencing technologies for resolving highly complex microbiota composition using tandem variable 16S rRNA gene regions. Nucleic Acids Res 38: e200. Konstantinidis et al., 2006. The bacterial species definition in the genomic era. Philos Trans R. Soc Loud B Biol Sci. 361: 1929-1940. In embodiments involving the complete genome, MLSTs, specific genes, other than 16S, or sets of genes OTUs that share ≥95% average nucleotide identity are considered the same OTU. See e.g., Achtman and Wagner. 2008. Microbial diversity and the genetic nature of microbial species. Nat. Rev. Microbiol. 6: 431-440; Konstantinidis et al., 2006, supra. The bacterial species definition in the genomic era. Philos Trans R Soc Lond B Biol Sci 361: 1929-1940. OTUs can be defined by comparing sequences between organisms. Generally, sequences with less than 95% sequence identity are not considered to form part of the same OTU. OTUs may also be characterized by any combination of nucleotide markers or genes, in particular highly conserved genes (e.g., “house-keeping” genes), or a combination thereof. Such characterization employs, e.g., WGS data or a whole genome sequence. As used herein, a “type” of bacterium refers to an OTU that can be at the level of a strain, species, clade, or family.

[0090]

Table 1 below shows a List of Operational Taxonomic Units (OTU) with taxonomic assignments made to genus, species, and phylogenetic clade. Clade membership of bacterial OTUs is based on 16S sequence data. Clades are defined based on the topology of a phylogenetic tree that is constructed from full-length 16S sequences using maximum likelihood methods familiar to individuals with ordinary skill in the art of phylogenetics. Clades are constructed to ensure that all OTUs in a given clade are: (i) within a specified number of bootstrap supported nodes from one another, and (ii) within 5% genetic similarity. OTUs that are within the same clade can be distinguished as genetically and phylogenetically distinct from OTUs in a different clade based on 16S-V4 sequence data, while OTUs falling within the same clade are closely related. OTUs falling within the same clade are evolutionarily closely related and may or may not be distinguishable from one another using 16S-V4 sequence data. Members of the same clade, due to their evolutionary relatedness, play similar functional roles in a microbial ecology such as that found in the human gut. Compositions substituting one species with another from the same clade are likely to have conserved ecological function and therefore are useful in the present invention. All OTUs are denoted as to their putative capacity to form spores and whether they are a Pathogen or Pathobiont (see Definitions for description of “pathobiont”). NIAID Priority Pathogens are denoted as ‘Category-A’, ‘Category-B’, or ‘Category-C’, and Opportunistic Pathogens are denoted as ‘OP’. OTUs that are not pathogenic or for which their ability to exist as a pathogen is unknown are denoted as ‘N’. The ‘SEQ ID Number’ denotes the identifier of the OTU in the Sequence Listing File and ‘Public DB Accession’ denotes the identifier of the OTU in a public sequence repository.

[0091]

“Pathobionts” or “opportunistic pathogens” refers to specific bacterial species found in healthy hosts that may trigger immune-mediated pathology and/or disease in response to certain genetic or environmental factors (Chow et al., 2011. Curr Op Immunol. Pathobionts of the intestinal microbiota and inflammatory disease. 23: 473-80). A pathobiont is an opportunistic microbe that is mechanistically distinct from an acquired infectious organism. The term “pathogen” as used herein includes both acquired infectious organisms and pathobionts.

[0092]

“Pathogen,” “pathobiont” and “pathogenic” in reference to a bacterium or any other organism or entity that includes any such organism or entity that is capable of causing or affecting a disease, disorder or condition of a host organism containing the organism or entity, including but not limited to pre-diabetes, type 1 diabetes or type 2 diabetes.

[0093]

“Phenotype” refers to a set of observable characteristics of an individual entity. As example an individual subject may have a phenotype of “health” or “disease”. Phenotypes describe the state of an entity and all entities within a phenotype share the same set of characteristics that describe the phenotype. The phenotype of an individual results in part, or in whole, from the interaction of the entity's genome and/or microbiome with the environment, especially including diet.

[0094]

“Phylogenetic Diversity” is a biological characteristic that refers to the biodiversity present in a given Network Ecology or Network Class Ecology based on the OTUs that comprise the network. Phylogenetic diversity is a relative term, meaning that a Network Ecology or Network Class that is comparatively more phylogenetically diverse than another network contains a greater number of unique species, genera, and taxonomic families. Uniqueness of a species, genera, or taxonomic family is generally defined using a phylogenetic tree that represents the genetic diversity all species, genera, or taxonomic families relative to one another. In another embodiment phylogenetic diversity may be measured using the total branch length or average branch length of a phylogenetic tree. Phylogenetic Diversity may be optimized in a bacterial composition by including a wide range of biodiversity.

[0095]

“Phylogenetic tree” refers to a graphical representation of the evolutionary relationships of one genetic sequence to another that is generated using a defined set of phylogenetic reconstruction algorithms (e.g., parsimony, maximum likelihood, or Bayesian). Nodes in the tree represent distinct ancestral sequences and the confidence of any node is provided by a bootstrap or Bayesian posterior probability, which measures branch uncertainty.

[0096]

“Prediabetes” refers a condition in which blood glucose levels are higher than normal, but not high enough to be classified as diabetes. Individuals with pre-diabetes are at increased risk of developing type 2 diabetes within a decade. According to CDC, prediabetes can be diagnosed by fasting glucose levels between 100-125 mg/dL, 2 hour post-glucose load plasma glucose in oral glucose tolerance test (OGTT) between 140 and 199 mg/dL, or hemoglobin A1c test between 5.7%-6.4%.

[0097]

“rDNA,” “rRNA,” “16S-rDNA,” “16S-rRNA,” “16S,” “16S sequencing,” “16S-NGS,” “18S,” “18S-rRNA,” “18S-rDNA,” “18S sequencing,” and “18S-NGS” refer to the nucleic acids that encode for the RNA subunits of the ribosome. rDNA refers to the gene that encodes the rRNA that comprises the RNA subunits. There are two RNA subunits in the ribosome termed the small subunit (SSU) and large subunit (LSU); the RNA genetic sequences (rRNA) of these subunits is related to the gene that encodes them (rDNA) by the genetic code. rDNA genes and their complementary RNA sequences are widely used for determination of the evolutionary relationships amount organisms as they are variable, yet sufficiently conserved to allow cross organism molecular comparisons. Typically 16S rDNA sequence (approximately 1542 nucleotides in length) of the 30S SSU is used for molecular-based taxonomic assignments of prokaryotes and the 18S rDNA sequence (approximately 1869 nucleotides in length) of 40S SSU is used for eukaryotes. 16S sequences are used for phylogenetic reconstruction as they are in general highly conserved, but contain specific hypervariable regions that harbor sufficient nucleotide diversity to differentiate genera and species of most bacteria.

[0098]

“Residual habitat products” refers to material derived from the habitat for microbiota within or on a human or animal. For example, microbiota live in stool in the gastrointestinal tract, on the skin itself, in saliva, mucus of the respiratory tract, or secretions of the genitourinary tract (i.e., biological matter associated with the microbial community). Substantially free of residual habitat products means that the bacterial composition no longer contains the biological matter associated with the microbial environment on or in the human or animal subject and is 100% free, 99% free, 98% free, 97% free, 96% free, or 95% free of any contaminating biological matter associated with the microbial community. Residual habitat products can include abiotic materials (including undigested food) or it can include unwanted microorganisms. Substantially free of residual habitat products may also mean that the bacterial composition contains no detectable cells from a human or animal and that only microbial cells are detectable. In one embodiment, substantially free of residual habitat products may also mean that the bacterial composition contains no detectable viral (including bacterial viruses, i.e., phage), fungal, mycoplasmal contaminants. In another embodiment, it means that fewer than 1×10−2%, 1×10−3%, 1×10−4%, 1×10−5%, 1×10−6%, 1×10−7%, 1×10−8 of the viable cells in the bacterial composition are human or animal, as compared to microbial cells. There are multiple ways to accomplish this degree of purity, none of which are limiting. Thus, contamination may be reduced by isolating desired constituents through multiple steps of streaking to single colonies on solid media until replicate (such as, but not limited to, two) streaks from serial single colonies have shown only a single colony morphology. Alternatively, reduction of contamination can be accomplished by multiple rounds of serial dilutions to single desired cells (e.g., a dilution of 10-8 or 10-9), such as through multiple 10-fold serial dilutions. This can further be confirmed by showing that multiple isolated colonies have similar cell shapes and Gram staining behavior. Other methods for confirming adequate purity include genetic analysis (e.g., PCR, DNA sequencing), serology and antigen analysis, enzymatic and metabolic analysis, and methods using instrumentation such as flow cytometry with reagents that distinguish desired constituents from contaminants.

[0099]

“Synergy” refers to an effect produced by a combination, e.g., of two microbes (for example, microbes or two different species or two different clades) that is greater than the expected additive effectives of the combination components. In certain embodiments, “synergy” between two or more microbes can result in the inhibition of a pathogens ability to grow. For example, ternary combinations synergistically inhibit C. difficile if their mean log inhibition is greater than the sum of the log inhibition of homotrimers of each constituent bacterium divided by three to account for the three-fold higher dose of each strain or for binary combinations, the log inhibition of a homodimer of each constituent bacterium divided by two. In another example, synergy can be calculated by defining the OTU compositions that demonstrate greater inhibition than that represented by the sum of the log inhibition of each bacterium tested separately. In other embodiments, synergy can be defined as a property of compositions that exhibit inhibition greater than the maximum log inhibition among those of each constituent bacterium's homodimer or homotrimer measured independently. As used herein, “synergy” or “synergistic interactions” refers to the interaction or cooperation of two or more microbes to produce a combined effect greater than the sum of their separate effects.

[0100]

“Spore” or a population of “spores” includes bacteria (or other single-celled organisms) that are generally viable, more resistant to environmental influences such as heat and bacteriocidal agents than vegetative forms of the same bacteria, and typically capable of germination and out-growth. Spores are characterized by the absence of active metabolism until they respond to specific environmental signals, causing them to germinate. “Spore-formers” or bacteria “capable of forming spores” are those bacteria containing the genes and other necessary abilities to produce spores under suitable environmental conditions.

[0101]

“Spore population” refers to a plurality of spores present in a composition. Synonymous terms used herein include spore composition, spore preparation, ethanol-treated spore fraction and spore ecology. A spore population may be purified from a fecal donation, e.g., via ethanol or heat treatment, or a density gradient separation or any combination of methods described herein to increase the purity, potency and/or concentration of spores in a sample. Alternatively, a spore population may be derived through culture methods starting from isolated spore former species or spore former OTUs or from a mixture of such species, either in vegetative or spore form.

[0102]

In one embodiment, the spore preparation comprises spore forming species wherein residual non-spore forming species have been inactivated by chemical or physical treatments including ethanol, detergent, heat, sonication, and the like; or wherein the non-spore forming species have been removed from the spore preparation by various separations steps including density gradients, centrifugation, filtration and/or chromatography; or wherein inactivation and separation methods are combined to make the spore preparation. In yet another embodiment, the spore preparation comprises spore forming species that are enriched over viable non-spore formers or vegetative forms of spore formers. In this embodiment, spores are enriched by 2-fold, 5-fold, 10-fold, 50-fold, 100-fold, 1000-fold, 10,000-fold or greater than 10,000-fold compared to all vegetative forms of bacteria. In yet another embodiment, the spores in the spore preparation undergo partial germination during processing and formulation such that the final composition comprises spores and vegetative bacteria derived from spore forming species.

[0103]

“Sporulation induction agent” is a material or physical-chemical process that is capable of inducing sporulation in a bacterium, either directly or indirectly, in a host organism and/or in vitro.

[0104]

To “increase production of bacterial spores” includes an activity or a sporulation induction agent. “Production” includes conversion of vegetative bacterial cells into spores and augmentation of the rate of such conversion, as well as decreasing the germination of bacteria in spore form, decreasing the rate of spore decay in vivo, or ex vivo, or to increasing the total output of spores (e.g., via an increase in volumetric output of fecal material).

[0105]

“Subject” refers to any animal subject including humans, laboratory animals (e.g., non-human primates, rats, mice), livestock (e.g., cows, sheep, goats, pigs, turkeys, and chickens), and household pets (e.g., dogs, cats, and rodents). The subject may be suffering from a dysbiosis, that contributes to or causes a condition classified as diabetes or pre-diabetes, including but not limited to mechanisms such as metabolic endotoxemia, altered metabolism of primary bile acids, immune system activation, or an imbalance or reduced production of short chain fatty acids including butyrate, propionate, acetate, and branched chain fatty acids.

[0106]

“Trimer” refers to a combination of bacteria that is comprised of three OTUs. The descriptions “homotrimer” and “heterotrimer” refer to combinations where all three OTUs are the same or different, respectively. A “semi-heterotrimer” refers to combinations where two constituents are the same with a third that is different

[0107]

As used herein the term “vitamin” is understood to include any of various fat-soluble or water-soluble organic substances (non-limiting examples include vitamin A, vitamin B1 (thiamine), vitamin B2 (riboflavin), vitamin B3 (niacin or niacinamide), vitamin B5 (pantothenic acid), vitamin B6 (pyridoxine, pyridoxal, or pyridoxamine, or pyridoxine hydrochloride), vitamin B7 (biotin), vitamin B9 (folic acid), and Vitamin B12 (various cobalamins; commonly cyanocobalamin in vitamin supplements), vitamin C, vitamin D, vitamin E, vitamin K, K1 and K2 (i.e., MK-4, MK-7), folic acid and biotin) essential in minute amounts for normal growth and activity of the body and obtained naturally from plant and animal foods or synthetically made, pro-vitamins, derivatives, analogs.

[0108]

“V1-V9 regions” or “16S V1-V9 regions” refers to the first through ninth hypervariable regions of the 16S rDNA gene that are used for genetic typing of bacterial samples. These regions in bacteria are defined by nucleotides 69-99, 137-242, 433-497, 576-682, 822-879, 986-1043, 1117-1173, 1243-1294 and 1435-1465 respectively using numbering based on the E. coli system of nomenclature (Brosius et al., 1978. Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli, PNAS USA 75(144801-48051 In some embodiments, at least one of the V1, V2, V3, V4, V5, V6, V7, V8, and V9 regions are used to characterize an OTU. In one embodiment, the V1, V2, and V3 regions are used to characterize an OTU. In another embodiment, the V3, V4, and V5 regions are used to characterize an OTU. In another embodiment, the V4 region is used to characterize an OTU. A person of ordinary skill in the art can identify the specific hypervariable regions of a candidate 16S rDNA by comparing the candidate sequence in question to a reference sequence and identifying the hypervariable regions based on similarity to the reference hypervariable regions, or alternatively, one can employ Whole Genome Shotgun (WGS) sequence characterization of microbes or a microbial community.

DETAILED DESCRIPTION

[0109]

Applicants have discovered combinations of bacteria that, when present, are associated with improvement in the microbiome of a subject, e.g., a subject having a dysbiosis such as a dysbiosis associated with C. difficile. In addition, combinations of microorganisms have been identified that are associated with the engraftment and/or augmentation of organisms associated with a healthy microbiome. Applicants have also identified combinations of microorganisms that can be useful for treating antibiotic-resistant or other pathogenic bacterial conditions. In some embodiments the microbial content of such a composition comprises the organisms, in other embodiments, the microbial content of the composition consists essentially of the organisms, and in other embodiments, the microbial content of the composition consists of the organisms. In all cases, the composition may include non-microbial components. In some cases, the composition comprises at least two organisms (e.g., three organisms) or more, as are described herein.

Emergence of Antibiotic Resistance in Bacteria

[0110]

Antibiotic resistance is an emerging public health issue (Carlet et al., 2011. Society's failure to protect a precious resource: antibiotics. Lancet 378: 369-371). Numerous genera of bacteria harbor species that are developing resistance to antibiotics. These include but are not limited to vancomycin resistant Enterococcus (VRE) and carbapenem resistant Klebsiella (CRKp). Klebsiella pneumoniae and Escherichia coli strains are becoming resistant to carbapenems and require the use of old antibiotics characterized by high toxicity, such as colistin (Canton et al. 2012. Rapid evolution and spread of carbapenemases among Enterobacteriaceae in Europe. Clin Microbiol Infect 18: 413-431). Additional multiply drug resistant strains of multiple species, including Pseudomonas aeruginosa, Enterobacter spp., and Acinetobacter spp. are observed clinically including isolates that are highly resistant to ceftazidime, carbapenems, and quinolones (European Centre for Disease Prevention and Control: EARSS net database. http://ecdc.europa.eu.). The Centers for Disease Control and Prevention in 2013 released a Threat Report (http://www.cdc.gov/drugresistance/threat-report-2013/) citing numerous bacterial infection threats that included Clostridium difficile, carbapenem-resistant Enterobacteriaceae (CRE), multidrug-resistant Acinetobacter, drug-resistant Campylobacter, extended spectrum β-lactamase producing Enterobacteriaceae (ESBLs), vancomycin-resistant Enterococcus (VRE), multidrug-resistant Pseudomonas aeruginosa, drug-resistant non-typhoidal Salmonella, drug-resistant Salmonella typhi, drug-resistant Shigella, methicillin-resistant Staphylococcus aureus (MRSA), drug-resistant Streptococcus pneumoniae, vancomycin-resistant Staphylococcus aureus (VRSA), erythromycin-resistant Group A Streptococcus, and clindamycin-resistant Group B Streptococcus. The increasing failure of antibiotics due the rise of resistant microbes demands new therapeutics to treat bacterial infections. Administration of a microbiome therapeutic bacterial composition offers potential for such therapies.

[0111]

Applicants have discovered that subjects suffering from recurrent C. difficile associated diarrhea (CDAD) often harbor antibiotic resistant Gram-negative bacteria, in particular Enterobacteriaceae and that treatment with a bacterial composition effectively treats CDAD and reduces the antibiotic resistant Gram-negative bacteria. The gastrointestinal tract is implicated as a reservoir for many of these organisms including VRE, MRSA, Pseudomonas aeruginosa, Acinetobacter and the yeast Candida (Donskey, Clinical Infectious Diseases 2004 39:214, The Role of the Intestinal Tract as a Reservoir and Source for Transmission of Nosocomial Pathogens), and thus as a source of nosocomial infections. Antibiotic treatment and other decontamination procedures are among the tools in use to reduce colonization of these organisms in susceptible subjects including those who are immunosuppressed. Bacterial-based therapeutics would provide a new tool for decolonization, with a key benefit of not promoting antibiotic resistance as antibiotic therapies do.

Bacterial Compositions

[0112]

Provided are bacteria and combinations of bacteria of the human gut microbiota with the capacity to meaningfully provide functions of a healthy microbiota or catalyze an augmentation to the resident microbiome when administered to mammalian hosts. In particular, provided are synergistic combinations that treat, prevent, delay or reduce the symptoms of diseases, disorders and conditions associated with a dysbiosis. Representative diseases, disorders and conditions potentially associated with a dysbiosis, which are suitable for treatment with the compositions and methods as described herein, are provided in Table 3. Without being limited to a specific mechanism, it is thought that such compositions inhibit the growth, proliferation, and/or colonization of one or a plurality of pathogenic bacteria in the dysbiotic microbiotal niche, so that a healthy, diverse and protective microbiota colonizes and populates the intestinal lumen to establish or reestablish ecological control over pathogens or potential pathogens (e.g., some bacteria are pathogenic bacteria only when present in a dysbiotic environment). Inhibition of pathogens includes those pathogens such as C. difficile, Salmonella spp., enteropathogenic E. coli, multi-drug resistant bacteria such as Klebsiella, and E. coli, carbapenem-resistant Enterobacteriaceae (CRE), extended spectrum beta-lactam resistant Enterococci (ESBL), and vancomycin-resistant Enterococci (VRE).

[0113]

The bacterial compositions provided herein are produced and the efficacy thereof in inhibiting pathogenic bacteria is demonstrated as provided in further detail herein.

[0114]

In particular, in order to characterize those antagonistic relationships between gut commensals that are relevant to the dynamics of the mammalian gut habitat, provided is an in vitro microplate-based screening system that demonstrates the efficacy of those bacterial compositions, including the ability to inhibit (or antagonize) the growth of a bacterial pathogen or pathobiont, typically a gastrointestinal microorganism. These methods provide novel combinations of gut microbiota species and OTUs that are able to restore or enhance ecological control over important gut pathogens or pathobionts in vivo.

[0115]

Bacterial compositions may comprise two types of bacteria (termed “binary combinations” or “binary pairs”) or greater than two types of bacteria. Bacterial compositions that comprise three types of bacteria are termed “ternary combinations”. For instance, a bacterial composition may comprise at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, at least 19, at least 20, or at least 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, or at least 40, at least 50 or greater than 50 types of bacteria, as defined by species or operational taxonomic unit (OTU), or otherwise as provided herein. In one embodiment, the composition comprises at least two types of bacteria chosen from Table 1.

[0116]

In another embodiment, the number of types of bacteria present in a bacterial composition is at or below a known value. For example, in such embodiments the bacterial composition comprises 50 or fewer types of bacteria, such as 49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, or 10 or fewer, or 9 or fewer types of bacteria, 8 or fewer types of bacteria, 7 or fewer types of bacteria, 6 or fewer types of bacteria, 5 or fewer types of bacteria, 4 or fewer types of bacteria, or 3 or fewer types of bacteria. In another embodiment, a bacterial composition comprises from 2 to no more than 40, from 2 to no more than 30, from 2 to no more than 20, from 2 to no more than 15, from 2 to no more than 10, or from 2 to no more than 5 types of bacteria.

[0117]

In some embodiments, bacterial compositions are provided with the ability to exclude pathogenic bacteria. Exemplary bacterial compositions are demonstrated to reduce the growth rate of one pathogen, C. difficile, as provided in the Examples, wherein the ability of the bacterial compositions is demonstrated by assessing the antagonism activity of a combination of OTUs or strains towards a given pathogen using in vitro assays.

[0118]

In some embodiments, bacterial compositions with the capacity to durably exclude C. difficile, are developed using a methodology for estimating an Ecological Control Factor (ECF) for constituents within the human microbiota. The ECF is determined by assessing the antagonistic activity of a given commensal strain or combination of strains towards a given pathogen using an in vitro assay, resulting in observed levels of ecological control at various concentrations of the added commensal strains. The ECF for a commensal strain or combination of strains is somewhat analogous to the longstanding minimal inhibitory concentration (MIC) assessment that is employed in the assessment of antibiotics. The ECF allows for the assessment and ranking of relative potencies of commensal strains and combinations of strains for their ability to antagonize gastrointestinal pathogens. The ECF of a commensal strain or combination of strains may be calculated by assessing the concentration of that composition that is able to mediate a given percentage of inhibition (e.g., at least 10%, 20%, 50%, 70%, 75%, 80%, 85%, 90%, 95%, or 100%) of a target pathogen in the in vitro assay. Provided herein are combinations of strains or OTUs within the human microbiota that are able to significantly reduce the rate of gastrointestinal pathogen replication within the in vitro assay. These compositions are capable of providing a safe and effective means by which to affect the growth, replication, and disease severity of such bacterial pathogens.

[0119]

Bacterial compositions may be prepared comprising at least two types of isolated bacteria, wherein a first type and a second type are independently chosen from the species or OTUs listed in Table 1. Certain embodiments of bacterial compositions with at least two types of isolated bacteria containing binary pairs are reflected in Table 4a. Additionally, a bacterial composition may be prepared comprising at least two types of isolated bacteria, wherein a first OTU and a second OTU are independently characterized by, i.e., at least 95%, 96%, 97%, 98%, 99% or including 100% sequence identity to, sequences listed in Table 1. Generally, the first bacteria and the second bacteria are not the same OTU. The sequences provided in the sequencing listing file for OTUs in Table 1 are full 16S sequences. Therefore, in one embodiment, the first and/or second OTUs may be characterized by the full 16S sequences of OTUs listed in Table 1. In another embodiment, the first and/or second OTUs may be characterized by one or more of the variable regions of the 16S sequence (V1-V9). These regions in bacteria are defined by nucleotides 69-99, 137-242, 433-497, 576-682, 822-879, 986-1043, 1117-1173, 1243-1294 and 1435-1465 respectively using numbering based on the E. coli system of nomenclature. (See, e.g., Brosius et al., Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli, PNAS 75(10):4801-4805 (1978)). In some embodiments, at least one of the V1, V2, V3, V4, V5, V6, V7, V8, and V9 regions are used to characterize an OTU. In one embodiment, the V1, V2, and V3 regions are used to characterize an OTU. In another embodiment, the V3, V4, and V5 regions are used to characterize an OTU. In another embodiment, the V4 region is used to characterize an OTU.

Bacterial Compositions Described by Species

[0120]

In some embodiments, compositions are defined by species included in the composition. Methods of identifying species are known in the art.

Bacterial Compositions Described by Operational Taxonomic Units (OTUs)

[0121]

OTUs may be defined either by full 16S sequencing of the rDNA gene, by sequencing of a specific hypervariable region of this gene (i.e., V1, V2, V3, V4, V5, V6, V7, V8, or V9), or by sequencing of any combination of hypervariable regions from this gene (e.g., V1-3 or V3-5). The bacterial 16S rDNA is approximately 1500 nucleotides in length and is used in reconstructing the evolutionary relationships and sequence similarity of one bacterial isolate to another using phylogenetic approaches. 16S sequences are used for phylogenetic reconstruction as they are in general highly conserved, but contain specific hypervariable regions that harbor sufficient nucleotide diversity to differentiate genera and species of most microbes. Using well known techniques, in order to determine the full 16S sequence or the sequence of any hypervariable region of the 16S sequence, genomic DNA is extracted from a bacterial sample, the 16S rDNA (full region or specific hypervariable regions) amplified using polymerase chain reaction (PCR), the PCR products cleaned, and nucleotide sequences delineated to determine the genetic composition of 16S gene or subdomain of the gene. If full 16S sequencing is performed, the sequencing method used may be, but is not limited to, Sanger sequencing. If one or more hypervariable regions are used, such as the V4 region, the sequencing may be, but is not limited to being, performed using the Sanger method or using a next-generation sequencing method, such as an Illumina (sequencing by synthesis) method using barcoded primers allowing for multiplex reactions.

Bacterial Compositions Exclusive of Certain Bacterial Species or Strains

[0122]

In one embodiment, the bacterial composition does not comprise at least one of Enterococcus faecalis (previously known as, Streptococcus faecalis), Clostridium innocuum, Clostridium ramosum, Bacteroides ovatus, Bacteroides vulgatus, Bacteroides thetaoiotaomicron, Escherichia coli (1109 and 1108-1), Clostridum bifermentans, and Blautia producta (previously known as Peptostreptococcus productus).

[0123]

In another embodiment, the bacterial composition does not comprise at least one of Acidaminococcus intestinalis, Bacteroides ovatus, two species of Bifidobacterium adolescentis, two species of Bifidobacterium longum, Collinsella aerofaciens, two species of Dorea longicatena, Escherichia coli, Eubacterium eligens, Eubacterium limosum, four species of Eubacterium rectale, Eubacterium ventriosumi, Faecalibacterium prausnitzii, Lactobacillus casei, Lactobacillus paracasei, Paracateroides distasonis, Raoultella sp., one species of Roseburia (chosen from Roseburia faecalis or Roseburia faecis), Roseburia intestinalis, two species of Ruminococcus torques, and Streptococcus mitis.

[0124]

In another embodiment, the bacterial composition does not comprise at least one of Barnesiella intestinihominis; Lactobacillus reuteri; a species characterized as one of Enterococcus hirae, Enterococus faecium, or Enterococcus durans; a species characterized as one of Anaerostipes caccae or Clostridium indolis; a species characterized as one of Staphylococcus warneri or Staphylococcus pasteuri; and Adlercreutzia equolfaciens.

[0125]

In another embodiment, the bacterial composition does not comprise at least one of Clostridium absonum, Clostridium argentinense, Clostridium baratii, Clostridium bifermentans, Clostridium botulinum, Clostridium butyricum, Clostridium cadaveris, Clostridium camis, Clostridium celatum, Clostridium chauvoei, Clostridium clostridioforme, Clostridium cochlearium, Clostridium difficile, Clostridium fallax, Clostridium felsineum, Clostridium ghonii, Clostridium glycolicum, Clostridium haemolyticum, Clostridium hastiforme, Clostridium histolyticum, Clostridium indolis. Clostridium innocuum, Clostridium irregulare, Clostridium limosum. Clostridium malenominatum, Clostridium novyi, Clostridium oroticum, Clostridium paraputrificum, Clostridium perfringens, Clostridium piiforme, Clostridium putrefaciens, Clostridium putrificum, Clostridium ramosum, Clostridium sardiniense, Clostridium sartagoforme, Clostridium scindens, Clostridium septicum, Clostridium sordellii, Clostridium sphenoides, Clostridium spiroforme, Clostridium sporogenes, Clostridium subterminale, Clostridium symbiosum, Clostridium tertium, Clostridium tetani, Clostridium welchii, and Clostridium villosum.

[0126]

In another embodiment, the bacterial composition does not comprise at least one of Clostridium innocuum, Clostridum bifermentans, Clostridium butyricum, Bacteroides fragilis, Bacteroides thetaiotaomicron, Bacteroides uniformis, three strains of Escherichia coli, and Lactobacillus sp.

[0127]

In another embodiment, the bacterial composition does not comprise at least one of Clostridium bifermentans, Clostridium innocuum, Clostridium butyricum, three strains of Escherichia coli, three strains of Bacteroides, and Blautia producta (previously known as Peptostreptococcus productus).

[0128]

In another embodiment, the bacterial composition does not comprise at least one of Bacteroides sp., Escherichia coli, and non-pathogenic Clostridia, including Clostridium innocuum, Clostridium bifermentans and Clostridium ramosum.

[0129]

In another embodiment, the bacterial composition does not comprise at least one of more than one Bacteroides species, Escherichia coli and non-pathogenic Clostridia, such as Clostridium butyricum, Clostridium bifermentans and Clostridium innocuum.

[0130]

In another embodiment, the bacterial composition does not comprise at least one of Bacteroides caccae, Bacteroides capillosus, Bacteroides coagulans, Bacteroides distasonis, Bacteroides eggerthii, Bacteroides forsythus. Bacteroides fragilis, Bacteroides fragilis-ryhm, Bacteroides gracilis, Bacteroides levii, Bacteroides macacae, Bacteroides merdae, Bacteroides ovatus, Bacteroides pneumosintes, Bacteroides putredinis, Bacteroides pyogenes, Bacteroides splanchnicus, Bacteroides stercoris, Bacteroides tectum, Bacteroides thetaiotaomicron, Bacteroides uniformis, Bacteroides ureolyticus, and Bacteroides vulgatus.

[0131]

In another embodiment, the bacterial composition does not comprise at least one of Bacteroides, Eubacteria, Fusobacteria, Propionibacteria, Lactobacilli, anaerobic cocci, Ruminococcus, Escherichia coli, Gemmiger, Desulfomonas, and Peptostreptococcus.

[0132]

In another embodiment, the bacterial composition does not comprise at least one of Bacteroides fragilis ss. Vulgatus, Eubacterium aerofaciens, Bacteroides fragilis ss. Thetaiotaomicron, Blautia producta (previously known as Peptostreptococcus productus II), Bacteroides fragilis ss. Distasonis, Fusobacterium prausnitzii, Coprococcus eutactus, Eubacterium aerofaciens III, Blautia producta (previously known as Peptostreptococcus productus I), Ruminococcus bromii, Bifidobacterium adolescentis, Gemmiger formicilis, Bifidobacterium longum, Eubacterium siraeum, Ruminococcus torques, Eubacterium rectale III-H, Eubacterium rectale IV, Eubacterium eligens, Bacteroides eggerthii, Clostridium leptum, Bacteroides fragilis ss. A, Eubacterium biforme, Bifidobacterium infantis, Eubacterium rectale III-F, Coprococcus comes, Bacteroides capillosus, Ruminococcus albus, Eubacterium formicigenerans, Eubacterium hallii, Eubacterium ventriosum I, Fusobacterium russii, Ruminococcus obeum, Eubacterium rectale II, Clostridium ramosum I, Lactobacillus leichmanii, Ruminococcus cailidus, Butyrivibrio crossotus, Acidaminococcus fermentans, Eubacterium ventriosum, Bacteroides fragilis ss. fragilis, Bacteroides AR, Coprococcus catus, Eubacterium hadrum, Eubacterium cylindroides, Eubacterium ruminantium, Eubacterium CH-1, Staphylococcus epidermidis, Peptostreptococcus BL, Eubacterium limosum, Bacteroides praeacutus. Bacteroides L. Fusobacterium mortiferum I, Fusobacterium naviforme, Clostridium innocuum, Clostridium ramosum, Propionibacterium acnes, Ruminococcus flavefaciens, Ruminococcus AT, Peptococcus AU-1, Eubacterium AG, -AK, -AL, -AL-1, -AN; Bacteroides fragilis ss. ovatus, -ss. d, -ss. f Bacteroides L-1, L-5; Fusobacterium nucleatum, Fusobacterium mortiferum, Escherichia coli, Streptococcus morbiliorum, Peptococcus magnus, Peptococcus G, AU-2; Streptococcus intermedius, Ruminococcus lactaris, Ruminococcus CO Gemmiger X, Coprococcus BH, —CC; Eubacterium tenue, Eubacterium ramulus, Eubacterium AE, -AG-H, -AG-M, -AJ, -BN-1; Bacteroides clostridiiformis ss. clostridliformis, Bacteroides coagulans, Bacteroides orails, Bacteroides ruminicola ss. brevis, -ss. ruminicola, Bacteroides splanchnicus, Desuifomonas pigra, Bacteroides L-4, -N-i; Fusobacterium H, Lactobacillus G, and Succinivibrio A.

[0133]

In another embodiment, the bacterial composition does not comprise at least one of Bifidobacterium bifidum W23, Bifidobacterium lactis W18, Bifidobacterium longum W51, Enterococcus faecium W54, Lactobacillus plantarum W62, Lactobacillus rhamnosus W71, Lactobacillus acidophilus W37, Lactobacillus acidophilus W55, Lactobacillus paracasei W20, and Lactobacillus salivarius W24.

[0134]

In another embodiment, the bacterial composition does not comprise at least one of Anaerotruncus colihominis DSM 17241, Blautia producta JCM 1471, Clostridiales bacterium 1 7 47FAA, Clostridium asparagiforme DSM 15981, Clostridium bacterium JC13, Clostridium bolteae ATCC BAA 613, Clostridium hathewayi DSM 13479, Clostridium indolis CM971, Clostridium ramosum DSM 1402, Clostridium saccharogumia SDG Mt85 3Db, Clostridium scindens VP 12708, Clostridium sp 7 3 54FAA, Eubacterium contortum DSM 3982, Lachnospiraceae bacterium 3 1 57FAA CT1, Lachnospiraceae bacterium 7 1 58FAA, and Ruminococcus sp ID8.

[0135]

In another embodiment, the bacterial composition does not comprise at least one of Anaerotruncus colihominis DSM 17241. Blautia producta JCM 1471, Clostridiales bacterium 1 7 47FAA, Clostridium asparagiforme DSM 15981, Clostridium bacterium JC13, Clostridium bolteae A ICC BAA 613, Clostridium hathewayi DSM 13479, Clostridium indolis CM971, Clostridium ramosum DSM 1402, Clostridium saccharogumia SDG Mt85 3Db, Clostridium scindens VP 12708, Clostridium sp 7 3 54FAA, Eubacterium contortum DSM 3982, Lachnospiraceae bacterium 3 1 57FAA CT1, Lachnospiraceae bacterium 7 1 58FAA, Oscillospiraceae bacterium NML 061048, and Ruminococcus sp ID8.

[0136]

In another embodiment, the bacterial composition does not comprise at least one of Clostridium ramosum DSM 1402, Clostridium saccharogumia SDG Mt85 3Db, and Lachnospiraceae bacterium 7 1 58FAA.

[0137]

In another embodiment, the bacterial composition does not comprise at least one of Clostridium hathewayi DSM 13479, Clostridium saccharogumia SDG Mt85 3Db, Clostridium sp 7 3 54FAA, and Lachnospiraceae bacterium 3 1 57FAA CT1.

[0138]

In another embodiment, the bacterial composition does not comprise at least one of Anaerotruncus colihominis DSM 17241, Blautia producta JCM 1471, Clostridium bacterium JC13, Clostridium scindens VP 12708, and Ruminococcus sp ID8.

[0139]

In another embodiment, the bacterial composition does not comprise at least one of Clostridiales bacterium 1 7 47FAA, Clostridium asparagiforme DSM 15981, Clostridium bolteae ATCC BAA 613, Clostridium indolis CM971, and Lachnospiraceae bacterium 71 58FAA.

Inhibition of Bacterial Pathogens

[0140]

The bacterial compositions offer a protective or therapeutic effect against infection by one or more GI pathogens of interest, some of which are listed in Table 3.

[0141]

In some embodiments, the pathogenic bacterium is selected from the group consisting of Yersinia, Vibrio, Treponema, Streptococcus, Staphylococcus, Shigella, Salmonella, Rickettsia, Orientia, Pseudomonas, Neisseria, Mycoplasma, Mycobacterium, Listeria, Leptospira, Legionella, Kiebsiella, Helicobacter, Haemophilus, Francisella, Escherichia, Ehrlichia, Enterococcus, Coxiella, Corynebacterium, Clostridium, Chlamydia, Chlamydophila, Campylobacter, Burkholderia, Brucella, Borrelia, Bordetella, Bifidobacterium, Bacillus, multi-drug resistant bacteria, extended spectrum beta-lactam resistant Enterococci (ESBL), carbapenem-resistant Enterobacteriaceae (CRE), and vancomycin-resistant Enterococci (VRE).

[0142]

In some embodiments, these pathogens include, but are not limited to, Aeromonas hydrophila, Campylobacter fetus, Plesiomonas shigelloides, Bacillus cereus, Campylobacter jejuni, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, enteroaggregative Escherichia coli, enterohemorrhagic Escherichia coli, enteroinvasive Escherichia coli, enterotoxigenic Escherichia coli (such as, but not limited to, LT and/or ST), Escherichia coli 0157:H7, Fusarium spp., Helicobacter pylori, Klebsiella pneumonia, Klebsiella oxytoca, Lysteria monocytogenes, Morganella spp., Plesiomonas shigelloides, Proteus spp., Providencia spp., Salmonella spp., Salmonella typhi, Salmonella paratyphi, Shigella spp., Staphylococcus spp., Staphylococcus aureus, vancomycin-resistant enterococcus spp., Vibrio spp., Vibrio cholerae, Vibrio parahaemolyticus, Vibrio vulnicus, and Yersinia enterocolitica.

[0143]

In one embodiment, the pathogen of interest is at least one pathogen chosen from Clostridium difficile, Salmonella spp., pathogenic Escherichia coli, vancomycin-resistant Enterococcus spp., and extended spectrum beta-lactam resistant Enterococci (ESBL).

In Vitro Assays Substantiating Protective Effect of Bacterial Compositions

[0144]

In one embodiment, provided is an in vitro assay utilizing competition between the bacterial compositions or subsets thereof and C. difficile. Exemplary embodiments of the assay are provided herein and in the Examples.

[0145]

In another embodiment, provided is an in vitro assay utilizing 10% (wt/vol) Sterile-Filtered Stool (SFS). Provided is an in vitro assay to test for the protective effect of the bacterial compositions and to screen in vitro for combinations of microbes that inhibit the growth of a pathogen. The assay can operate in automated high-throughput or manual modes. Under either system, human or animal stool may be re-suspended in an anaerobic buffer solution, such as pre-reduced PBS or other suitable buffer, the particulate removed by centrifugation, and filter sterilized. This 10% sterile-filtered stool material serves as the base media for the in vitro assay. To test a bacterial composition, an investigator may add it to the sterile-filtered stool material for a first incubation period and then may inoculate the incubated microbial solution with the pathogen of interest for a second incubation period. The resulting titer of the pathogen may be quantified by any number of methods such as those described below, and the change in the amount of pathogen is compared to standard controls including the pathogen cultivated in the absence of the bacterial composition. The assay is conducted using at least one control. Stool from a healthy subject may be used as a positive control. As a negative control, antibiotic-treated stool or heat-treated stool may be used. Various bacterial compositions may be tested in this material and the bacterial compositions optionally compared to the positive and/or negative controls. The ability to inhibit the growth of the pathogen may be measured by plating the incubated material on C. difficile selective media and counting colonies. After competition between the bacterial composition and C. difficile, each well of the in vitro assay plate is serially diluted ten-fold six times, and plated on selective media, such as but not limited to cycloserine cefoxitin mannitol agar (CCMA) or cycloserine cefoxitin fructose agar (CCFA), and incubated. Colonies of C. difficile are then counted to calculate the concentration of viable cells in each well at the end of the competition. Colonies of C. difficile are confirmed by their characteristic diffuse colony edge morphology as well as fluorescence under UV light.

[0146]

In another embodiment, the in vitro assay utilizes Antibiotic-Treated Stool. In an alternative embodiment, and instead of using 10% sterile-filtered stool, human or animal stool may be resuspended in an anaerobic buffer solution, such as pre-reduced PBS or other suitable buffer. The resuspended stool is treated with an antibiotic, such as clindamycin, or a cocktail of several antibiotics in order to reduce the ability of stool from a healthy subject to inhibit the growth of C. difficile; this material is termed the antibiotic-treated matrix. While not being bound by any mechanism, it is believed that beneficial bacteria in healthy subjects protects them from infection by competing out C. difficile. Treating stool with antibiotics kills or reduces the population of those beneficial bacteria, allowing C. difficile to grow in this assay matrix. Antibiotics in addition to clindamycin that inhibit the normal flora include ceftriaxone and piperacillin-tazobactam and may be substituted for the clindamycin. The antibiotic-treated matrix is centrifuged, the supernatant removed, and the pelleted material resuspended in filter-sterilized, diluted stool in order to remove any residual antibiotic. This washed antibiotic-treated matrix may be used in the in vitro assay described above in lieu of the 10% sterile-filtered stool.

[0147]

Also provided is an In Vitro Assay utilizing competition between the bacterial compositions or subsets thereof and Vancomycin-resistant Enterococcus faecium. Exemplary embodiments of this Assay are provided herein and in the Examples.

[0148]

Also provided is an in vitro assay utilizing competition between the bacterial compositions or subsets thereof and Morganella morganii. Exemplary embodiments of this Assay are provided herein and in the Examples.

[0149]

Also provided is an in vitro assay utilizing competition between the bacterial compositions or subsets thereof and Klebsiella pneumoniae. Exemplary embodiments of this Assay are provided herein and in the Examples.

[0150]

Alternatively, the ability to inhibit the growth of the pathogen may be measured by quantitative PCR (qPCR). Standard techniques may be followed to generate a standard curve for the pathogen of interest. Genomic DNA may be extracted from samples using commercially available kits, such as the Mo Bio Powersoil®-htp 96 Well Soil DNA Isolation Kit (Mo Bio Laboratories, Carlsbad, CA), the Mo Bio Powersoil® DNA Isolation Kit (Mo Bio Laboratories, Carlsbad, CA), or the QIAamp DNA Stool Mini Kit (QIAGEN, Valencia, CA) according to the manufacturer's instructions. The qPCR may be conducted using HotMasterMix (5PRIME, Gaithersburg, MD) and primers specific for the pathogen of interest, and may be conducted on a MicroAmp® Fast Optical 96-well Reaction Plate with Barcode (0.1 mL) (Life Technologies, Grand Island, NY) and performed on a BioRad C1000™ Thermal Cycler equipped with a CFX96™ Real-Time System (BioRad, Hercules, CA), with fluorescent readings of the FAM and ROX channels. The Cq value for each well on the FAM channel is determined by the CFX Manager™ software version 2.1. The log10(cfu/ml) of each experimental sample is calculated by inputting a given sample's Cq value into linear regression model generated from the standard curve comparing the Cq values of the standard curve wells to the known log10(cfu/ml) of those samples. The skilled artisan may employ alternative qPCR modes.

In Vivo Assay Establishing Protective Effect of Bacterial Compositions

[0151]

Provided is an in vivo mouse model to test for the protective effect of the bacterial compositions against C. difficile. In this model (based on Chen, et al., A mouse model of Clostridium difficile associated disease, Gastroenterology 135(6):1984-1992 (2008)), mice are made susceptible to C. difficile by a 7 day treatment (days −12 to −5 of experiment) with 5 to 7 antibiotics (including kanamycin, colistin, gentamycin, metronidazole and vancomycin and optionally including ampicillin and ciprofloxacin) delivered via their drinking water, followed by a single dose with Clindamycin on day −3, then challenged three days later on day 0 with 104 spores of C. difficile via oral gavage (i.e., oro-gastric lavage). Bacterial compositions may be given either before (prophylactic treatment) or after (therapeutic treatment) C. difficile gavage. Further, bacterial compositions may be given after (optional) vancomycin treatment (see below) to assess their ability to prevent recurrence and thus suppress the pathogen in vivo. The outcomes assessed each day from day −1 to day 6 (or beyond, for prevention of recurrence) are weight, clinical signs, mortality and shedding of C. difficile in the stool. Weight loss, clinical signs of disease, and C. difficile shedding are typically observed without treatment. Vancomycin provided by oral gavage on days −1 to 4 protects against these outcomes and serves as a positive control. Clinical signs are subjective, and scored each day by the same experienced observer. Animals that lose greater than or equal to 25% of their body weight are euthanized and counted as infection-related mortalities. Stool are gathered from mouse cages (5 mice per cage) each day, and the shedding of C. difficile spores is detected in the stool using a selective plating assay as described for the in vitro assay above, or via qPCR for the toxin gene as described herein. The effects of test materials including 10% suspension of human stool (as a positive control), bacterial compositions, or PBS (as a negative vehicle control), are determined by introducing the test article in a 0.2 mL volume into the mice via oral gavage on day −1, one day prior to C. difficile challenge, on day 1, 2 and 3 as treatment or post-vancomycin treatment on days 5, 6, 7 and 8. Vancomycin, as discussed above, is given on days 1 to 4 as another positive control. Alternative dosing schedules and routes of administration (e.g., rectal) may be employed, including multiple doses of test article, and 103 to 1010of a given organism or composition may be delivered.

Methods for Preparing a Bacterial Composition for Administration to a Subject

[0152]

Methods for producing bacterial compositions may include three main processing steps, combined with one or more mixing steps. The steps are: organism banking, organism production, and preservation.

[0153]

For banking, the strains included in the bacterial composition may be (1) isolated directly from a specimen or taken from a banked stock, (2) optionally cultured on a nutrient agar or broth that supports growth to generate viable biomass, and (3) the biomass optionally preserved in multiple aliquots in long-term storage.

[0154]

In embodiments using a culturing step, the agar or broth may contain nutrients that provide essential elements and specific factors that enable growth. An example would be a medium composed of 20 g/L glucose, 10 g/L yeast extract, 10 g/L soy peptone, 2 g/L citric acid, 1.5 g/L sodium phosphate monobasic, 100 mg/L ferric ammonium citrate, 80 mg/L magnesium sulfate, 10 mg/L hemin chloride, 2 mg/L calcium chloride, 1 mg/L menadione. A variety of microbiological media and variations are well known in the art (e.g., R. M. Atlas, Handbook of Microbiological Media (2010) CRC Press). Medium can be added to the culture at the start, may be added during the culture, or may be intermittently/continuously flowed through the culture. The strains in the bacterial composition may be cultivated alone, as a subset of the bacterial composition, or as an entire collection comprising the bacterial composition. As an example, a first strain may be cultivated together with a second strain in a mixed continuous culture, at a dilution rate lower than the maximum growth rate of either cell to prevent the culture from washing out of the cultivation.

[0155]

The inoculated culture is incubated under favorable conditions for a time sufficient to build biomass. For bacterial compositions for human use this is often at 37° C. temperature, pH, and other parameter with values similar to the normal human niche. The environment may be actively controlled, passively controlled (e.g., via buffers), or allowed to drift. For example, for anaerobic bacterial compositions (e.g., gut microbiota), an anoxic/reducing environment may be employed. This can be accomplished by addition of reducing agents such as cysteine to the broth, and/or stripping it of oxygen. As an example, a culture of a bacterial composition may be grown at 37° C., pH 7, in the medium above, pre-reduced with 1 g/L cysteine HCl.

[0156]

When the culture has generated sufficient biomass, it may be preserved for banking. The organisms may be placed into a chemical milieu that protects from freezing (adding ‘cryoprotectants’), drying (‘lyoprotectants’), and/or osmotic shock (‘osmoprotectants’), dispensing into multiple (optionally identical) containers to create a uniform bank, and then treating the culture for preservation. Containers are generally impermeable and have closures that assure isolation from the environment. Cryopreservation treatment is accomplished by freezing a liquid at ultra-low temperatures (e.g., at or below −80° C.). Dried preservation removes water from the culture by evaporation (in the case of spray drying or ‘cool drying’) or by sublimation (e.g., for freeze drying, spray freeze drying). Removal of water improves long-term bacterial composition storage stability at temperatures elevated above cryogenic. If the bacterial composition comprises spore forming species and results in the production of spores, the final composition may be purified by additional means such as density gradient centrifugation preserved using the techniques described above. Bacterial composition banking may be done by culturing and preserving the strains individually, or by mixing the strains together to create a combined bank. As an example of cryopreservation, a bacterial composition culture may be harvested by centrifugation to pellet the cells from the culture medium, the supernatant decanted and replaced with fresh culture broth containing 15% glycerol. The culture can then be aliquoted into 1 mL cryotubes, sealed, and placed at −80° C. for long-term viability retention. This procedure achieves acceptable viability upon recovery from frozen storage.

[0157]

Organism production may be conducted using similar culture steps to banking, including medium composition and culture conditions. It may be conducted at larger scales of operation, especially for clinical development or commercial production. At larger scales, there may be several subcultivations of the bacterial composition prior to the final cultivation. At the end of cultivation, the culture is harvested to enable further formulation into a dosage form for administration. This can involve concentration, removal of undesirable medium components, and/or introduction into a chemical milieu that preserves the bacterial composition and renders it acceptable for administration via the chosen route. For example, a bacterial composition may be cultivated to a concentration of 1010CFU/mL, then concentrated 20-fold by tangential flow microfiltration; the spent medium may be exchanged by diafiltering with a preservative medium consisting of 2% gelatin, 100 mM trehalose, and 10 mM sodium phosphate buffer. The suspension can then be freeze-dried to a powder and titrated.

[0158]

After drying, the powder may be blended to an appropriate potency, and mixed with other cultures and/or a filler such as microcrystalline cellulose for consistency and ease of handling, and the bacterial composition formulated as provided herein.

Formulations

[0159]

Provided are formulations for administration to humans and other subjects in need thereof. Generally the bacterial compositions are combined with additional active and/or inactive materials to produce a final product, which may be in single dosage unit or in a multi-dose format.

[0160]

In some embodiments the composition comprises at least one carbohydrate. A “carbohydrate” refers to a sugar or polymer of sugars. The terms “saccharide,” “polysaccharide,” “carbohydrate,” and “oligosaccharide” may be used interchangeably. Most carbohydrates are aldehydes or ketones with many hydroxyl groups, usually one on each carbon atom of the molecule. Carbohydrates generally have the molecular formula CnH2nOn. A carbohydrate may be a monosaccharide, a disaccharide, trisaccharide, oligosaccharide, or polysaccharide. The most basic carbohydrate is a monosaccharide, such as glucose, sucrose, galactose, mannose, ribose, arabinose, xylose, and fructose. Disaccharides are two joined monosaccharides. Exemplary disaccharides include sucrose, maltose, cellobiose, and lactose. Typically, an oligosaccharide includes between three and six monosaccharide units (e.g., raffinose, stachyose), and polysaccharides include six or more monosaccharide units. Exemplary polysaccharides include starch, glycogen, and cellulose. Carbohydrates may contain modified saccharide units such as 2′-deoxyribose wherein a hydroxyl group is removed, 2′-fluororibose wherein a hydroxyl group is replace with a fluorine, or N-acetylglucosamine, a nitrogen-containing form of glucose (e.g., 2′-fluororibose, deoxyribose, and hexose). Carbohydrates may exist in many different forms, for example, conformers, cyclic forms, acyclic forms, stereoisomers, tautomers, anomers, and isomers.

[0161]

In some embodiments the composition comprises at least one lipid. As used herein a “lipid” includes fats, oils, triglycerides, cholesterol, phospholipids, fatty acids in any form including free fatty acids. Fats, oils and fatty acids can be saturated, unsaturated (cis or trans) or partially unsaturated (cis or trans). In some embodiments the lipid comprises at least one fatty acid selected from lauric acid (12:0), myristic acid (14:0), palmitic acid (16:0), palmitoleic acid (16:1), margaric acid (17:0), heptadecenoic acid (17:1), stearic acid (18:0), oleic acid (18:1), linoleic acid (18:2), linolenic acid (18:3), octadecatetraenoic acid (18:4), arachidic acid (20:0), eicosenoic acid (20:1), eicosadienoic acid (20:2), eicosatetraenoic acid (20:4), eicosapentaenoic acid (20:5) (EPA), docosanoic acid (22:0), docosenoic acid (22:1), docosapentaenoic acid (22:5), docosahexaenoic acid (22:6) (DHA), and tetracosanoic acid (24:0). In some embodiments the composition comprises at least one modified lipid, for example a lipid that has been modified by cooking.

[0162]

In some embodiments the composition comprises at least one supplemental mineral or mineral source. Examples of minerals include, without limitation: chloride, sodium, calcium, iron, chromium, copper, iodine, zinc, magnesium, manganese, molybdenum, phosphorus, potassium, and selenium. Suitable forms of any of the foregoing minerals include soluble mineral salts, slightly soluble mineral salts, insoluble mineral salts, chelated minerals, mineral complexes, non-reactive minerals such as carbonyl minerals, and reduced minerals, and combinations thereof.

[0163]

In some embodiments the composition comprises at least one supplemental vitamin. The at least one vitamin can be fat-soluble or water soluble vitamins. Suitable vitamins include but are not limited to vitamin C, vitamin A, vitamin E, vitamin B12, vitamin K, riboflavin, niacin, vitamin D, vitamin B6, folic acid, pyridoxine, thiamine, pantothenic acid, and biotin. Suitable forms of any of the foregoing are salts of the vitamin, derivatives of the vitamin, compounds having the same or similar activity of the vitamin, and metabolites of the vitamin.

[0164]

In some embodiments the composition comprises an excipient. Non-limiting examples of suitable excipients include a buffering agent, a preservative, a stabilizer, a binder, a compaction agent, a lubricant, a dispersion enhancer, a disintegration agent, a flavoring agent, a sweetener, and a coloring agent.

[0165]

In some embodiments the excipient is a buffering agent. Non-limiting examples of suitable buffering agents include sodium citrate, magnesium carbonate, magnesium bicarbonate, calcium carbonate, and calcium bicarbonate.

[0166]

In some embodiments the excipient comprises a preservative. Non-limiting examples of suitable preservatives include antioxidants, such as alpha-tocopherol and ascorbate, and antimicrobials, such as parabens, chlorobutanol, and phenol.

[0167]

In some embodiments the composition comprises a binder as an excipient. Non-limiting examples of suitable binders include starches, pregelatinized starches, gelatin, polyvinylpyrolidone, cellulose, methylcellulose, sodium carboxymethylcellulose, ethylcellulose, polyacrylamides, polyvinyloxoazolidone, polyvinylalcohols, C12-C18fatty acid alcohol, polyethylene glycol, polyols, saccharides, oligosaccharides, and combinations thereof.

[0168]

In some embodiments the composition comprises a lubricant as an excipient. Non-limiting examples of suitable lubricants include magnesium stearate, calcium stearate, zinc stearate, hydrogenated vegetable oils, sterotex, polyoxyethylene monostearate, talc, polyethyleneglycol, sodium benzoate, sodium lauryl sulfate, magnesium lauryl sulfate, and light mineral oil.

[0169]

In some embodiments the composition comprises a dispersion enhancer as an excipient. Non-limiting examples of suitable dispersants include starch, alginic acid, polyvinylpyrrolidones, guar gum, kaolin, bentonite, purified wood cellulose, sodium starch glycolate, isoamorphous silicate, and microcrystalline cellulose as high HLB emulsifier surfactants.

[0170]

In some embodiments the composition comprises a disintegrant as an excipient. In some embodiments the disintegrant is a non-effervescent disintegrant. Non-limiting examples of suitable non-effervescent disintegrants include starches such as corn starch, potato starch, pregelatinized and modified starches thereof, sweeteners, clays, such as bentonite, micro-crystalline cellulose, alginates, sodium starch glycolate, gums such as agar, guar, locust bean, karaya, pecitin, and tragacanth. In some embodiments the disintegrant is an effervescent disintegrant. Non-limiting examples of suitable effervescent disintegrants include sodium bicarbonate in combination with citric acid, and sodium bicarbonate in combination with tartaric acid.

[0171]

In some embodiments the excipient comprises a flavoring agent. Flavoring agents can be chosen from synthetic flavor oils and flavoring aromatics; natural oils; extracts from plants, leaves, flowers, and fruits; and combinations thereof. In some embodiments the flavoring agent is selected from cinnamon oils; oil of wintergreen; peppermint oils; clover oil; hay oil; anise oil; eucalyptus; vanilla; citrus oil such as lemon oil, orange oil, grape and grapefruit oil; and fruit essences including apple, peach, pear, strawberry, raspberry, cherry, plum, pineapple, and apricot.

[0172]

In some embodiments the excipient comprises a sweetener. Non-limiting examples of suitable sweeteners include glucose (corn syrup), dextrose, invert sugar, fructose, and mixtures thereof (when not used as a carrier); saccharin and its various salts such as the sodium salt; dipeptide sweeteners such as aspartame; dihydrochalcone compounds, glycyrrhizin; Stevia Rebaudiana (Stevioside); chloro derivatives of sucrose such as sucralose; and sugar alcohols such as sorbitol, mannitol, sylitol, and the like. Also contemplated are hydrogenated starch hydrolysates and the synthetic sweetener 3,6-dihydro-6-methyl-1,2,3-oxathiazin-4-one-2,2-dioxide, particularly the potassium salt (acesulfame-K), and sodium and calcium salts thereof.

[0173]

In some embodiments the composition comprises a coloring agent. Non-limiting examples of suitable color agents include food, drug and cosmetic colors (FD&C), drug and cosmetic colors (D&C), and external drug and cosmetic colors (Ext. D&C). The coloring agents can be used as dyes or their corresponding lakes.

[0174]

The weight fraction of the excipient or combination of excipients in the formulation is usually about 99% or less, such as about 95% or less, about 90% or less, about 85% or less, about 80% or less, about 75% or less, about 70% or less, about 65% or less, about 60% or less, about 55% or less, 50% or less, about 45% or less, about 40% or less, about 35% or less, about 30% or less, about 25% or less, about 20% or less, about 15% or less, about 10% or less, about 5% or less, about 2% or less, or about 1% or less of the total weight of the composition.

[0175]

The bacterial compositions disclosed herein can be formulated into a variety of forms and administered by a number of different means. The compositions can be administered orally, rectally, or parenterally, in formulations containing conventionally acceptable carriers, adjuvants, and vehicles as desired. The term “parenteral” as used herein includes subcutaneous, intravenous, intramuscular, or intrasternal injection and infusion techniques. In an exemplary embodiment, the bacterial composition is administered orally.

[0176]

Solid dosage forms for oral administration include capsules, tablets, caplets, pills, troches, lozenges, powders, and granules. A capsule typically comprises a core material comprising a bacterial composition and a shell wall that encapsulates the core material. In some embodiments the core material comprises at least one of a solid, a liquid, and an emulsion. In some embodiments the shell wall material comprises at least one of a soft gelatin, a hard gelatin, and a polymer. Suitable polymers include, but are not limited to: cellulosic polymers such as hydroxypropyl cellulose, hydroxyethyl cellulose, hydroxypropyl methyl cellulose (HPMC), methyl cellulose, ethyl cellulose, cellulose acetate, cellulose acetate phthalate, cellulose acetate trimellitate, hydroxypropylmethyl cellulose phthalate, hydroxypropylmethyl cellulose succinate and carboxymethylcellulose sodium; acrylic acid polymers and copolymers, such as those formed from acrylic acid, methacrylic acid, methyl acrylate, ammonio methylacrylate, ethyl acrylate, methyl methacrylate and/or ethyl methacrylate (e.g., those copolymers sold under the trade name “Eudragit”); vinyl polymers and copolymers such as polyvinyl pyrrolidone, polyvinyl acetate, polyvinylacetate phthalate, vinylacetate crotonic acid copolymer, and ethylene-vinyl acetate copolymers; and shellac (purified lac). In some embodiments at least one polymer functions as taste-masking agents.

[0177]

Tablets, pills, and the like can be compressed, multiply compressed, multiply layered, and/or coated. The coating can be single or multiple. In one embodiment, the coating material comprises at least one of a saccharide, a polysaccharide, and glycoproteins extracted from at least one of a plant, a fungus, and a microbe. Non-limiting examples include corn starch, wheat starch, potato starch, tapioca starch, cellulose, hemicellulose, dextrans, maltodextrin, cyclodextrins, inulins, pectin, mannans, gum arabic, locust bean gum, mesquite gum, guar gum, gum karaya, gum ghatti, tragacanth gum, funori, carrageenans, agar, alginates, chitosans, or gellan gum. In some embodiments the coating material comprises a protein. In some embodiments the coating material comprises at least one of a fat and an oil. In some embodiments the at least one of a fat and an oil is high temperature melting. In some embodiments the at least one of a fat and an oil is hydrogenated or partially hydrogenated. In some embodiments the at least one of a fat and an oil is derived from a plant. In some embodiments the at least one of a fat and an oil comprises at least one of glycerides, free fatty acids, and fatty acid esters. In some embodiments the coating material comprises at least one edible wax. The edible wax can be derived from animals, insects, or plants. Non-limiting examples include beeswax, lanolin, bayberry wax, carnauba wax, and rice bran wax. Tablets and pills can additionally be prepared with enteric coatings.

[0178]

Alternatively, powders or granules embodying the bacterial compositions disclosed herein can be incorporated into a food product. In some embodiments the food product is a drink for oral administration. Non-limiting examples of a suitable drink include fruit juice, a fruit drink, an artificially flavored drink, an artificially sweetened drink, a carbonated beverage, a sports drink, a liquid diary product, a shake, an alcoholic beverage, a caffeinated beverage, infant formula and so forth. Other suitable means for oral administration include aqueous and nonaqueous solutions, emulsions, suspensions and solutions and/or suspensions reconstituted from non-effervescent granules, containing at least one of suitable solvents, preservatives, emulsifying agents, suspending agents, diluents, sweeteners, coloring agents, and flavoring agents.

[0179]

In some embodiments the food product is a solid foodstuff. Suitable examples of a solid foodstuff include without limitation a food bar, a snack bar, a cookie, a brownie, a muffin, a cracker, an ice cream bar, a frozen yogurt bar, and the like.

[0180]

In some embodiments, the compositions disclosed herein are incorporated into a therapeutic food. In some embodiments, the therapeutic food is a ready-to-use food that optionally contains some or all essential macronutrients and micronutrients. In some embodiments, the compositions disclosed herein are incorporated into a supplementary food that is designed to be blended into an existing meal. In some embodiments, the supplemental food contains some or all essential macronutrients and micronutrients. In some embodiments, the bacterial compositions disclosed herein are blended with or added to an existing food to fortify the food's protein nutrition. Examples include food staples (grain, salt, sugar, cooking oil, margarine), beverages (coffee, tea, soda, beer, liquor, sports drinks), snacks, sweets and other foods.

[0181]

In one embodiment, the formulations are filled into gelatin capsules for oral administration. An example of an appropriate capsule is a 250 mg gelatin capsule containing from 10 (up to 100 mg) of lyophilized powder (108to 1011bacteria), 160 mg microcrystalline cellulose, 77.5 mg gelatin, and 2.5 mg magnesium stearate. In an alternative embodiment, from 105to 1012bacteria may be used, 105to 107, 106to 107, or 108to 1010, with attendant adjustments of the excipients if necessary. In an alternative embodiment an enteric-coated capsule or tablet or with a buffering or protective composition may be used.

[0182]

In one embodiment, the number of bacteria of each type may be present in the same amount or in different amounts. For example, in a bacterial composition with two types of bacteria, the bacteria may be present in from a 1:10,000 ratio to a 1:1 ratio, from a 1:10,000 ratio to a 1:1,000 ratio, from a 1:1,000 ratio to a 1:100 ratio, from a 1:100 ratio to a 1:50 ratio, from a 1:50 ratio to a 1:20 ratio, from a 1:20 ratio to a 1:10 ratio, from a 1:10 ratio to a 1:1 ratio. For bacterial compositions comprising at least three types of bacteria, the ratio of type of bacteria may be chosen pairwise from ratios for bacterial compositions with two types of bacteria. For example, in a bacterial composition comprising bacteria A, B, and C, at least one of the ratio between bacteria A and B, the ratio between bacteria B and C, and the ratio between bacteria A and C may be chosen, independently, from the pairwise combinations above.

Methods of Treating a Subject

[0183]

In some embodiments the proteins and compositions disclosed herein are administered to a subject or a user (sometimes collectively referred to as a “subject”). As used herein “administer” and “administration” encompasses embodiments in which one person directs another to consume a bacterial composition in a certain manner and/or for a certain purpose, and also situations in which a user uses a bacteria composition in a certain manner and/or for a certain purpose independently of or in variance to any instructions received from a second person. Non-limiting examples of embodiments in which one person directs another to consume a bacterial composition in a certain manner and/or for a certain purpose include when a physician prescribes a course of conduct and/or treatment to a subject, when a parent commands a minor user (such as a child) to consume a bacterial composition, when a trainer advises a user (such as an athlete) to follow a particular course of conduct and/or treatment, and when a manufacturer, distributer, or marketer recommends conditions of use to an end user, for example through advertisements or labeling on packaging or on other materials provided in association with the sale or marketing of a product.

[0184]

The bacterial compositions offer a protective and/or therapeutic effect against infection by one or more GI pathogens of interest and thus may be administered after an acute case of infection has been resolved in order to prevent relapse, during an acute case of infection as a complement to antibiotic therapy if the bacterial composition is not sensitive to the same antibiotics as the GI pathogen, or to prevent infection or reduce transmission from disease carriers. These pathogens include, but are not limited to, Aeromonas hydrophila, Campylobacter fetus, Plesiomonas shigelloides, Bacillus cereus, Campylobacter jejuni, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, enteroaggregative Escherichia coli, enterohemorrhagic Escherichia coli, enteroinvasive Escherichia coli, enterotoxigenic Escherichia coli (LT and/or ST), Escherichia coli 0157:H7, Helicobacter pylori, Klebsiella pneumonia, Lysteria monocytogenes, Plesiomonas shigelloides, Salmonella spp., Salmonella typhi, Shigella spp., Staphylococcus, Staphylococcus aureus, vancomycin-resistant Enterococcus spp., Vibrio spp., Vibrio cholerae, Vibrio parahaemolyticus, Vibrio vulnificus, and Yersinia enterocolitica.

[0185]

In one embodiment, the pathogen may be Clostridium difficile, Salmonella spp., pathogenic Escherichia coli, carbapenem-resistant Enterobacteriaceae (CRE), extended spectrum beta-lactam resistant Enterococci (ESBL) and vancomycin-resistant Enterococci (VRE). In yet another embodiment, the pathogen may be Clostridium difficile.

[0186]

The present bacterial compositions may be useful in a variety of clinical situations. For example, the bacterial compositions may be administered alone, as a complementary treatment to antibiotics (e.g., when a subject is suffering from an acute infection, to reduce the risk of recurrence after an acute infection has subsided or, or when a subject will be in close proximity to others with or at risk of serious gastrointestinal infections (physicians, nurses, hospital workers, family members of those who are ill or hospitalized).

[0187]

The present bacterial compositions may be administered to animals, including humans, laboratory animals (e.g., primates, rats, mice), livestock (e.g., cows, sheep, goats, pigs, turkeys, chickens), and household pets (e.g., dogs, cats, rodents).

[0188]

In the present method, the bacterial composition is administered enterically, in other words by a route of access to the gastrointestinal tract. This includes oral administration, rectal administration (including enema, suppository, or colonoscopy), by an oral or nasal tube (nasogastric, nasojejunal, oral gastric, or oral jejunal), as detailed more fully herein.

[0189]

It has been reported that a GI dysbiosis is associated with diabetes (Qin et al., 2012. Nature 490:55). In some embodiments, a composition provided herein can be used to alter the microbiota of a subject having or susceptible diabetes. Typically, such a composition provides at least one, two, or three OTUs identified in the art as associated with an improvement in insulin sensitivity or other sign or symptom associated with diabetes, e.g., Type 2 or Type 1 diabetes. In some embodiments, the composition is associated with an increase in engraftment and/or augmentation of at least one, two, or three OTUs associated with an improvement in at least one sign or symptom of diabetes.

Pretreatment Protocols

[0190]

Prior to administration of the bacterial composition, the subject may optionally have a pretreatment protocol to prepare the gastrointestinal tract to receive the bacterial composition. In certain embodiments, the pretreatment protocol is advisable, such as when a subject has an acute infection with a highly resilient pathogen. In other embodiments, the pretreatment protocol is entirely optional, such as when the pathogen causing the infection is not resilient, or the subject has had an acute infection that has been successfully treated but where the physician is concerned that the infection may recur. In these instances, the pretreatment protocol may enhance the ability of the bacterial composition to affect the subject's microbiome.

[0191]

As one way of preparing the subject for administration of the microbial ecosystem, at least one antibiotic may be administered to alter the bacteria in the subject. As another way of preparing the subject for administration of the microbial ecosystem, a standard colon-cleansing preparation may be administered to the subject to substantially empty the contents of the colon, such as used to prepare a subject for a colonoscopy. By “substantially emptying the contents of the colon,” this application means removing at least 75%, at least 80%, at least 90%, at least 95%, or about 100% of the contents of the ordinary volume of colon contents. Antibiotic treatment may precede the colon-cleansing protocol.

[0192]

If a subject has received an antibiotic for treatment of an infection, or if a subject has received an antibiotic as part of a specific pretreatment protocol, in one embodiment the antibiotic should be stopped in sufficient time to allow the antibiotic to be substantially reduced in concentration in the gut before the bacterial composition is administered. In one embodiment, the antibiotic may be discontinued 1, 2, or 3 days before the administration of the bacterial composition. In one embodiment, the antibiotic may be discontinued 3, 4, 5, 6, or 7 antibiotic half-lives before administration of the bacterial composition. In another embodiment, the antibiotic may be chosen so the constituents in the bacterial composition have an MIC50 that is higher than the concentration of the antibiotic in the gut.

[0193]

MIC50 of a bacterial composition or the elements in the composition may be determined by methods well known in the art. Reller et al., Antimicrobial Susceptibility Testing: A Review of General Principles and Contemporary Practices, Clinical Infectious Diseases 49(11):1749-1755 (2009). In such an embodiment, the additional time between antibiotic administration and administration of the bacterial composition is not necessary. If the pretreatment protocol is part of treatment of an acute infection, the antibiotic may be chosen so that the infection is sensitive to the antibiotic, but the constituents in the bacterial composition are not sensitive to the antibiotic.

Routes of Administration

[0194]

The bacterial compositions of the invention are suitable for administration to mammals and non-mammalian animals in need thereof. In certain embodiments, the mammalian subject is a human subject who has one or more symptoms of a dysbiosis.

[0195]

When the mammalian subject is suffering from a disease, disorder or condition characterized by an aberrant microbiota, the bacterial compositions described herein are suitable for treatment thereof. In some embodiments, the mammalian subject has not received antibiotics in advance of treatment with the bacterial compositions. For example, the mammalian subject has not been administered at least two doses of vancomycin, metronidazole and/or or similar antibiotic compound within one week prior to administration of the therapeutic composition. In other embodiments, the mammalian subject has not previously received an antibiotic compound in the one month prior to administration of the therapeutic composition. In other embodiments, the mammalian subject has received one or more treatments with one or more different antibiotic compounds and such treatment(s) resulted in no improvement or a worsening of symptoms.

[0196]

In some embodiments, the gastrointestinal disease, disorder or condition is diarrhea caused by C. difficile including recurrent C. difficile infection, ulcerative colitis, colitis, Crohn's disease, or irritable bowel disease. Beneficially, the therapeutic composition is administered only once prior to improvement of the disease, disorder or condition. In some embodiments the therapeutic composition is administered at intervals greater than two days, such as once every three, four, five or six days, or every week or less frequently than every week. Or the preparation may be administered intermittently according to a set schedule, e.g., once a day, once weekly, or once monthly, or when the subject relapses from the primary illness. In another embodiment, the preparation may be administered on a long-term basis to subjects who are at risk for infection with or who may be carriers of these pathogens, including subjects who will have an invasive medical procedure (such as surgery), who will be hospitalized, who live in a long-term care or rehabilitation facility, who are exposed to pathogens by virtue of their profession (livestock and animal processing workers), or who could be carriers of pathogens (including hospital workers such as physicians, nurses, and other health care professionals).

[0197]

In embodiments, the bacterial composition is administered enterically. This preferentially includes oral administration, or by an oral or nasal tube (including nasogastric, nasojejunal, oral gastric, or oral jejunal). In other embodiments, administration includes rectal administration (including enema, suppository, or colonoscopy). The bacterial composition may be administered to at least one region of the gastrointestinal tract, including the mouth, esophagus, stomach, small intestine, large intestine, and rectum. In some embodiments it is administered to all regions of the gastrointestinal tract. The bacterial compositions may be administered orally in the form of medicaments such as powders, capsules, tablets, gels or liquids. The bacterial compositions may also be administered in gel or liquid form by the oral route or through a nasogastric tube, or by the rectal route in a gel or liquid form, by enema or instillation through a colonoscope or by a suppository.

[0198]

If the composition is administered colonoscopically and, optionally, if the bacterial composition is administered by other rectal routes (such as an enema or suppository) or even if the subject has an oral administration, the subject may have a colon-cleansing preparation. The colon-cleansing preparation can facilitate proper use of the colonoscope or other administration devices, but even when it does not serve a mechanical purpose it can also maximize the proportion of the bacterial composition relative to the other organisms previously residing in the gastrointestinal tract of the subject. Any ordinarily acceptable colon-cleansing preparation may be used such as those typically provided when a subject undergoes a colonoscopy.

Dosages and Schedule for Administration

[0199]

In some embodiments the bacteria and bacterial compositions are provided in a dosage form. In some embodiments the dosage form is designed for administration of at least one OTU or combination thereof disclosed herein, wherein the total amount of bacterial composition administered is selected from 0.1 ng to 10 g, 10 ng to 1 g, 100 ng to 0.1 g, 0.1 mg to 500 mg, 1 mg to 100 mg, or from 10-15 mg. In some embodiments the bacterial composition is consumed at a rate of from 0.1 ng to 10 g a day, 10 ng to 1 g a day, 100 ng to 0.1 g a day, 0.1 mg to 500 mg a day, 1 mg to 100 mg a day, or from 10-15 mg a day, or more.

[0200]

In some embodiments the treatment period is at least 1 day, at least 2 days, at least 3 days, at least 4 days, at least 5 days, at least 6 days, at least 1 week, at least 2 weeks, at least 3 weeks, at least 4 weeks, at least 1 month, at least 2 months, at least 3 months, at least 4 months, at least 5 months, at least 6 months, or at least 1 year. In some embodiments the treatment period is from 1 day to 1 week, from 1 week to 4 weeks, from 1 month, to 3 months, from 3 months to 6 months, from 6 months to 1 year, or for over a year.

[0201]

In one embodiment, from 105and 1012microorganisms total may be administered to the subject in a given dosage form. In one mode, an effective amount may be provided in from 1 to 500 ml or from 1 to 500 grams of the bacterial composition having from 107to 1011bacteria per ml or per gram, or a capsule, tablet or suppository having from 1 mg to 1000 mg lyophilized powder having from 107to 1011bacteria. Those receiving acute treatment may receive higher doses than those who are receiving chronic administration (such as hospital workers or those admitted into long-term care facilities).

[0202]

Any of the preparations described herein may be administered once on a single occasion or on multiple occasions, such as once a day for several days or more than once a day on the day of administration (including twice daily, three times daily, or up to five times daily). Or the preparation may be administered intermittently according to a set schedule, e.g., once weekly, once monthly, or when the subject relapses from the primary illness. In another embodiment, the preparation may be administered on a long-term basis to individuals who are at risk for infection with or who may be carriers of these pathogens, including individuals who will have an invasive medical procedure (such as surgery), who will be hospitalized, who live in a long-term care or rehabilitation facility, who are exposed to pathogens by virtue of their profession (livestock and animal processing workers), or who could be carriers of pathogens (including hospital workers such as physicians, nurses, and other health care professionals).

Subject Selection

[0203]

Particular bacterial compositions may be selected for individual subjects or for subjects with particular profiles. For example, 16S sequencing may be performed for a given subject to identify the bacteria present in his or her microbiota. The sequencing may either profile the subject's entire microbiome using 16S sequencing (to the family, genera, or species level), a portion of the subject's microbiome using 16S sequencing, or it may be used to detect the presence or absence of specific candidate bacteria that are biomarkers for health or a particular disease state, such as markers of multi-drug resistant organisms or specific genera of concern such as Escherichia. Based on the biomarker data, a particular composition may be selected for administration to a subject to supplement or complement a subject's microbiota in order to restore health or treat or prevent disease. In another embodiment, subjects may be screened to determine the composition of their microbiota to determine the likelihood of successful treatment.

Combination Therapy

[0204]

The bacterial compositions may be administered with other agents in a combination therapy mode, including anti-microbial agents and prebiotics. Administration may be sequential, over a period of hours or days, or simultaneous.

[0205]

In one embodiment, the bacterial compositions are included in combination therapy with one or more anti-microbial agents, which include anti-bacterial agents, anti-fungal agents, anti-viral agents and anti-parasitic agents.

[0206]

Anti-bacterial agents include cephalosporin antibiotics (cephalexin, cefuroxime, cefadroxil, cefazolin, cephalothin, cefaclor, cefamandole, cefoxitin, cefprozil, and ceftobiprole); fluoroquinolone antibiotics (cipro, Levaquin, floxin, tequin, avelox, and norflox); tetracycline antibiotics (tetracycline, minocycline, oxytetracycline, and doxycycline); penicillin antibiotics (amoxicillin, ampicillin, penicillin V, dicloxacillin, carbenicillin, vancomycin, and methicillin); and carbapenem antibiotics (ertapenem, doripenem, imipenem/cilastatin, and meropenem).

[0207]

Anti-viral agents include Abacavir, Acyclovir, Adefovir, Amprenavir, Atazanavir, Cidofovir, Darunavir, Delavirdine, Didanosine, Docosanol, Efavirenz, Elvitegravir, Emtricitabine, Enfuvirtide, Etravirine, Famciclovir, Foscarnet, Fomivirsen, Ganciclovir, Indinavir, Idoxuridine, Lamivudine, Lopinavir Maraviroc, MK-2048, Nelfinavir, Nevirapine, Penciclovir, Raltegravir, Rilpivirine, Ritonavir, Saquinavir, Stavudine, Tenofovir Trifluridine, Valaciclovir, Valganciclovir, Vidarabine, Ibacitabine, Amantadine, Oseltamivir, Rimantidine, Tipranavir, Zalcitabine, Zanamivir and Zidovudine.

[0208]

Examples of antifungal compounds include, but are not limited to polyene antifungals such as natamycin, rimocidin, filipin, nystatin, amphotericin B, candicin, and hamycin; imidazole antifungals such as miconazole, ketoconazole, clotrimazole, econazole, omoconazole, bifonazole, butoconazole, fenticonazole, isoconazole, oxiconazole, sertaconazole, sulconazole, and tioconazole; triazole antifungals such as fluconazole, itraconazole, isavuconazole, ravuconazole, posaconazole, voriconazole, terconazole, and albaconazole; thiazole antifungals such as abafungin; allylamine antifungals such as terbinafine, naftifine, and butenafine; and echinocandin antifungals such as anidulafungin, caspofungin, and micafungin. Other compounds that have antifungal properties include, but are not limited to polygodial, benzoic acid, ciclopirox, tolnaftate, undecylenic acid, flucytosine or 5-fluorocytosine, griseofulvin, and haloprogin.

[0209]

In one embodiment, the bacterial compositions are included in combination therapy with one or more corticosteroids, mesalazine, mesalamine, sulfasalazine, sulfasalazine derivatives, immunosuppressive drugs, cyclosporin A, mercaptopurine, azathiopurine, prednisone, methotrexate, antihistamines, glucocorticoids, epinephrine, theophylline, cromolyn sodium, anti-leukotrienes, anti-cholinergic drugs for rhinitis, anti-cholinergic decongestants, mast-cell stabilizers, monoclonal anti-IgE antibodies, vaccines, and combinations thereof.

[0210]

A prebiotic is a selectively fermented ingredient that allows specific changes, both in the composition and/or activity in the gastrointestinal microbiota that confers benefits upon host well being and health. Prebiotics may include complex carbohydrates, amino acids, peptides, or other essential nutritional components for the survival of the bacterial composition. Prebiotics include, but are not limited to, amino acids, biotin, fructooligosaccharide, galactooligosaccharides, inulin, lactulose, mannan oligosaccharides, oligofructose-enriched inulin, oligofructose, oligodextrose, tagatose, trans-galactooligosaccharide, and xylooligosaccharides.

Methods for Characterization of Bacterial Compositions

[0211]

In certain embodiments, provided are methods for testing certain characteristics of bacterial compositions. For example, the sensitivity of bacterial compositions to certain environmental variables is determined, e.g., in order to select for particular desirable characteristics in a given composition, formulation and/or use. For example, the constituents in the bacterial composition may be tested for pH resistance, bile acid resistance, and/or antibiotic sensitivity, either individually on a constituent-by-constituent basis or collectively as a bacterial composition comprised of multiple bacterial constituents (collectively referred to in this section as bacterial composition).

[0212]

pH Sensitivity Testing. If a bacterial composition will be administered other than to the colon or rectum (i.e., through, for example, but not limited to, an oral route), optionally testing for pH resistance enhances the selection of bacterial compositions that will survive at the highest yield possible through the varying pH environments of the distinct regions of the GI tract. Understanding how the bacterial compositions react to the pH of the GI tract also assists in formulation, so that the number of bacteria in a dosage form can be increased if beneficial and/or so that the composition may be administered in an enteric-coated capsule or tablet or with a buffering or protective composition. As the pH of the stomach can drop to a pH of 1 to 2 after a high-protein meal for a short time before physiological mechanisms adjust it to a pH of 3 to 4 and often resides at a resting pH of 4 to 5, and as the pH of the small intestine can range from a pH of 6 to 7.4, bacterial compositions can be prepared that survive these varying pH ranges (specifically wherein at least 1%, 5%, 10%, 15%, 20%, 25%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or as much as 100% of the bacteria can survive gut transit times through various pH ranges). This may be tested by exposing the bacterial composition to varying pH ranges for the expected gut transit times through those pH ranges. Therefore, as a nonlimiting example only, 18-hour cultures of bacterial compositions may be grown in standard media, such as gut microbiota medium (“GMM”, see Goodman et al., Extensive personal human gut microbiota culture collections characterized and manipulated in gnotobiotic mice, PNAS 108(15):6252-6257 (2011)) or another animal-products-free medium, with the addition of pH adjusting agents for a pH of 1 to 2 for 30 minutes, a pH of 3 to 4 for 1 hour, a pH of 4 to 5 for 1 to 2 hours, and a pH of 6 to 7.4 for 2.5 to 3 hours. An alternative method for testing stability to acid is described in U.S. Pat. No. 4,839,281. Survival of bacteria may be determined by culturing the bacteria and counting colonies on appropriate selective or non-selective media.

[0213]

Bile Acid Sensitivity Testing. Additionally, in some embodiments, testing for bile-acid resistance enhances the selection of bacterial compositions that will survive exposures to bile acid during transit through the GI tract. Bile acids are secreted into the small intestine and can, like pH, affect the survival of bacterial compositions. This may be tested by exposing the bacterial compositions to bile acids for the expected gut exposure time to bile acids. For example, bile acid solutions may be prepared at desired concentrations using 0.05 mM Tris at pH 9 as the solvent. After the bile acid is dissolved, the pH of the solution may be adjusted to 7.2 with 10% HCl. Bacterial compositions may be cultured in 2.2 ml of a bile acid composition mimicking the concentration and type of bile acids in the subject, 1.0 ml of 10% sterile-filtered stool media and 0.1 ml of an 18-hour culture of the given strain of bacteria. Incubations may be conducted for from 2.5 to 3 hours or longer. An alternative method for testing stability to bile acid is described in U.S. Pat. No. 4,839,281. Survival of bacteria may be determined by culturing the bacteria and counting colonies on appropriate selective or non-selective media.

[0214]

Antibiotic Sensitivity Testing. As a further optional sensitivity test, bacterial compositions may be tested for sensitivity to antibiotics. In one embodiment, bacterial compositions may be chosen so that the bacterial constituents are sensitive to antibiotics such that if necessary they can be eliminated or substantially reduced from the subject's gastrointestinal tract by at least one antibiotic targeting the bacterial composition.

[0215]

Adherence to Gastrointestinal Cells. The bacterial compositions may optionally be tested for the ability to adhere to gastrointestinal cells. A method for testing adherence to gastrointestinal cells is described in U.S. Pat. No. 4,839,281.

[0216]

The specification is most thoroughly understood in light of the teachings of the references cited within the specification. The embodiments within the specification provide an illustration of embodiments and should not be construed to limit the scope. The skilled artisan readily recognizes that many other embodiments are encompassed. All publications and patents cited in this disclosure are incorporated by reference in their entirety. To the extent the material incorporated by reference contradicts or is inconsistent with this specification, the specification will supersede any such material. The citation of any references herein is not an admission that such references are prior art.

[0217]

Unless otherwise indicated, all numbers expressing quantities of ingredients, reaction conditions, and so forth used in the specification, including claims, are to be understood as being modified in all instances by the term “about.” Accordingly, unless otherwise indicated to the contrary, the numerical parameters are approximations and may vary depending upon the desired properties sought to be obtained. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should be construed in light of the number of significant digits and ordinary rounding approaches.

[0218]

Unless otherwise indicated, the term “at least” preceding a series of elements is to be understood to refer to every element in the series.

EXAMPLES

[0219]

Below are examples of specific embodiments for carrying out the present invention. The examples are offered for illustrative purposes only, and are not intended to limit the scope of the present invention in any way. Efforts have been made to ensure accuracy with respect to numbers used (e.g., amounts, temperatures, etc.), but some experimental error and deviation should, of course, be allowed for. Examples of the techniques and protocols described herein with regard to therapeutic compositions can be found in, e.g., Remington's Pharmaceutical Sciences, 16th edition, Osol, A. (ed), 1980.

Example 1. Construction of Binary Pairs in a High-Throughput 96-Well Format/Plate Preparation

[0220]

Pairs of bacteria were used to identify binary pairs useful for inhibition of C. difficile. To prepare plates for the high-throughput screening assay of binary pairs, vials of −80° C. glycerol stock bacterial banks were thawed and diluted to 1e8 CFU/mL. Each bacterial strain was then diluted 10× (to a final concentration of 1e7 CFU/mL of each strain) into 200 uL of PBS+15% glycerol in the wells of a 96-well plate. Plates were then frozen at −80° C. When needed, plates were removed from −80° C. and thawed at room temperature under anaerobic conditions for testing in a CivSim assay with C. difficile.

Example 2. Construction of Ternary Combinations in a High-Throughput 96-Well Format

[0221]

Triplet combinations of bacteria were used to identify ternary combinations useful for inhibition of C. difficile. To prepare plates for high-throughput screening of ternary combinations, vials of −80° C. glycerol bacterial stock banks were thawed and diluted to 1e8 CFU/mL. Each bacterial strain was then diluted 10× (to a final concentration of 1e7 CFU/mL of each strain) into 200 uL of PBS+15% glycerol in the wells of a 96-well plate. Plates were then frozen at −80° C. When needed for the assay, plates were removed from −80° C. and thawed at room temperature under anaerobic conditions when testing in a CivSim assay with Clostridium difficile.

Example 3. Construction of a CivSim Assay to Screen for Bacterial Compositions Inhibitory to the Growth of Clostridium difficile

[0222]

A competition assay (CivSim assay) was used to identify compositions that can inhibit the growth of C. difficile. Briefly, an overnight culture of C. difficile was grown under anaerobic conditions in SweetB-FosIn for the growth of C. difficile. In some cases, other suitable media can be used. SweetB-FosIn is a version of BHI (Remel R452472) supplemented with several components as follows: Components per liter: 37 g BHI powder (Remel R452472), supplemented with 5 g yeast extract UF (Difco 210929), 1 g cysteine-HCl (Spectrum C1473), 1 g cellobiose (Sigma C7252), 1 g maltose (Spectrum MA155), 1.5 ml hemin solution, 1 g soluble starch (Sigma-Aldrich S9765), 1 g fructooligosaccharides/inulin (Jarrow Formulas 103025) and 50 mL 1 M MOPS/KOH pH 7. To prepare the hemin solution, hemin (Sigma 51280) was dissolved in 0.1 M NaOH to make a 10 mg/mL stock.

[0223]

After 24 hours of growth the culture was diluted 100,000 fold into a complex medium SweetB-FosIn. In some embodiments a medium is selected for use in which all desired organisms can grow, i.e., which is suitable for the growth of a wide variety of anaerobic, and, in some cases facultative anaerobic bacterial species. The diluted C. difficile mixture was then aliquoted to wells of a 96-well plate (180 uL to each well). 20 uL of a bacterial composition was then added to each well at a final concentration of 1e6 CFU/mL of each or two or three species. Alternatively the assay can be tested with binary pairs at different initial concentrations (1e9 CFU/mL, 1e8 CFU/mL, 1e7 CFU/mL, 1e5 CFU/mL, 1e4 CFU/mL, 1e3 CFU/mL, 1e2 CFU/mL). Control wells only inoculated with C. difficile were included for a comparison to the growth of C. difficile without inhibition. Additional wells were used for controls that either inhibit or do not inhibit the growth of C. difficile. One example of a positive control that inhibits growth was a combination of Blautia producta, Clostridium bifermentans and Escherichia coli. One example of a control that shows reduced inhibition of C. difficile growth as a combination of Bacteroides thetaiotaomicron, Bacteroides ovatus and Bacteroides vulgatus. Plates were wrapped with parafilm and incubated for 24 hours at 37° C. under anaerobic conditions. After 24 hours, the wells containing C. difficile alone were serially diluted and plated to determine titer. The 96-well plate was then frozen at −80 C before quantifying C. difficile by qPCR assay (see Example 6). Experimental combinations that inhibit C. difficile in this assay are useful in compositions for prevention or treatment of C. difficile infection.

Example 4. Construction of a CivSim Assay to Screen for Bacterial Compositions that Produce Diffusible Products Inhibitory to the Growth of Clostridium difficile Using a Filter Insert

[0224]

To identify bacterial compositions that can produce diffusible products that inhibit C. difficile a modified CivSim assay was designed. In this experiment, the CivSim assay described above was modified by using a 0.22 uM filter insert (Millipore™ MultiScreen™ 96-Well Assay Plates—Item MAGVS2210) in 96-well format to physically separate C. difficile from the bacterial compositions. The C. difficile was aliquoted into the 96-well plate while the bacterial compositions were aliquoted into media on the filter overlay. The nutrient/growth medium is in contact on both sides of the 0.22 uM filter, allowing exchange of nutrients, small molecules and many macromolecules (e.g., bacteriocins, cell-surface proteins, or polysaccharides) by diffusion. In this embodiment, after a 24 hour incubation, the filter insert containing the bacterial compositions was removed. The plate containing C. difficile was then transferred to a 96-well plate reader suitable for measuring optical density (OD) at 600 nm. The growth of C. difficile in the presence of different bacterial compositions was compared based on the OD measurement. The results of these experiments demonstrated that compositions that can inhibit C. difficile when grown in shared medium under conditions that do not permit contact between the bacteria in the composition and C. difficile can be identified. Such compositions are candidates for producing diffusible products that are effective for treating C. difficile infection and can serve as part of a process for isolating such diffusible products, e.g., for use in treating infection.

Example 5. Construction of a CivSim Assay to Screen for Bacterial Compositions Inhibitory to the Growth of Clostridium difficile Using Clostridium difficile Selective Media for Quantification

[0225]

The CivSim assay described above can be modified to determine final C. difficile titer by serially diluting and plating to C. difficile selective media (Bloedt et al. 2009) such as CCFA (cycloserine cefoxitin fructose agar, Anaerobe Systems), CDSA (Clostridium difficile selective agar, which is cycloserine cefoxitin mannitol agar, Becton Dickinson).

Example 6. Quantification of C. difficile Using Quantitative PCR (qPCR)

[0226]

A. Standard Curve Preparation

[0227]

To quantitate C. difficile, a standard curve was generated from a well on each assay plate in, e.g., a CivSim assay, containing only pathogenic C. difficile grown in SweetB+FosIn media as provided herein and quantified by selective spot plating. Serial dilutions of the culture were performed in sterile phosphate-buffered saline. Genomic DNA was extracted from the standard curve samples along with the other wells.

[0228]

B. Genomic DNA Extraction

[0229]

Genomic DNA was extracted from 5 μl of each sample using a dilution, freeze/thaw, and heat lysis protocol. 5 μL of thawed samples were added to 45 μL of UltraPure water (Life Technologies, Carlsbad, CA) and mixed by pipetting. The plates with diluted samples were frozen at −20° C. until use for qPCR which included a heated lysis step prior to amplification. Alternatively the genomic DNA could be isolated using the Mo Bio Powersoil®-htp 96 Well Soil DNA Isolation Kit (Mo Bio Laboratories, Carlsbad, CA), Mo Bio Powersoil® DNA Isolation Kit (Mo Bio Laboratories, Carlsbad, CA), or the QIAamp DNA Stool Mini Kit (QIAGEN, Valencia, CA) according to the manufacturer's instructions.

[0230]

C. qPCR Composition and Conditions

[0231]

The qPCR reaction mixture contained 1× SsoAdvanced Universal Probes Supermix, 900 nM of Wr-tcdB-F primer (AGCAGTTGAATATAGTGGTTTAGTTAGAGTTG (SEQ ID NO: 2033), IDT, Coralville, IA), 900 nM of Wr-tcdB-R primer (CATGCTTTTTTAGTTTCTGGATTGAA (SEQ ID NO: 2034), IDT, Coralville, IA), 250 nM of Wr-tcdB-P probe (6FAM-CATCCAGTCTCAATTGTATATGTTTCTCCA (SEQ ID NO: 2035)-MGB, Life Technologies, Grand Island, NY), and Molecular Biology Grade Water (Mo Bio Laboratories, Carlsbad, CA) to 18 μl (Primers adapted from: Wroblewski, D. et al., Rapid Molecular Characterization of Clostridium difficile and Assessment of Populations of C. difficile in Stool Specimens, Journal of Clinical Microbiology 47:2142-2148 (2009)). This reaction mixture was aliquoted to wells of a Hard-shell Low-Profile Thin Wall 96-well Skirted PCR Plate (BioRad, Hercules, CA). To this reaction mixture, 2 μl of diluted, frozen, and thawed samples were added and the plate sealed with a Microseal ‘B’ Adhesive Seal (BioRad, Hercules, CA). The qPCR was performed on a BioRad C1000™ Thermal Cycler equipped with a CFX96™ Real-Time System (BioRad, Hercules, CA). The thermocycling conditions were 95° C. for 15 minutes followed by 45 cycles of 95° C. for 5 seconds, 60° C. for 30 seconds, and fluorescent readings of the FAM channel. Alternatively, the qPCR could be performed with other standard methods known to those skilled in the art.

[0232]

D. Data Analysis

[0233]

The Cq value for each well on the FAM channel was determined by the CFX Manager™ 3.0 software. The log10(cfu/mL) of C. difficile each experimental sample was calculated by inputting a given sample's Cq value into a linear regression model generated from the standard curve comparing the Cq values of the standard curve wells to the known log10(cfu/mL) of those samples. The log inhibition was calculated for each sample by subtracting the log10(cfu/mL) of C. difficile in the sample from the log10(cfu/mL) of C. difficile in the sample on each assay plate used for the generation of the standard curve that has no additional bacteria added. The mean log inhibition was calculated for all replicates for each composition.

[0234]

A histogram of the range and standard deviation of each composition was plotted. Ranges or standard deviations of the log inhibitions that were distinct from the overall distribution were examined as possible outliers. If the removal of a single log inhibition datum from one of the binary pairs that were identified in the histograms would bring the range or standard deviation in line with those from the majority of the samples, that datum was removed as an outlier, and the mean log inhibition was recalculated.

[0235]

The pooled variance of all samples evaluated in the assay was estimated as the average of the sample variances weighted by the sample's degrees of freedom. The pooled standard error was then calculated as the square root of the pooled variance divided by the square root of the number of samples. Confidence intervals for the null hypothesis were determined by multiplying the pooled standard error to the z score corresponding to a given percentage threshold. Mean log inhibitions outside the confidence interval were considered to be inhibitory if positive or stimulatory if negative with the percent confidence corresponding to the interval used. Samples with mean log inhibition greater than the 99% confidence interval (C.I) of the null hypothesis are reported as ++++, those with a 95%<C.I.<99% as +++, those with a 90%<C.I.<95% as ++, those with a 80%<C.I.<90% as + while samples with mean log inhibition less than the 99% confidence interval (C.I) of the null hypothesis are reported as −−−−, those with a 95%<C.I.<99% as −−−, those with a 90%<C.I.<95% as −−, those with a 80%<C.I.<90% as −.

Example 7. Inhibition of C. difficile Growth by Bacterial Compositions

[0236]

Using methods described herein, binary pairs were identified that can inhibit C. difficile (see Table 4). 622 of 989 combinations showed inhibition with a confidence interval >80%; 545 of 989 with a C.I.>90%; 507 of 989 with a C.I.>95%; 430 of 989 with a C.I. of >99%. Non-limiting but exemplary binary pairs include those with mean log reduction greater than 0.366, e.g., Allistipes shahii paired with Blautia producta, Clostridium hathaweyi, or Collinsella aerofaciens, or Clostridium mayombei paired with C. innocuum, C. tertium, Collinsella aerofaciens, or any of the other 424 combinations shown in Table 4. Equally important, the CivSim assay describes binary pairs that do not effectively inhibit C. difficile. 188 of 989 combinations promote growth with >80% confidence; 52 of 989 show a lack of inhibition with >90% confidence; 22 of 989 show a lack of inhibition with >95% confidence; 3 of 989, including B. producta combined with Coprococcus catus, Alistipes shahii combined with Dorea formicigenerans, and Eubacterium rectale combined with Roseburia intestinalis, show a lack of inhibition with >99% confidence. 249 of 989 combinations are neutral in the assay, meaning they neither promote nor inhibit C. difficile growth to the limit of measurement.

[0237]

Ternary combinations with mean log inhibition greater than the 99% confidence interval (C.I) of the null hypothesis are reported as ++++, those with a 95%<C.I.<99% as +++, those with a 90%<C.I.<95% as ++, those with a 80%<C.I.<90% as + while samples with mean log inhibition less than the 99% confidence interval (C.I) of the null hypothesis are reported as −−−−, those with a 95%<C.I.<99% as −−, those with a 90%<C.I.<95% as −−, those with a 80%<C.I.<90% as −.

[0238]

The CivSim assay results demonstrate that many ternary combinations can inhibit C. difficile (Table 4). 516 of 632 ternary combinations show inhibition with a confidence interval >80%; 507 of 632 with a C.I.>90%; 496 of 632 with a C.I.>95%; 469 of 632 with a C.I. of >99%. Non-limiting but exemplary ternary combinations include those with a score of ++++, such as Colinsella aerofaciens, Coprococcus comes, and Blautia producta. The CivSim assay also describes ternary combinations that do not effectively inhibit C. difficile. 76 of 632 combinations promote growth with >80% confidence; 67 of 632 promote growth with >90% confidence; 61 of 632, promote growth with >95% confidence; and 49 of 632 combinations such as, but not limited to, Clostridium orbiscendens, Coprococcus comes, and Faecalibacterium prausnitzii promote growth with >99% confidence. 40 of 632 combinations are neutral in the assay, meaning they neither promote nor inhibit C. difficile growth to the limit of confidence.

[0239]

Of the ternary combinations that inhibit C. difficile with >99% confidence, those that strongly inhibit C. difficile can be identified by comparing their mean log inhibition to the distribution of all results for all ternary combinations tested. Those above the 75th percentile can be considered to strongly inhibit C. difficile. Alternatively, those above the 50th, 60th, 70th, 80th, 90th, 95th, or 99th percentile can be considered to strongly inhibit C. difficile. Non-limiting but exemplary ternary combinations above the 75th percentile include Blautia producta, Clostridium tertium, and Ruminococcus gnavus and Eubacterium rectale, Clostridium mayombei, and Ruminococcus bromii.

[0240]

In addition to the demonstration that many binary and ternary combinations inhibit C. difficile, the CivSim demonstrates that many of these combinations synergistically inhibit C. difficile. Exemplary ternary combinations that demonstrate synergy in the inhibition of C. difficile growth include, but are not limited to, Blautia producta, Clostridium innocuum, Clostridium orbiscendens and Colinsella aerofaciens, Blautia producta, and Eubacterium rectale. Additional useful combinations are provided throughout, e.g., in Tables 4a, 4b, and 14-21.

[0241]

Two higher-order bacterial compositions were tested in the CivSim assay for inhibition of C. difficile. N1962 (a.k.a. S030 and N1952), a 15 member composition, inhibited C. difficile by an average of 2.73 log 10 CFU/mL with a standard deviation of 0.58 log 10 CFU/mL while N1984 (a.k.a. S075), a 9 member composition, inhibited C. difficile by an average of 1.42 log 10 CFU/mL with a standard deviation of 0.45 log 10 CFU/mL.

[0242]

These data collectively demonstrate that the CivSim assay can be used to identify compositions containing multiple species that are effective at inhibiting growth, that promote growth, or do not have an effect on growth of an organism, e.g., a pathogenic organism such as C. difficile.

Example 8. In Vivo Validation of Ternary Combinations' Efficacy in a Murine Model of Clostridium difficile Infection

[0243]

To test the therapeutic potential of a bacterial composition such as but not limited to a spore population, a prophylactic mouse model of C. difficile infection was used (model based on Chen et al. 2008. A mouse model of Clostridium difficile-associated disease. Gastroenterology 135: 1984-1992). Briefly, two cages of five mice each were tested for each arm of the experiment. All mice received an antibiotic cocktail consisting of 10% glucose, kanamycin (0.5 mg/ml), gentamicin (0.044 mg/ml), colistin (1062.5 U/ml), metronidazole (0.269 mg/ml), ciprofloxacin (0.156 mg/ml), ampicillin (0.1 mg/ml) and vancomycin (0.056 mg/ml) in their drinking water on days −14 through −5 and a dose of 10 mg/kg clindamycin by oral gavage on day −3. On day −1, test compositions were spun for 5 minutes at 12,100 rcf, their supernatants' removed, and the remaining pellets were resuspended in sterile PBS, prereduced if bacterial composition was not in spore form, and delivered via oral gavage. On day 0 the mice were challenged by administration of approximately 4.5 log 10 cfu of C. difficile (ATCC 43255) or sterile PBS (for the naive arm) via oral gavage. Mortality, weight and clinical scoring of C. difficile symptoms based upon a 0-4 scale by combining scores for appearance (0-2 points based on normal, hunched, piloerection, or lethargic), and clinical signs (0-2 points based on normal, wet tail, cold-to-the-touch, or isolation from other animals), with a score of 4 in the case of death, were assessed every day from day −2 through day 6. Mean minimum weight relative to day −1 and mean maximum clinical score as well as average cumulative mortality were calculated. Reduced mortality, increased mean minimum weight relative to day −1, and reduced mean maximum clinical score with death assigned to a score of 4 relative to the vehicle control were used to assess the ability of the test composition to inhibit infection by C. difficile.

[0244]

Ternary combinations were tested in the murine model described above at 1e9 CFU/mL per strain. The results are shown in Table 5. The data demonstrate that the CivSim assay results are highly predictive of the ability of a combination to inhibit weight loss in C. difficile infection. Weight loss in this model is generally considered to be indicative of disease.

[0245]

In one embodiment, compositions to screen for efficacy in vivo can be selected by ranking the compositions based on a functional metric such as but not limited to in vitro growth inhibition scores; compositions that are ranked ≥ the 75th percentile can be considered to strongly inhibit growth and be selected for in vivo validation of the functional phenotype. In other embodiments, compositions above the 50th, 60th, 70th, 80th, 90th, 95th, or 99th percentile can be considered to be the optimal candidates. In another embodiment, combinations with mean log inhibition greater than the 99% confidence interval (C.I) of the null hypothesis are selected. In other embodiments, compositions greater than the 95%, 90%, 85%, or 80% confidence interval (C.I.) are selected. In another embodiment, compositions demonstrated to have synergistic inhibition are selected (see Example 7) for testing in an in vivo model such as that described above.

[0246]

Compositions selected to screen for efficacy in in vivo models can also be selected using a combination of growth inhibition metrics. In a non-limiting example: (i) compositions are selected based on their log inhibition being greater than the 99% confidence interval (C.I.) of the null hypothesis, (ii) the selected subset of compositions is further selected to represent those that are ranked ≥ the 75th percentile in the distribution of all inhibition scores, (iii) the subset of (ii) is then further selected based on compositions that demonstrate synergistic inhibition. In some embodiments, different confidence intervals (C.I.) and percentiles are used to create the composition subsets, e.g., see Table 4b.

[0247]

Of the twelve exemplary ternary combinations selected, all were demonstrated to inhibit C. difficile in the CivSim assay (see Example 6) with >99% confidence. Ten of the twelve compositions demonstrated a protective effect when compared to a vehicle control with respect to the Mean Minimum Relative Weight. All twelve compositions outperformed vehicle with respect to Mean Maximum Clinical Score while eleven of twelve compositions surpassed the vehicle control by Cumulative Mortality. A non-limiting, but exemplary ternary combination, Collinsella aerofaciens, Clostridium buytricum, and Ruminococcus gnavus, was protective against symptoms of C. difficile infection, producing a Mean Minimum Relative Weight of 0.96, a Mean Maximum Clinical Score of 0.2, and Cumulative Mortality of 0% compared to the vehicle control of 0.82, 2.6, and 30%, respectively. These results demonstrate that the in vitro CivSim assay can be used to identify compositions that are protective in an in vivo murine model. This is surprising given the inherent dynamic nature of in vivo biological systems and the inherent simplification of the in vitro assays; it would not be expected that there is a direct correlation of in vitro in in vivo measures of inhibition and efficacy. This is in part because of the complexity of the in vivo system into which a composition is administered for treatment in which it might have been expected that confounding factors would obscure or affect the ability of a composition deemed effective in vitro to be effective in vivo.

Example 9. Construction of a CivSim Assay to Screen for Bacterial Compositions Inhibitory to the Growth of Vancomycin-Resistant Enterococcus (VRE) Using Vancomycin-Resistant Enterococcus Selective Medium for Quantification and Composition Screening

[0248]

To determine the ability of a composition to compete with a pathogenic bacterium, e.g., vancomycin-resistant Enterococcus, a competition assay was developed. In these experiments, an overnight culture of a vancomycin-resistant strain of Enterococcus faecium was grown anaerobically in SweetB-FosIn for 24 hours. A glycerol stock of a bacterial composition was thawed from −80° C. and diluted to 1e6 CFU/mL per strain in SweetB-FosIn in the appropriate wells of a 96-well plate. The plate was incubated anaerobically at 37° C. for 1 hour to allow the previously frozen bacteria to revive. After the 1 hour initial incubation, VRE was inoculated into appropriate wells at target concentrations of 1e2 or 1e3 CFU/mL. Wells were also inoculated with VRE alone, without a bacterial composition. The plate was incubated anaerobically at 37° C. for 24 hours. Aliquots were removed at 15 hours and 24 hours and the VRE titers determined. At each time-point, well contents were serially diluted and plated to agar plates selective for VRE (Enterococcosel Agar+8 ug/mL vancomycin hydrochloride) (Enterococcosel Agar from BBL 212205, vancomycin hydrochloride from Sigma 94747). The selective plates were incubated aerobically at 37° C. for 24 hours before counting colonies to determine final titer of VRE in each well of the CivSim plate. Log Inhibition of VRE was determined by subtracting the final titer of a competition well from the final titer of a well containing VRE alone. Multiple ratios of the starting concentrations of VRE and bacterial compositions were tested to optimize for conditions resulting in the greatest signal. A competition time of 15 hours, a starting concentration of VRE at 1e2 CFU/mL and a starting concentration of N1962 (a.k.a. S030 and N1952) at 1e6 CFU/mL showed the greatest inhibition of growth compared to control.

[0249]

Using the conditions described above, one 15-member and 44 heterotrimeric bacterial compositions were tested in the assay, the results of which are provided in Tables 4 and 6. Of the 44 heterotrimeric compositions tested, 43 inhibited VRE with >80% confidence, 41 inhibited VRE with >95% confidence, and 39 inhibited VRE with >99% confidence. One ternary composition tested did not demonstrate inhibition or induction with >80% confidence.

[0250]

Of the ternary combinations that inhibit VRE with >99% confidence, those that strongly inhibit VRE can be identified by comparing their mean log inhibition to the distribution of all results for all ternary combinations tested. Those above the 75th percentile can be considered to strongly inhibit VRE. Alternatively, those above the 50th, 60th, 70th, 80th, 90th, 95th, or 99th percentile can be considered to strongly inhibit VRE. Non-limiting but exemplary ternary combinations that inhibit VRE with >99% confidence and above the 75th percentile include Blautia producta, Clostridium innocuum, and Ruminococcus gnavus and Blautia producta, Clostridium butyricum, and Clostridium hylemonae.

[0251]

The 15-member composition, N1962 (a.k.a. S030 and N1952), inhibited VRE by at least 0.7 log 10 CFU/mL across all of the conditions tested and demonstrating inhibition of 5.7 log 10 CFU/mL in the optimal conditions.

[0252]

These data demonstrate methods of identifying compositions useful for prophylaxis and treatment of VRE infection.

Example 10. Construction of a CivSim Assay to Screen for Bacterial Compositions Inhibitory to the Growth of Klebsiella pneumoniae Using Klebsiella Selective Medium for Quantification

[0253]

To determine the ability of a composition to compete with a pathogenic bacterium, e.g., Klebsiella pneumoniae, a competition assay was developed. In these experiments, an overnight culture of a vancomycin-resistant strain of Klebsiella pneumoniae was grown anaerobically in SweetB-FosIn for 24 hours. A glycerol stock of a bacterial composition (N1962) was thawed from −80° C. and diluted to 1e6 CFU/mL per strain in SweetB-FosIn in the appropriate wells of a 96-well plate. The plate was incubated anaerobically at 37° C. for 1 hour to allow the previously frozen bacteria to revive. After the 1 hour initial incubation, K. pneumoniae was inoculated into appropriate wells at target concentrations of 1e2 or 1e3 CFU/mL. Wells were also inoculated with K. pneumoniae alone, without a bacterial composition. The plate was incubated anaerobically at 37° C. for 24 hours. Aliquots were removed at 15 hours and 24 hours to titer for the final concentration of K. pneumoniae at the end of competition. At each time-point, wells were serially diluted and plated to agar plates selective for K. pneumoniae (MacConkey Lactose Agar, Teknova M0149). The selective plates were incubated aerobically at 37° C. for 24 hours before counting colonies to determine final titer of K. pneumoniae in each well of the CivSim plate. Log Inhibition of K. pneumoniae was determined by subtracting the final titer of a competition well from the final titer of a well containing K. pneumoniae alone. Multiple ratios of the starting concentrations of K. pneumoniae and bacterial compositions were tested to optimize for conditions giving the greatest signal. The results of the assay are provided in Table 7. A competition time of 15 hours, a starting concentration of K. pneumoniae at 1e2 CFU/mL and a starting concentration of N1962 (a.k.a. S030 and N1952) at 1e6 CFU/mL showed the greatest inhibition of growth compared to control. N1962 (a.k.a. S030 and N1952) inhibited K. pneumoniae by 0.1-4.2 log 10 CFU/mL across the conditions tested.

Example 11. Construction of a CivSim Assay to Screen for Bacterial Compositions Inhibitory to the Growth of Morganella morganii Using Morganella Selective Media for Quantification

[0254]

To determine the ability of a composition to compete with a pathogenic bacterium, e.g., Morganella morganii, a competition assay was developed. In this experiment, an overnight culture of a vancomycin-resistant strain of Morganella morganii was grown anaerobically in SweetB-FosIn for 24 hours. A glycerol stock of a bacterial composition, N1962, was thawed from −80° C. and diluted to 1e6 CFU/mL per strain in SweetB-FosIn in the appropriate wells of a 96-well plate. The plate was incubated anaerobically at 37° C. for 1 hour to allow the previously frozen bacteria to revive. After the 1 hour initial incubation, M. morganii was inoculated into appropriate wells at target concentrations of 1e2 or 1e3 CFU/mL. Wells were also inoculated with M. morganii alone, without a bacterial composition. The plate was incubated anaerobically at 37° C. for 24 hours. Aliquots were removed at 15 hours and 24 hours to titer for the final concentration of M. morganii at the end of competition. At each time-point, wells were serially diluted and plated to agar plates selective for M. morganii (MacConkey Lactose Agar, Teknova M0149). The selective plates were incubated aerobically at 37° C. for 24 hours before counting colonies to determine final titer of M. morganii in each well of the CivSim plate. Log Inhibition of M. morganii was determined by subtracting the final titer of a competition well from the final titer of a well containing M. morganii alone. Multiple ratios of the starting concentrations of M. morganii and bacterial compositions were tested to optimize for conditions providing the greatest signal. A competition time of 15 hours, a starting concentration of M. morganii at 1e2 CFU/mL and a starting concentration of N1962 (a.k.a. S030 and N1952) at 1e6 CFU/mL showed the greatest inhibition of growth compared to control.

[0255]

A 15-member bacterial composition, N1962 (a.k.a. S030 and N1952), was tested in the assay, the results of which are provided in Table 8. N1962 (a.k.a. S030 and N1952) inhibited M. morganii by 1.4 to 5.8 log 10 CFU/mL across the conditions tested.

Example 12. Sequence-Based Genomic Characterization of Operational Taxonomic Units (OTU) and Functional Genes

[0256]

Method for Determining 16S rDNA Gene Sequence

[0257]

As described above, OTUs are defined either by full 16S sequencing of the rDNA gene, by sequencing of a specific hypervariable region of this gene (i.e., V1, V2, V3, V4, V5, V6, V7, V8, or V9), or by sequencing of any combination of hypervariable regions from this gene (e.g., V1-3 or V3-5). The bacterial 16S rDNA gene is approximately 1500 nucleotides in length and is used in reconstructing the evolutionary relationships and sequence similarity of one bacterial isolate to another using phylogenetic approaches. 16S sequences are used for phylogenetic reconstruction as they are in general highly conserved, but contain specific hypervariable regions that harbor sufficient nucleotide diversity to differentiate genera and species of most microbes. rDNA gene sequencing methods are applicable to both the analysis of non-enriched samples, but also for identification of microbes after enrichment steps that either enrich the microbes of interest from a microbial composition or a microbial sample and/or the nucleic acids that harbor the appropriate rDNA gene sequences as described below. For example, enrichment treatments prior to 16S rDNA gene characterization will increase the sensitivity of 16S as well as other molecular-based characterization nucleic acid purified from the microbes.

[0258]

Using techniques known in the art, to determine the full 16S sequence or the sequence of any hypervariable region of the 16S rDNA sequence, genomic DNA is extracted from a bacterial sample, the 16S rDNA (full region or specific hypervariable regions) amplified using polymerase chain reaction (PCR), the PCR products cleaned, and nucleotide sequences delineated to determine the genetic composition of 16S gene or subdomain of the gene. If full 16S sequencing is performed, the sequencing method used may be, but is not limited to, Sanger sequencing. If one or more hypervariable regions are used, such as the V4 region, the sequencing may be, but is not limited to being, performed using the Sanger method or using a next-generation sequencing method, such as an Illumina (sequencing by synthesis) method using barcoded primers allowing for multiplex reactions.

[0259]

Method for Determining 18S rDNA and ITS Gene Sequence

[0260]

Methods to assign and identify fungal OTUs by genetic means can be accomplished by analyzing 18S sequences and the internal transcribed spacer (ITS). The rRNA of fungi that forms the core of the ribosome is transcribed as a single gene and consists of the 8S, 5.8S and 28S regions with ITS4 and 5 between the 8S and 5.8S and 5.8S and 28S regions, respectively. These two intercistronic segments between the 18S and 5.8S and 5.8S and 28S regions are removed by splicing and contain significant variation between species for barcoding purposes as previously described (Schoch et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. PNAS USA 109:6241-6246. 2012). 18S rDNA is typically used for phylogenetic reconstruction however the ITS can serve this function as it is generally highly conserved but contains hypervariable regions that harbor sufficient nucleotide diversity to differentiate genera and species of most fungus.

[0261]

Using techniques known in the art, to determine the full 18S and ITS sequences or a smaller hypervariable section of these sequences, genomic DNA is extracted from a microbial sample, the rDNA amplified using polymerase chain reaction (PCR), the PCR products cleaned, and nucleotide sequences delineated to determine the genetic composition rDNA gene or subdomain of the gene. The sequencing method used may be, but is not limited to, Sanger sequencing or using a next-generation sequencing method, such as an Illumina (sequencing by synthesis) method using barcoded primers allowing for multiplex reactions.

[0262]

Method for Determining Other Marker Gene Sequences

[0263]

In addition to the 16S and 18S rDNA gene, an OTU can be defined by sequencing a selected set of genes or portions of genes that are known marker genes for a given species or taxonomic group of OTUs. These genes may alternatively be assayed using a PCR-based screening strategy. For example, various strains of pathogenic Escherichia coli can be distinguished using DNAs from the genes that encode heat-labile (LTI, LTIIa, and LTIIb) and heat-stable (STI and STII) toxins, verotoxin types 1, 2, and 2e (VT1, VT2, and VT2e, respectively), cytotoxic necrotizing factors (CNF1 and CNF2), attaching and effacing mechanisms (eaeA), enteroaggregative mechanisms (Eagg), and enteroinvasive mechanisms (Einv). The optimal genes to utilize for taxonomic assignment of OTUs by use of marker genes will be familiar to one with ordinary skill in the art of sequence based taxonomic identification.

[0264]

Genomic DNA Extraction

[0265]

Genomic DNA can be extracted from pure or enriched microbial cultures using a hot alkaline lysis method. For example, 1 μl of microbial culture is added to 9 μl of Lysis Buffer (25 mM NaOH, 0.2 mM EDTA) and the mixture is incubated at 95° C. for 30 minutes. Subsequently, the samples are cooled to 4° C. and neutralized by the addition of 10 μl of Neutralization Buffer (40 mM Tris-HCl) and then diluted 10-fold in Elution Buffer (10 mM Tris-HCl). Alternatively, genomic DNA is extracted from pure or enriched microbial cultures using commercially available kits such as the Mo Bio Ultraclean® Microbial DNA Isolation Kit (Mo Bio Laboratories, Carlsbad, CA) or by methods known to those skilled in the art. For fungal samples, DNA extraction can be performed by methods described previously (e.g., see US20120135127) for producing lysates from fungal fruiting bodies by mechanical grinding methods.

[0266]

Amplification of 16S Sequences for Downstream Sanger Sequencing

[0267]

To amplify bacterial 16S rDNA (e.g., in FIG. 2 and FIG. 3), 2 μl of extracted gDNA is added to a 20 μl final volume PCR reaction. For full-length 16 sequencing the PCR reaction also contains 1× HotMaster®Mix (5PRIME, Gaithersburg, MD), 250 nM of 27f (AGRGTTTGATCMTGGCTCAG (SEQ ID NO: 2036), IDT, Coralville, IA), and 250 nM of 1492r (TACGGYTACCTTGTTAYGACTT (SEQ ID NO: 2037), IDT, Coralville, IA), with PCR Water (Mo Bio Laboratories, Carlsbad, CA) for the balance of the volume.

[0268]

FIG. 2 shows the hypervariable regions mapped onto a 16s sequence and the sequence regions corresponding to these sequences on a sequence map. A schematic is shown of a 16S rDNA gene and the figure denotes the coordinates of hypervariable regions 1-9 (V1-V9), according to an embodiment of the invention. Coordinates of V1-V9 are 69-99, 137-242, 433-497, 576-682, 822-879, 986-1043, 1117-1173, 1243-1294, and 1435-1465 respectively, based on numbering using E. coli system of nomenclature defined by Brosius et al. (Complete nucleotide sequence of a 16S ribosomal RNA gene (16S rRNA) from Escherichia coli, PNAS USA 75(10):4801-4805. 1978).

[0269]

Alternatively, other universal bacterial primers or thermostable polymerases known to those skilled in the art are used. For example, primers are available to those skilled in the art for the sequencing of the “V1-V9 regions” of the 16S rDNA (e.g., FIG. 2). These regions refer to the first through ninth hypervariable regions of the 16S rDNA gene that are used for genetic typing of bacterial samples. These regions in bacteria are defined by nucleotides 69-99, 137-242, 433-497, 576-682, 822-879, 986-1043, 1117-1173, 1243-1294 and 1435-1465 respectively using numbering based on the E. coli system of nomenclature. See Brosius et al., 1978, supra. In some embodiments, at least one of the V1, V2, V3, V4, V5, V6, V7, V8, and V9 regions are used to characterize an OTU. In one embodiment, the V1, V2, and V3 regions are used to characterize an OTU. In another embodiment, the V3, V4, and V5 regions are used to characterize an OTU. In another embodiment, the V4 region is used to characterize an OTU. A person of ordinary skill in the art can identify the specific hypervariable regions of a candidate 16S rDNA (e.g., FIG. 2) by comparing the candidate sequence in question to the reference sequence (as in FIG. 3) and identifying the hypervariable regions based on similarity to the reference hypervariable regions. FIG. 3 highlights in bold the nucleotide sequences for each hypervariable region in the exemplary reference E. coli 16S sequence described by Brosius et al., supra.

[0270]

The PCR is typically performed on commercially available thermocyclers such as a BioRad MyCycler™ Thermal Cycler (BioRad, Hercules, CA). The reactions are run at 94° C. for 2 minutes followed by 30 cycles of 94° C. for 30 seconds, 51° C. for 30 seconds, and 68° C. for 1 minute 30 seconds, followed by a 7 minute extension at 72° C. and an indefinite hold at 4° C. Following PCR, gel electrophoresis of a portion of the reaction products is used to confirm successful amplification of a ˜1.5 kb product.

[0271]

To remove nucleotides and oligonucleotides from the PCR products, 2 μl of HT ExoSap-IT® (Affymetrix, Santa Clara, CA) is added to 5 μl of PCR product followed by a 15 minute incubation at 37° C. and then a 15 minute inactivation at 80° C.

[0272]

Amplification of 16S Sequences for Downstream Characterization By Massively Parallel Sequencing Technologies

[0273]

Amplification performed for downstream sequencing by short read technologies such as Illumina require amplification using primers known to those skilled in the art that additionally include a sequence-based barcoded tag. For example, to amplify the 16s hypervariable region V4 region of bacterial 16S rDNA, 2 μl of extracted gDNA is added to a 20 μl final volume PCR reaction. The PCR reaction also contains 1× HotMasterMix (5PRIME, Gaithersburg, MD), 200 nM of V4_515f_adapt (AATGATACGGCGACCACCGAGATCTACACTATGGTAATTGTGTGCCAGCMGCCGCGGT AA (SEQ ID NO: 2038), IDT, Coralville, IA), and 200 nM of barcoded 806rbc (CAAGCAGAAGACGGCATACGAGAT_12bpGolayBarcode_AGTCAGTCAGCCGGACTACHV GGGTWTCTAAT (SEQ ID NO: 2039), IDT, Coralville, IA), with PCR Water (Mo Bio Laboratories, Carlsbad, CA) for the balance of the volume. In the preceding primer sequences non-ACTG nucleotide designations refer to conventional degenerate codes as are used in the art. These primers incorporate barcoded adapters for Illumina sequencing by synthesis. Optionally, identical replicate, triplicate, or quadruplicate reactions may be performed. Alternatively other universal bacterial primers or thermostable polymerases known to those skilled in the art are used to obtain different amplification and sequencing error rates as well as results on alternative sequencing technologies.

[0274]

The PCR amplification is performed on commercially available thermocyclers such as a BioRad MyCycler™ Thermal Cycler (BioRad, Hercules, CA). The reactions are run at 94° C. for 3 minutes followed by 25 cycles of 94° C. for 45 seconds, 50° C. for 1 minute, and 72° C. for 1 minute 30 seconds, followed by a 10 minute extension at 72° C. and a indefinite hold at 4° C. Following PCR, gel electrophoresis of a portion of the reaction products is used to confirm successful amplification of a ˜1.5 kb product. PCR cleanup is performed as described above.

[0275]

Sanger Sequencing of Target Amplicons from Pure Homogeneous Samples

[0276]

To detect nucleic acids for each sample, two sequencing reactions are performed to generate a forward and reverse sequencing read. For full-length 16s sequencing primers 27f and 1492r are used. 40 ng of ExoSap-IT-cleaned PCR products are mixed with 25 pmol of sequencing primer and Mo Bio Molecular Biology Grade Water (Mo Bio Laboratories, Carlsbad, CA) to 15 μl total volume. This reaction is submitted to a commercial sequencing organization such as Genewiz (South Plainfield, NJ) for Sanger sequencing.

[0277]

Amplification of 18S and ITS regions for Downstream Sequencing

[0278]

To amplify the 18S or ITS regions, 2 μL fungal DNA were amplified in a final volume of 30 μL with 15 μL AmpliTaq Gold 360 Mastermix, PCR primers, and water. The forward and reverse primers for PCR of the ITS region are 5′-TCCTCCGCTTATTGATATGC-3′ (SEQ ID NO: 2040) and 5′-GGAAGTAAAAGTCGTAACAAGG-3′ (SEQ ID NO: 2041) and are added at 0.2 uM concentration each. The forward and reverse primers for the 18s region are 5′-GTAGTCATATGCTTGTCTC-3′ (SEQ ID NO: 2042) and 5′-CTTCCGTCAATTCCTTTAAG-3′ (SEQ ID NO: 2043) and are added at 0.4 uM concentration each. PCR is performed with the following protocol: 95° C. for 10 minutes, 35 cycles of 95° C. for 15 seconds, 52° C. for 30 seconds, 72° C. for 1.5 seconds; and finally 72° C. for 7 minutes followed by storage at 4° C. All forward primers contained the M13F-20 sequencing primer, and reverse primers included the M13R-27 sequencing primer. PCR products (3 μL) were enzymatically cleaned before cycle sequencing with 1 μL ExoSap-IT and 1 μL Tris EDTA and incubated at 37° C. for 20 minutes followed by 80° C. for 15 minutes. Cycle sequencing reactions contained 5 μL cleaned PCR product, 2 μL BigDye® Terminator v3.1 Ready Reaction Mix, 1 μL 5× Sequencing Buffer, 1.6 pmol of appropriate sequencing primers designed by one skilled in the art, and water in a final volume of 10 μL. The standard cycle sequencing protocol is 27 cycles of 10 seconds at 96° C., 5 seconds at 50° C., 4 minutes at 60° C., and hold at 4° C. Sequencing cleaning is performed with the BigDye XTerminator Purification Kit as recommended by the manufacturer for 10 μL volumes. The genetic sequence of the resulting 18S and ITS sequences is performed using methods familiar to one with ordinary skill in the art using either Sanger sequencing technology or next-generation sequencing technologies such as but not limited to Illumina.

[0279]

Preparation of Extracted Nucleic Acids for Metagenomic Characterization by Massively Parallel Sequencing Technologies

[0280]

Extracted nucleic acids (DNA or RNA) are purified and prepared by downstream sequencing using standard methods familiar to one with ordinary skill in the art and as described by the sequencing technology's manufactures instructions for library preparation. In short, RNA or DNA are purified using standard purification kits such as but not limited to Qiagen's RNeasy® Kit or Promega's Genomic DNA purification kit. For RNA, the RNA is converted to cDNA prior to sequence library construction. Following purification of nucleic acids, RNA is converted to cDNA using reverse transcription technology such as but not limited to Nugen Ovation® RNA-Seq System or Illumina Truseq as per the manufacturer's instructions. Extracted DNA or transcribed cDNA are sheared using physical (e.g., Hydroshear), acoustic (e.g., Covaris), or molecular (e.g., Nextera) technologies and then size selected as per the sequencing technologies manufacturer's recommendations. Following size selection, nucleic acids are prepared for sequencing as per the manufacturer's instructions for sample indexing and sequencing adapter ligation using methods familiar to one with ordinary skill in the art of genomic sequencing.

[0281]

Massively Parallel Sequencing of Target Amplicons from Heterogeneous Samples

[0282]

DNA Quantification & Library Construction

[0283]

The cleaned PCR amplification products are quantified using the Quant-iT™ PicoGreen® dsDNA Assay Kit (Life Technologies, Grand Island, NY) according to the manufacturer's instructions. Following quantification, the barcoded cleaned PCR products are combined such that each distinct PCR product is at an equimolar ratio to create a prepared Illumina library.

[0284]

Nucleic Acid Detection

[0285]

The prepared library is sequenced on Illumina HiSeq or MiSeq sequencers (Illumina, San Diego, CA) with cluster generation, template hybridization, isothermal amplification, linearization, blocking and denaturation and hybridization of the sequencing primers performed according to the manufacturer's instructions. 16SV4SeqFw (TATGGTAATTGTGTGCCAGCMGCCGCGGTAA (SEQ ID NO: 2044)), 16SV4SeqRev (AGTCAGTCAGCCGGACTACHVGGGTWTCTAAT (SEQ ID NO: 2045)), and 16SV4Index (ATTAGAWACCCBDGTAGTCCGGCTGACTGACT (SEQ ID NO: 2046)) (IDT, Coralville, IA) are used for sequencing. Other sequencing technologies can be used such as but not limited to 454, Pacific Biosciences, Helicos, Ion Torrent, and Nanopore using protocols that are standard to someone skilled in the art of genomic sequencing.

Example 13. Sequence Read Annotation

[0286]

Primary Read Annotation

[0287]

Nucleic acid sequences are analyzed and annotated to define taxonomic assignments using sequence similarity and phylogenetic placement methods or a combination of the two strategies. A similar approach can be used to annotate protein names, protein function, transcription factor names, and any other classification schema for nucleic acid sequences. Sequence similarity based methods include those familiar to individuals skilled in the art including, but not limited to BLAST, BLASTx, tBLASTn, tBLASTx, RDP-classifier, DNAclust, and various implementations of these algorithms such as Qiime or Mothur. These methods rely on mapping a sequence read to a reference database and selecting the match with the best score and e-value. Common databases include, but are not limited to the Human Microbiome Project, NCBI non-redundant database, Greengenes, RDP, and Silva for taxonomic assignments. For functional assignments reads are mapped to various functional databases such as but not limited to COG, KEGG, BioCyc, and MetaCyc. Further functional annotations can be derived from 16S taxonomic annotations using programs such as PICRUST (M. Langille, et al. 2013. Nature Biotechnology 31, 814-821). Phylogenetic methods can be used in combination with sequence similarity methods to improve the calling accuracy of an annotation or taxonomic assignment. Tree topologies and nodal structure are used to refine the resolution of the analysis. In this approach we analyze nucleic acid sequences using one of numerous sequence similarity approaches and leverage phylogenetic methods that are known to those skilled in the art, including but not limited to maximum likelihood phylogenetic reconstruction (see e.g., Liu et al., 2011. RAxML and FastTree: Comparing Two Methods for Large-Scale Maximum Likelihood Phylogeny Estimation. PLoS ONE 6: e27731; McGuire et al., 2001. Models of sequence evolution for DNA sequences containing gaps. Mol. Biol. Evol 18: 481-490; Wróbel B. 2008. Statistical measures of uncertainty for branches in phylogenetic trees inferred from molecular sequences by using model-based methods. J. Appl. Genet. 49: 49-67). Sequence reads (e.g., 16S, 18S, or ITS) are placed into a reference phylogeny comprised of appropriate reference sequences. Annotations are made based on the placement of the read in the phylogenetic tree. The certainty or significance of the OTU annotation is defined based on the OTU's sequence similarity to a reference nucleic acid sequence and the proximity of the OTU sequence relative to one or more reference sequences in the phylogeny. As an example, the specificity of a taxonomic assignment is defined with confidence at the level of Family, Genus, Species, or Strain with the confidence determined based on the position of bootstrap supported branches in the reference phylogenetic tree relative to the placement of the OTU sequence being interrogated. Nucleic acid sequences can be assigned functional annotations using the methods described above.

[0288]

Clade Assignments

[0289]

Clade assignments were generally made using full-length sequences of 16S rDNA and of V4. The ability of 16S-V4 OTU identification to assign an OTU as a specific species depends in part on the resolving power of the 16S-V4 region of the 16S gene for a particular species or group of species. Both the density of available reference 16S sequences for different regions of the tree as well as the inherent variability in the 16S gene between different species will determine the definitiveness of a taxonomic annotation. Given the topological nature of a phylogenetic tree and the fact that tree represents hierarchical relationships of OTUs to one another based on their sequence similarity and an underlying evolutionary model, taxonomic annotations of a read can be rolled up to a higher level using a cade-based assignment procedure. Using this approach, clades are defined based on the topology of a phylogenetic tree that is constructed from full-length 16S sequences using maximum likelihood or other phylogenetic models familiar to individuals with ordinary skill in the art of phylogenetics. Clades are constructed to ensure that all OTUs in a given clade are: (i) within a specified number of bootstrap supported nodes from one another (generally, 1-5 bootstraps), and (ii) share a defined percent similarity (for 16S molecular data typically set to 95%-97% sequence similarity). OTUs that are within the same clade can be distinguished as genetically and phylogenetically distinct from OTUs in a different clade based on 16S-V4 sequence data. OTUs falling within the same clade are evolutionarily closely related and may or may not be distinguishable from one another using 16S-V4 sequence data. The power of clade based analysis is that members of the same clade, due to their evolutionary relatedness, are likely to play similar functional roles in a microbial ecology such as that found in the human gut. Compositions substituting one species with another from the same clade are likely to have conserved ecological function and therefore are useful in the present invention. Notably in addition to 16S-V4 sequences, clade-based analysis can be used to analyze 18S, ITS, and other genetic sequences.

[0290]

Notably, 16S sequences of isolates of a given OTU are phylogenetically placed within their respective clades, sometimes in conflict with the microbiological-based assignment of species and genus that may have preceded 16S-based assignment. Discrepancies between taxonomic assignments based on microbiological characteristics versus genetic sequencing are known to exist from the literature.

[0291]

For a given network ecology or functional network ecology one can define a set of OTUs from the network's representative clades. As example, if a network was comprised of clade_100 and clade_102 it can be said to be comprised of at least one OTU from the group consisting of Corynebacterium coyleae, Corynebacterium mucifaciens, and Corynebacterium ureicelerivorans, and at least one OTU from the group consisting of Corynebacterium appendicis, Corynebacterium genitalium, Corynebacterium glaucum, Corynebacterium imitans, Corynebacterium riegelii, Corynebacterium sp. L_2012475, Corynebacterium sp. NML 93_0481, Corynebacterium sundsvallense, and Corynebacterium tuscaniae (see Table 1). Conversely as example, if a network was said to consist of Corynebacterium coyleae and/or Corynebacterium mucifaciens and/or Corynebacterium ureicelerivorans, and also consisted of Corynebacterium appendicis and/or Corynebacterium genitalium and/or Corynebacterium glaucum and/or Corynebacterium imitans and/or Corynebacterium riegelii and/or Corynebacterium sp. L_2012475 and/or Corynebacterium sp. NML 93_0481 and/or Corynebacterium sundsvallense and/or Corynebacterium tuscaniae it can be said to be comprised of clade_100 and clade_102.

[0292]

The applicants made clade assignments to all OTUs disclosed herein using the above described method and these assignments are reported in Table 1. Results of the network analysis provides, in some embodiments, e.g., of compositions, substitution of clade_172 by clade_172i. In another embodiment, the network analysis provides substitution of clade_198 by clade_198i. In another embodiment, the network analysis permits substitution of clade_260 by clade_260c, clade_260g or clade_260h. In another embodiment, the network analysis permits substitution of clade_262 by clade_262i. In another embodiment, the network analysis permits substitution of clade_309 by clade_309c, clade_309e, clade_309g, clade_309h or clade_309i. In another embodiment, the network analysis permits substitution of clade_313 by clade_313f. In another embodiment, the network analysis permits substitution of clade_325 by clade_325f. In another embodiment, the network analysis permits substitution of clade_335 by clade_335i. In another embodiment, the network analysis permits substitution of clade_351 by clade_351e. In another embodiment, the network analysis permits substitution of clade_354 by clade_354e. In another embodiment, the network analysis permits substitution of clade_360 by clade_360c, clade_360g, clade_360h, or clade_360i. In another embodiment, the network analysis permits substitution of clade_378 by clade_378e. In another embodiment, the network analysis permits substitution of clade_38 by clade_38e or clade_38i. In another embodiment, the network analysis permits substitution of clade_408 by clade_408b, clade_408d, clade_408f, clade_408g or clade_408h. In another embodiment, the network analysis permits substitution of clade_420 by clade_420f. In another embodiment, the network analysis permits substitution of clade_444 by clade_444i. In another embodiment, the network analysis permits substitution of clade_478 by clade_478i. In another embodiment, the network analysis permits substitution of clade_479 by clade_479c, by clade_479g or by clade_479h. In another embodiment, the network analysis permits substitution of clade_481 by clade_481a, clade_481b, clade_481e, clade_481g, clade_481h or by clade_481i. In another embodiment, the network analysis substitution of clade_497 by clade_497e or by clade_497f. In another embodiment, the network analysis permits substitution of clade_512 by clade_512i. In another embodiment, the network analysis permits the network analysis permits substitutions of clade_516 by clade_516c, by clade_516g or by clade_516h. In another embodiment, the network analysis permits the network analysis permits substitutions of clade_522 by clade_522i. In another embodiment, the network analysis permits the network analysis permits substitutions of clade_553 by clade_553i. In another embodiment, the network analysis permits the network analysis permits substitutions of clade_566 by clade_566f. In another embodiment, the network analysis permits the network analysis permits substitutions of clade_572 by clade_572i. In another embodiment, the network analysis permits the network analysis permits substitutions of clade_65 by clade_65e. In another embodiment, the network analysis permits the network analysis permits substitutions of clade_92 by clade_92e or by clade_92i. In another embodiment, the network analysis permits the network analysis permits substitutions of clade_96 by clade_96g or by clade_96h. In another embodiment, the network analysis permits the network analysis permits substitutions of clade_98 by clade_98i. These permitted clade substitutions are described in Table 2.

[0293]

Metagenomic Read Annotation

[0294]

Metagenomic or whole genome shotgun sequence data is annotated as described above, with the additional step that sequences are either clustered or assembled prior to annotation. Following sequence characterization as described above, sequence reads are demultiplexed using the indexing (i.e. barcodes). Following demultiplexing sequence reads are either: (i) clustered using a rapid clustering algorithm such as but not limited to UCLUST (http://drive5.com/usearch/manual/uclust_algo.html) or hash methods such VICUNA (Xiao Yang, Patrick Charlebois, Sante Gnerre, Matthew G Coole, Niall J. Lennon, Joshua Z. Levin, James Qu, Elizabeth M. Ryan, Michael C. Zody, and Matthew R. Henn. 2012. De novo assembly of highly diverse viral populations. BMC Genomics 13:475). Following clustering a representative read for each cluster is identified based and analyzed as described above in “Primary Read Annotation”. The result of the primary annotation is then applied to all reads in a given cluster. (ii) A second strategy for metagenomic sequence analysis is genome assembly followed by annotation of genomic assemblies using a platform such as but not limited to MetAMOS (Treangen et al. 2013 Genome Biology 14: R2), HUMAaN (Abubucker et al. 2012. Metabolic Reconstruction for Metagenomic Data and Its Application to the Human Microbiome ed. J. A. Eisen. PLoS Computational Biology 8: e1002358) and other methods familiar to one of skill in the art.

Example 14. OTU Identification Using Microbial Culturing Techniques

[0295]

The identity of the bacterial species that grow up from a complex fraction can be determined in multiple ways. For example, individual colonies can be picked into liquid media in a 96 well format, grown up and saved as 15% glycerol stocks at −80° C. Aliquots of the cultures can be placed into cell lysis buffer and colony PCR methods can be used to amplify and sequence the 16S rDNA gene (Example 1). Alternatively, colonies may be streaked to purity in several passages on solid media. Well-separated colonies are streaked onto the fresh plates of the same kind and incubated for 48-72 hours at 37° C. The process is repeated multiple times to ensure purity. Pure cultures can be analyzed by phenotypic- or sequence-based methods, including 16S rDNA amplification and sequencing as described in Example 1. Sequence characterization of pure isolates or mixed communities e.g., plate scrapes and spore fractions can also include whole genome shotgun sequencing. The latter is valuable to determine the presence of genes associated with sporulation, antibiotic resistance, pathogenicity, and virulence. Colonies can also be scraped from plates en masse and sequenced using a massively parallel sequencing method as described in Example 1 such that individual 16S signatures can be identified in a complex mixture. Optionally, the sample can be sequenced prior to germination (if appropriate DNA isolation procedures are used to lyse and release the DNA from spores) in order to compare the diversity of germinable species with the total number of species in a spore sample. As an alternative or complementary approach to 16S analysis, MALDI-TOF-mass spec can also be used for species identification (Barreau et al., 2013. Improving the identification of anaerobes in the clinical microbiology laboratory through MALDI-TOF mass spectrometry. Anaerobe 22: 123-125).

Example 15. Microbiological Strain Identification Approaches

[0296]

Pure bacterial isolates can be identified using microbiological methods as described in Wadsworth-KTL Anaerobic Microbiology Manual (Jouseimies-Somer et al., 2002. Wadsworth-KTL Anaerobic Bacteriology Manual), and The Manual of Clinical Microbiology (ASM Press, 10th Edition). These methods rely on phenotypes of strains and include Gram-staining to confirm Gram positive or negative staining behavior of the cell envelope, observance of colony morphologies on solid media, motility, cell morphology observed microscopically at 60× or 100× magnification including the presence of bacterial endospores and flagella. Biochemical tests that discriminate between genera and species are performed using appropriate selective and differential agars and/or commercially available kits for identification of Gram-negative and Gram-positive bacteria and yeast, for example, RapID tests (Remel) or API tests (bioMerieux). Similar identification tests can also be performed using instrumentation such as the Vitek 2 system (bioMerieux). Phenotypic tests that discriminate between genera and species and strains (for example the ability to use various carbon and nitrogen sources) can also be performed using growth and metabolic activity detection methods, for example the Biolog Microbial identification microplates. The profile of short chain fatty acid production during fermentation of particular carbon sources can also be used as a way to discriminate between species (Wadsworth-KTL Anaerobic Microbiology Manual, Jousimies-Somer, et al 2002). MALDI-TOF-mass spectrometry can also be used for species identification (as reviewed in Anaerobe 22:123).

Example 16. Construction of an In Vitro Assay to Screen for Combinations of Microbes Inhibitory to the Growth of Pathogenic E. coli

[0297]

A modification of the in vitro assay described herein is used to screen for combinations of bacteria inhibitory to the growth of E. coli. In general, the assay is modified by using a medium suitable for growth of the pathogen inoculum. For example, suitable media include Reinforced Clostridial Media (RCM), Brain Heart Infusion Broth (BHI) or Luria Bertani Broth (LB) (also known as Lysogeny Broth). E. coli is quantified by using alternative selective media specific for E. coli or using qPCR probes specific for the pathogen. For example, aerobic growth on MacConkey lactose medium selects for enteric Gram-negative bacteria, including E. coli. qPCR is conducted using probes specific for the shiga toxin of pathogenic E. coli.

[0298]

In general, the method can be used to test compositions in vitro for their ability to inhibit growth of any pathogen that can be cultured.

Example 17. Construction of an In Vitro Assay to Screen for Combinations of Microbes Inhibitory to the Growth of Vancomycin-Resistant Enterococcus (VRE)

[0299]

The in vitro assay can be used to screen for combinations of bacteria inhibitory to the growth of vancomycin-resistant Enterococcus spp. (VRE) by modifying the media used for growth of the pathogen inoculum. Several choices of media can be used for growth of the pathogen such as Reinforced Clostridial Media (RCM), Brain Heart Infusion Broth (BHI) or Luria Bertani Broth (LB). VRE is quantified by using alternative selective media specific for VRE or using qPCR probes specific for the pathogen. For example, m-Enterococcus agar containing sodium azide is selective for Enterococcus spp. and a small number of other species. Probes known in the art that are specific to the van genes conferring vancomycin resistance are used in the qPCR or such probes can be designed using methods known in the art.

Example 18. In Vitro Assay Screening Bacterial Compositions for Inhibition of Salmonella

[0300]

The in vitro assay described herein is used to screen for combinations of bacteria inhibitory to the growth of Salmonella spp. by modifying the media used for growth of the pathogen inoculum. Several choices of media are used for growth of the pathogen such as Reinforced Clostridial Media (RCM), Brain Heart Infusion Broth (BHI) or Luria Bertani Broth (LB). Salmonella spp. are quantified by using alternative selective media specific for Salmonella spp. or using qPCR probes specific for the pathogen. For example, MacConkey agar is used to select for Salmonella spp. and the invA gene is targeted with qPCR probes; this gene encodes an invasion protein carried by many pathogenic Salmonella spp. and is used in invading eukaryotic cells.

Example 19. In Vivo Validation of the Efficacy of Network Ecology Bacterial Compositions for Prevention of Clostridium difficile Infection in a Murine Model

[0301]

To test the therapeutic potential of the bacterial composition, a prophylactic mouse model of C. difficile infection was used (model based on Chen et al., 2008. A mouse model of Clostridium difficile-associated disease. Gastroenterology 135: 1984-1992). Two cages of five mice each were tested for each arm of the experiment. All mice received an antibiotic cocktail consisting of 10% glucose, kanamycin (0.5 mg/ml), gentamicin (0.044 mg/ml), colistin (1062.5 U/ml), metronidazole (0.269 mg/ml), ciprofloxacin (0.156 mg/ml), ampicillin (0.1 mg/ml) and vancomycin (0.056 mg/ml) in their drinking water on days −14 through −5 and a dose of 10 mg/kg clindamycin by oral gavage on day −3. On day −1, test articles were spun for 5 minutes at 12,100 rcf, their supernatants' removed, and the remaining pellets were resuspended in sterile PBS, prereduced if bacterial composition was not in spore form, and delivered via oral gavage. On day 0 they were challenged by administration of approximately 4.5 log 10 cfu of C. difficile (ATCC 43255) or sterile PBS (for the naive arm) via oral gavage. Optionally a positive control group received vancomycin from day −1 through day 3 in addition to the antibiotic protocol and C. difficile challenge specified above. Stool were collected from the cages for analysis of bacterial carriage. Mortality, weight and clinical scoring of C. difficile symptoms based upon a 0-4 scale by combining scores for appearance (0-2 points based on normal, hunched, piloerection, or lethargic), and clinical signs (0-2 points based on normal, wet tail, cold-to-the-touch, or isolation from other animals) are assessed every day from day −2 through day 6. Mean minimum weight relative to day −1 and mean maximum clinical score where a death was assigned a clinical score of 4 as well as average cumulative mortality are calculated. Reduced mortality, increased mean minimum weight relative to day −1, and reduced mean maximum clinical score with death assigned to a score of 4 relative to the vehicle control are used to assess the success of the test article.

[0302]

Table 9 and Table 10 report results for 14 experiments in the prophylactic mouse model of C. difficile infection where treatment was with a bacterial composition. In the 14 experiments, 157 of the arms tested network ecologies, with 86 distinct networks ecologies tested (Table 10). Indicia of efficacy of a composition (test article) in these experiments is a low cumulative mortality for the test composition relative to the vehicle control, a mean minimum relative weight of at least 0.85 (e.g., at least 0.90, at least 0.95, or at least 0.97), and a mean maximum clinical score less than 1, e.g., 0.9, 0.8, 0.7, 0.5, 0.2, or 0. Of the 157 arms of the experiment, 136 of the arms and 73 of the networks performed better than the respective experiment's vehicle control arm by at least one of the following metrics: cumulative mortality, mean minimum relative weight, and mean maximum clinical score. Examples of efficacious networks include but are not limited to networks N1979 as tested in SP-361 which had 0% cumulative mortality, 0.97 mean minimum relative weight, and 0 mean maximum clinical score or N2007 which had 10% cumulative mortality, 0.91 mean minimum relative weight, and 0.9 mean maximum clinical score with both networks compared to the vehicle control in SP-361 which had 30% cumulative mortality, 0.88 mean minimum relative weight, and 2.4 mean maximum clinical score. In SP-376, N1962 had no cumulative mortality, mean maximum clinical scores of 0 at both target doses tested with mean minimum relative weights of 0.98 and 0.95 for target doses of 1e8 and 1e7 CFU/OTU/mouse respectively. These results confirm that bacterial compositions comprised of binary and ternary and combinations thereof are efficacious as demonstrated using the mouse model.

Example 20. In Vivo Validation of Network Ecology Bacterial Composition Efficacy in Prophylactic and Relapse Prevention Hamster Model

[0303]

Previous studies with hamsters using toxigenic and nontoxigenic strains of C. difficile demonstrated the utility of the hamster model in examining relapse post antibiotic treatment and the effects of prophylaxis treatments with cecal flora in C. difficile infection (Wilson et al., 1981. Infect Immun 34:626-628), Wilson et al., 1983. J Infect Dis 147:733, Borriello et al., 1985. J Med Microbiol 19:339-350) and more broadly in gastrointestinal infectious disease. Accordingly, to demonstrate prophylactic use of bacterial compositions comprising specific operational taxonomic units to ameliorate C. difficile infection, the following hamster model was used. Clindamycin (10 mg/kg s.c.) was administered to animals on day −5, the test composition or control was administered on day −3, and C. difficile challenge occurred on day 0. In the positive control arm, vancomycin was then administered on days 1-5 (and vehicle control was delivered on day −3). Stool were collected on days −5, −4, −1, 1, 3, 5, 7, 9 and fecal samples were assessed for pathogen carriage and reduction by microbiological methods. 16S sequencing approaches or other methods could also be utilized by one skilled in the art. Mortality was assessed multiple times per day through 21 days post C. difficile challenge. The percentage survival curves showed that a bacterial composition (N1962) comprised of OTUs that were shown to be inhibitory against C. difficile in an in vitro inhibition assay (see above examples) better protected the hamsters compared to the vancomycin control, and vehicle control (FIG. 5).

[0304]

These data demonstrate the efficacy of a composition in vivo, as well as the utility of using an in vitro inhibition method as described herein to predict compositions that have activity in vivo.

Example 21. Method of Preparing a Bacterial Composition for Administration to a Subject

[0305]

Two or more strains that comprise the bacterial composition are independently cultured and mixed together before administration. Both strains are independently be grown at 37° C., pH 7, in a GMM or other animal-products-free medium, pre-reduced with 1 g/L cysteine HCl. After each strain reaches a sufficient biomass, it is preserved for banking by adding 15% glycerol and then frozen at −80° C. in 1 ml cryotubes.

[0306]

Each strain is then be cultivated to a concentration of 1010CFU/mL, then concentrated 20-fold by tangential flow microfiltration; the spent medium is exchanged by diafiltering with a preservative medium consisting of 2% gelatin, 100 mM trehalose, and 10 mM sodium phosphate buffer, or other suitable preservative medium. The suspension is freeze-dried to a powder and titrated.

[0307]

After drying, the powder is blended with microcrystalline cellulose and magnesium stearate and formulated into a 250 mg gelatin capsule containing 10 mg of lyophilized powder (108to 1011bacteria), 160 mg microcrystalline cellulose, 77.5 mg gelatin, and 2.5 mg magnesium stearate.

[0308]

A bacterial composition can be derived by selectively fractionating the desired bacterial OTUs from a raw material such as but not limited to stool. As an example, a 10% w/v suspension of human stool material in PBS was prepared that was filtered, centrifuged at low speed, and then the supernatant containing spores was mixed with absolute ethanol in a 1:1 ratio and vortexed to mix. The suspension was incubated at room temperature for 1 hour. After incubation the suspension was centrifuged at high speed to concentrate spores into a pellet containing a purified spore-containing preparation. The supernatant was discarded and the pellet resuspended in an equal mass of glycerol, and the purified spore preparation was placed into capsules and stored at −80° C.; this preparation is referred to as an ethanol-treated spore population.

Example 22. Method of Treating a Subject with Recurrent C. difficile Infection with a Bacterial Composition

[0309]

In one example, a subject has suffered from recurrent bouts of C. difficile. In the most recent acute phase of the illness, the subject is treated with an antibiotic sufficient to ameliorate the symptoms of the illness. To prevent another relapse of C. difficile infection, a bacterial composition described herein is administered to the subject. For example, the subject is administered one of the present bacterial compositions at a dose in the range of 1e107to 1e1012in, e.g., a lyophilized form, in one or more gelatin capsules (e.g., 2, 3, 4, 5, 10, 15 or more capsules) containing 10 mg of lyophilized bacteria and stabilizing components. The capsule is administered by mouth and the subject resumes a normal diet after 4, 8, 12, or 24 hours. In another embodiment, the subject may take the capsule by mouth before, during, or immediately after a meal. In a further embodiment, the subject takes the dose daily for a specified period of time.

[0310]

Stool is collected from the subject before and after treatment. In one embodiment stool is collected at 1 day, 3 days, 1 week, and 1 month after administration. The presence of C. difficile is found in the stool before administration of the bacterial composition, but stool collections after administration show a reduction in the level of C. difficile in the stool (for example, at least 50% less, 60%, 70%, 80%, 90%, or 95%) to no detectable levels of C. difficile, as measured by qPCR and if appropriate, compared to a healthy reference subject microbiome, as described above. Typically, the quantitation is performed using material extracted from the same amounts of starting material, e.g., stool. ELISA for toxin protein or traditional microbiological identification techniques may also be used. Effective treatment is defined as a reduction in the amount of C. difficile present after treatment.

[0311]

In some cases, effective treatment, i.e., a positive response to treatment with a composition disclosed herein is defined as absence of diarrhea, which itself is defined as 3 or more loose or watery stools per day for at least 2 consecutive days or 8 or more loose or watery stools in 48 hours, or persisting diarrhea (due to other causes) with repeating (three times) negative stool tests for toxins of C. difficile.

[0312]

Treatment failure is defined as persisting diarrhea with a positive C. difficile toxin stool test or no reduction in levels of C. difficile, as measured by qPCR sequencing. ELISA or traditional microbiological identification techniques may also be used.

[0313]

In some cases, effective treatment is determined by the lack of recurrence of signs or symptoms of C. difficile infection within, e.g., 2 weeks, 3 weeks, 4 weeks, 5 weeks, 10 weeks, 12 weeks, 16 weeks, 20 weeks, or 24 weeks after the treatment.

Example 23. Treatment of Subjects with Clostridium difficile Associated Diarrheal Disease with a Bacterial Composition

[0000]

Microbial Population Engraftment, Augmentation, and Reduction of Pathogen Carriage in Patients Treated with Spore Compositions

[0314]

Complementary genomic and microbiological methods were used to characterize the composition of the microbiota of 15 subjects with recurrent C. difficile associated disease (CDAD) that were treated with a bacterial composition. The microbiome of these subjects was characterized pretreatment and initially up to 4 weeks post-treatment and further to 24 weeks. An additional 15 subjects were treated and data for those subjects was collected to at least 8 weeks post-treatment and up to 24 weeks post-treatment. The bacterial compositions used for treatment were comprised of spore forming bacteria and constitute a microbial spore ecology derived from healthy human stool. Methods for preparing such compositions can be found in PCT/US2014/014715.

[0315]

Non-limiting exemplary OTUs and clades of the spore forming microbes identified in the initial compositions are provided in Table 11. OTUs and clades in the spore ecology treatment were observed in 1 to 15 of the initial 15 subjects treated (Table 11) and in subsequently treated subjects. Treatment of the subjects with the microbial spore ecology resolved C. difficile associated disease (CDAD) in all subjects treated. In addition, treatment with the microbial spore composition led to the reduction or removal of Gram(−) and Gram(+) pathobionts including but not limited to pathobionts with multi-drug resistance such as but not limited to vancomycin-resistant Enterococci (VRE) and carbapenem- or imipenem resistant bacteria. Additionally, treatment led to an increase in the total microbial diversity of the subjects gut microbiome (FIG. 6) and the resulting microbial community that established as the result of treatment with the microbial spore ecology was different from the microbiome pretreatment and more closely represented that of a healthy individual than that of an individual with CDAD (FIG. 7).

[0316]

Using novel computational approaches, applicants delineated bacterial OTUs associated with engraftment and ecological augmentation and establishment of a more diverse microbial ecology in patients treated with an ethanol-treated spore preparation (Table 11). OTUs that comprise an augmented ecology are those below the limit of detection in the patient prior to treatment and/or exist at extremely low frequencies such that they do not comprise a significant fraction of the total microbial carriage and are not detectable by genomic and/or microbiological assay methods in the bacterial composition. OTUs that are members of the engrafting and augmented ecologies were identified by characterizing the OTUs that increase in their relative abundance post treatment and that respectively are: (i) present in the ethanol-treated spore preparation and not detectable in the patient pretreatment (engrafting OTUs), or (ii) absent in the ethanol-treated spore preparation, but increase in their relative abundance in the patient through time post treatment with the preparation due to the formation of favorable growth conditions by the treatment (augmenting OTUs). Augmenting OTUs can grow from low frequency reservoirs in the patient, or can be introduced from exogenous sources such as diet.

[0317]

Notably, 16S sequences of isolates of a given OTU are phylogenetically placed within their respective clades despite that the actual taxonomic assignment of species and genus may suggest they are taxonomically distinct from other members of the clades in which they fall. Discrepancies between taxonomic names given to an OTU is based on microbiological characteristics versus genetic sequencing are known to exist from the literature. The OTUs footnoted in this table are known to be discrepant between the different methods for assigning a taxonomic name.

[0000]

Rational Design of Therapeutic Compositions from Core Ecologies

[0318]

To define the Core Ecology underlying the remarkable clinical efficacy of the microbial spore bacterial the following analysis was carried out. The OTU composition of the microbial spore ecology was determined by 16S-V4 rDNA sequencing and computational assignment of OTUs per Example 13. A requirement to detect at least ten sequence reads in the microbial spore ecology was set as a conservative threshold to define only OTUs that were highly unlikely to arise from errors during amplification or sequencing. Methods routinely employed by those familiar to the art of genomic-based microbiome characterization use a read relative abundance threshold of 0.005% (see e.g., Bokulich et al. 2013. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nature Methods 10: 57-59), which would equate to 22 reads given the sequencing depth obtained for the samples analyzed in this example, as cut-off which is substantially lower than the ≥10 reads used in this analysis. All taxonomic and clade assignments were made for each OTU as described in Example 13. The resulting list of OTUs, clade assignments, and frequency of detection in the spore preparations are shown in Table 11.

[0319]

In one embodiment, OTUs that comprise a “core” bacterial composition of a microbial spore ecology, augmented ecology or engrafted ecology can be defined by the percentage of total subjects in which they are observed; the greater this percentage the more likely they are to be part of a core ecology responsible for catalyzing a shift away from a dysbiotic ecology. In one embodiment, therapeutic bacterial compositions are rationally designed by identifying the OTUs that occur in the greatest number of subjects evaluated. In one embodiment OTUs that occur in 100% of subjects define a therapeutic bacterial composition. In other embodiments, OTUs that are defined to occur in ≥90%, ≥80%, ≥70%, ≥60%, or ≥50% of the subjects evaluated comprise the therapeutic bacterial composition. In a further embodiment, OTUs that are in either 100%, ≥90%, ≥80%, 270%, ≥60%, or 50% are further refined to rationally design a therapeutic bacterial composition using phylogenetic parameters or other features such as but not limited to their capacity to metabolize secondary bile acids, illicit TH17 immune signaling, or produce short-chain fatty acids.

[0320]

In an additional embodiment, the dominant OTUs in an ecology can be identified using several methods including but not limited to defining the OTUs that have the greatest relative abundance in either the augmented or engrafted ecologies and defining a total relative abundance threshold. As example, the dominant OTUs in the augmented ecology of Patient-1 were identified by defining the OTUs with the greatest relative abundance, which together comprise 60% of the microbial carriage in this patient's augmented ecology by day 25 post-treatment.

[0321]

In a further embodiment, an OTU is assigned to be a member of the Core Ecology of the bacterial composition, that OTU must be shown to engraft in a patient. Engraftment is important for at least two reasons. First, engraftment is believed to be a sine qua non of the mechanism to reshape the microbiome and eliminate C. difficile colonization. OTUs that engraft with higher frequency are highly likely to be a component of the Core Ecology of the spore preparation or broadly speaking a set bacterial composition. Second, OTUs detected by sequencing a bacterial composition may include non-viable cells or other contaminant DNA molecules not associated with the composition. The requirement that an OTU must be shown to engraft in the patient eliminates OTUs that represent non-viable cells or contaminating sequences. OTUs that are present in a large percentage of the bacterial composition, e.g., ethanol spore preparations analyzed and that engraft in a large number of patients represent a subset of the Core Ecology that are highly likely to catalyze the shift from a dysbiotic disease ecology to a healthy microbiome. OTUs from which to define such therapeutic bacterial compositions derived of OTUs that engraft are denoted in Table 11.

[0322]

A third lens was applied to further refine discoveries into the Core Ecology of the bacterial composition (e.g., microbial spore ecology). Computational-based, network analysis has enabled the description of microbial ecologies that are present in the microbiota of a broad population of healthy individuals. These network ecologies are comprised of multiple OTUs, some of which are defined as Keystone OTUs. Keystone OTUs are computationally defined OTUs that occur in a large percentage of computed networks and meet the networks in which they occur are highly prevalent in the population of subjects evaluated. Keystone OTUs form a foundation to the microbially ecologies in that they are found and as such are central to the function of network ecologies in healthy subjects. Keystone OTUs associated with microbial ecologies associated with healthy subjects are often are missing or exist at reduced levels in subjects with disease. Keystone OTUs may exist in low, moderate, or high abundance in subjects.

[0323]

There are several important findings from these data. A relatively small number of species, 11 in total, are detected in all of the spore preparations from 6 donors and 10 donations. This is surprising because the HMP database (www.hmpdacc.org) describes the enormous variability of commensal species across healthy individuals. The presence of a small number of consistent OTUs lends support to the concept of a Core Ecology and Backbone Networks. The engraftment data further supports this conclusion.

[0324]

In another embodiment, three factors—prevalence in the bacterial composition such as but not limited to a spore preparation, frequency of engraftment, and designation as a Keystone OTUs—enabled the creation of a “Core Ecology Score” (CES) to rank individual OTUs. CES was defined as follows:

    • 40% weighting for presence of OTU in spore preparation
      • multiplier of 1 for presence in 1-3 spore preparations
      • multiplier of 2.5 for presence in 4-8 spore preparations
      • multiplier of 5 for presences in ≥9 spore preparations
    • 40% weighting for engraftment in a patient
      • multiplier of 1 for engraftment in 1-4 patients
      • multiplier of 2.5 for engraftment in 5-6 patients
      • multiplier of 5 for engraftment in ≥7 patients
    • 20% weighting to Keystone OTUs
      • multiplier of 1 for a Keystone OTU
      • multiplier of 0 for a non-Keystone OTU

[0336]

Using this guide, the CES has a maximum possible score of 5 and a minimum possible score of 0.8. As an example, an OTU found in 8 of the 10 bacterial composition such as but not limited to a spore preparations that engrafted in 3 patients and was a Keystone OTU would be assigned the follow CES:
CES=(0.4×2.5)+(0.4×1)+(0.2×1)=1.6

[0337]

Table 11 provides a rank of OTUs by CES. Bacterial compositions rationally designed using a CES score are highly likely to catalyze the shift from a dysbiotic disease ecology to a healthy microbiome. In additional embodiments, the CES score can be combined with other factors to refine the rational design of a therapeutic bacterial composition. Such factors include but are not limited to: using phylogenetic parameters or other features such as but not limited to their capacity to metabolize secondary bile acids, illicit TH17 immune signaling, or produce short-chain fatty acids. In an additional embodiment, refinement can be done by identifying the OTUs that have the greatest relative abundance in either the augmented or engrafted ecologies and defining a total relative abundance threshold.

[0338]

The number of organisms in the human gastrointestinal tract, as well as the diversity between healthy individuals, is indicative of the functional redundancy of a healthy gut microbiome ecology (see The Human Microbiome Consortia. 2012. Structure, function and diversity of the healthy human microbiome. Nature 486: 207-214). This redundancy makes it highly likely that subsets of the Core Ecology describe therapeutically beneficial components of the bacterial composition such as but not limited to an ethanol-treated spore preparation and that such subsets may themselves be useful compositions for populating the GI tract and for the treatment of C. difficile infection given the ecologies functional characteristics. Using the CES, as well as other key metrics as defined above, individual OTUs can be prioritized for evaluation as an efficacious subset of the Core Ecology.

[0339]

Another aspect of functional redundancy is that evolutionarily related organisms (i.e., those close to one another on the phylogenetic tree, e.g., those grouped into a single clade) will also be effective substitutes in the Core Ecology or a subset thereof for treating C. difficile.

[0340]

To one skilled in the art, the selection of appropriate OTU subsets for testing in vitro or in vivo is straightforward. Subsets may be selected by picking any 2, 3, 4, 5, 6, 7, 8, 9, 10, or more than 10 OTUs from Table 11, typically selecting those with higher CES. In addition, using the clade relationships defined in Example 13 above and Table 11, related OTUs can be selected as substitutes for OTUs with acceptable CES values. These organisms can be cultured anaerobically in vitro using the appropriate media, and then combined in a desired ratio. A typical experiment in the mouse C. difficile model utilizes at least 104 and preferably at least 105, 106, 107, 108, 109 or more than 109 colony forming units of a each microbe in the composition. In some compositions, organisms are combined in unequal ratios, for example, due to variations in culture yields, e.g., 1:10, 1:100, 1:1,000, 1:10,000, 1:100,000, or greater than 1:100,000. What is important in these compositions is that each strain be provided in a minimum amount so that the strain's contribution to the efficacy of the Core Ecology subset can be therapeutically effective, and in some cases, measured. Using the principles and instructions described here, one of skill in the art can make clade-based substitutions to test the efficacy of subsets of the Core Ecology. Table 11 and Table 2 describe the clades for each OTU from which such substitutions can be derived.

[0000]

Rational Design of Therapeutic Compositions by Integration of In Vitro and Clinical Microbiome Data

[0341]

In one embodiment, efficacious subsets of the treatment microbial spore ecology as well as subsets of the microbial ecology of the subject post-treatment are defined by rationally interrogating and the composition of these ecologies with respect to compositions comprising 2, 3, 4, 5, 6, 7, 8, 9, 10, or some larger number of OTUs. In one embodiment, the bacterial compositions that have demonstrated efficacy in an in vitro pathogen inhibition assay and that are additionally identified as constituents of the ecology of the treatment itself and/or the microbial ecology of 100%, ≥90%, ≥80%, ≥70%, ≥60%, or ≥50% of the subject's can by an individual with ordinary skill in the art be prioritize for functional screening. Functional screens can include but are not limited to in vivo screens using various pathogen or non-pathogen models (as example, murine models, hamster models, primate models, or human). Table 12 provides bacterial compositions that exhibited inhibition against C. difficile as measured by a mean log inhibition greater than the 99% confidence interval (C.I) of the null hypothesis (see Example 6, ++++) and that are identified in at least one spore ecology treatment or subject post-treatment. In another embodiment compositions found in the 95%, 90%, or 80% confidence intervals (C.I.) and occurring in the treatment and post-treatment ecologies are selected. In other embodiments, bacterial compositions are selected for screening for therapeutic potential by selecting OTUs that occur in the treatment or post-treatment ecologies and the measured growth inhibition of the composition is ranked ≥ the 75th percentile of all growth inhibition scores. In other embodiments, compositions ranked ≥ the 50th, 60th, 70th, 80th, 90th, 95th, or 99th percentiles are selected. In another embodiment, compositions demonstrated to have synergistic inhibition are selected (see Example 7). In yet a further embodiment, compositions selected to screen for efficacy in in vivo models are selected using a combination of growth inhibition metrics. As non-limiting example: (i) compositions are first selected based on their log inhibition being greater than the 99% confidence interval (C.I.) of the null hypothesis, (ii) then this subset of compositions further selected to represent those that are ranked ≥ the 75th percentile in the distribution of all inhibition scores, (iii) this subset is then further selected based on compositions that demonstrate synergistic inhibition. In some embodiments, different confidence intervals (C.I.) and percentiles are used to subset and rationally select the compositions. In yet another embodiment, bacterial compositions are further rationally defined for their therapeutic potential using phylogenetic criteria, such as but not limited to, the presence of particular phylogenetic clade, or other features such as but not limited to their capacity to metabolize secondary bile acids, illicit TH17 immune signaling, or produce short-chain fatty acids.

[0342]

In a related embodiment, all unique bacterial compositions that can be delineated in silico using the OTUs that occur in 100% of the dose spore ecologies are defined; exemplary bacterial compositions are denoted in Table 13. In other embodiments, compositions are derived form OTUs that occur in ≥90%, ≥80%, ≥70%, ≥60%, or ≥50% of the dose spore ecology or the subject's post-treatment ecologies. One with ordinary skill in the art can interrogate the resulting bacterial compositions and using various metrics including, but not limited to the percentage of spore formers, the presence of keystone OTUs, phylogenetic composition, or the OTUs' ability to metabolize secondary bile acids or the ability to produce short-chain fatty acids to rationally define bacterial compositions with suspected efficacy and suitability for further screening.

Example 24. Computational Analysis of Administered Spore Ecology Dose Compositions, and Augmentation and Engraftment Following Administration of Spore Ecology Doses

[0343]

The clinical trial described in Example 23 enrolled 15 additional subjects. Further analyses were carried out on information combining data from all subjects responding to treatment in the trial (29 of 30 subjects). The treatment was with a complex formulation of microbes derived from human stool. Analyses of these results are provided in Tables 14-21. Table 22 is provided for convenience, and lists alternative names for certain organisms. Typically, the presence of an OTU is made using a method known in the art, for example, using qPCR under conditions known in the art and described herein.

[0344]

The set of doses used in the trial is the collection of doses that was provided to at least one patient. Thus, a dose is implicitly a member of the set of doses. Consequently, the set of all OTUs in doses is defined as the unique set of OTUs such that each OTU is present in at least one dose.

[0345]

As described herein, an engrafting OTU is an OTU that is not detectable in a patient, e.g., in their stool, pre-treatment, but is present in the composition delivered to the subject and is detected in the subject, (e.g., in the subject's stool) in at least one post-treatment sample from the subject. The set of all engrafting OTUs is defined as the unique set of engrafting OTUs found in at least one subject. An augmenting OTU is an OTU detected in a subject that is not engrafting and has an abundance ten times greater than the pre-treatment abundance at some post-treatment time point. The set of all augmenting OTUs is the unique set of augmenting OTUs found in at least one subject. The set of all augmenting and engrafting OTUs is defined as the unique set of OTUs that either augment or engraft in at least one subject.

[0346]

The set of all unique ternary combinations can be generated from the experimentally derived set of OTUs by considering the all combinations of OTUs such that 1) each OTU of the ternary is different and 2) the three OTUs were not used together previously. A computer program can be used to generate such combinations.

[0347]

Table 14 is generated from the set of all augmenting and engrafting OTUs and provides the OTUs that either were found to engraft or augment in at least one subject after they were treated with the composition. Each listed ternary combination is either in all doses provided to subjects or were detected together in all patients for at least one post-treatment time point. Typically, a useful composition includes at least one of the ternary compositions. In some embodiments, all three members of the ternary composition either engraft or augment in at least, e.g., 68%, 70%, 71%, 75%, 79%, 86%, 89%, 93%, or 100% of subjects. Because all subjects analyzed responded to treatment, the ternaries listed in the Table are useful in compositions for treatment of a dysbiosis.

[0348]

Table 15 provides the list of unique ternary combinations of OTUs that were present in at least 95% of doses (rounding to the nearest integer) and that engrafted in at least one subject. Note that ternary combinations that were present in 100% of doses are listed in Table 14. Compositions that include a ternary combination are useful in compositions for treating a dysbiosis.

[0349]

Table 16 provides the set of all unique ternary combinations of augmenting OTUs such that each ternary combination was detected in at least 75% of the subjects at a post-treatment time point.

[0350]

Table 17 provides the set of all unique ternary combinations that were present in at least 75% of doses and for which the subject receiving the dose containing the ternary combination had Clostridiales sp. SM4/1 present as either an engrafting or augmenting OTU. Accordingly, in some embodiments, a composition consisting of, consisting essentially of, or comprising a ternary combination selected from Table 17 is useful for increasing Clostridiales sp. SM4/1 in a subject.

[0351]

Table 18 provides the set of all unique ternary combinations generated from the set of all OTUs in doses such that each ternary is present at least 75% of the doses and for which the subject receiving the dose containing the ternary combination had Clostridiales sp. SSC/2 present as either an engrafting or augmenting OTU after treatment. Accordingly, in some embodiments, a composition consisting of, consisting essentially of, or comprising a ternary combination selected from Table 18 is useful for increasing Clostridiales sp. SSC/2 in a subject.

[0352]

Table 19 provides the set of all unique ternary combinations generated from the set of all OTUs present in doses such that each ternary is present at least 75% of the doses and for which the subject to whom the doses containing the ternary combination was administered had Clostridium sp. NML 04A032 present as either an engrafting or augmenting OTU after treatment. Accordingly, in some embodiments, a composition consisting of, consisting essentially of, or comprising a ternary combination selected from Table 19 is useful for increasing Clostridium sp. NML 04A032 in a subject.

[0353]

Table 20 provides the set of all unique ternary combinations generated from the set of all OTUs in doses such that the ternary is present at least 75% of the doses and for which the subject to whom the dose containing the ternary was administered had Clostridium sp. NML 04A032, Ruminococcus lactaris, and Ruminococcus torques present as either an engrafting or augmenting OTUs. Accordingly, in some embodiments, a composition consisting of, consisting essentially of, or comprising a ternary combination selected from Table 20 is useful for increasing Clostridium sp. NML 04A032, Ruminococcus lactaris, and Ruminococcus torques in a subject.

[0354]

Table 21 shows the set of all unique ternary combinations generated from the set of all OTUs in doses such that each ternary is present at least 75% of the doses and for which the subject to whom the dose containing the ternary combination was administered has Eubacterium rectale, Faecalibacterium prausnitzii, Oscillibacter sp. G2, Ruminococcus lactaris, and Ruminococcus torques present as either an engrafting or augmenting OTU. Accordingly, in some embodiments, a composition consisting of, consisting essentially of, or comprising a ternary combination selected from Table 21 is useful for increasing Eubacterium rectale, Faecalibacterium prausnitzii, Oscillibacter sp. G2, Ruminococcus lactaris, and Ruminococcus torques in a subject.

[0355]

Other embodiments will be apparent to those skilled in the art from consideration of the specification and practice of the embodiments. Consider the specification and examples as exemplary only, with a true scope and spirit being indicated by the following claims.

TABLES

[0356]

Corynebacterium coyleae697X96497clade_100NN
Corynebacterium mucifaciens711NR_026396clade_100NN
Corynebacterium ureicelerivorans733AM397636clade_100NN
Corynebacterium appendicis684NR_028951clade_102NN
Corynebacterium genitalium698ACLJ01000031clade_102NN
Corynebacterium glaucum699NR_028971clade_102NN
Corynebacterium imitans703AF537597clade_102NN
Corynebacterium riegelii719EU848548clade_102NN
Corynebacterium sp. L_2012475723HE575405clade_102NN
Corynebacterium sp. NML 93_0481724GU238409clade_102NN
Corynebacterium sundsvallense728Y09655clade_102NN
Corynebacterium tuscaniae730AY677186clade_102NN
Prevotella maculosa1504AGEK01000035clade_104NN
Prevotella oris1513ADDV01000091clade_104NN
Prevotella salivae1517AB108826clade_104NN
Prevotella sp. ICM551521HQ616399clade_104NN
Prevotella sp. oral clone AA0201528AY005057clade_104NN
Prevotella sp. oral clone GI0321538AY349396clade_104NN
Prevotella sp. oral taxon G701558GU432179clade_104NN
Prevotella corporis1491L16465clade_105NN
Bacteroides sp. 4_1_36312ACTC01000133clade_110NN
Bacteroides sp. AR20315AF139524clade_110NN
Bacteroides sp. D20319ACPT01000052clade_110NN
Bacteroides sp. F_4322AB470322clade_110NN
Bacteroides uniformis329AB050110clade_110NN
Prevotella nanceiensis1510JN867228clade_127NN
Prevotella sp. oral taxon 2991548ACWZ01000026clade_127NN
Prevotella bergensis1485ACKS01000100clade_128NN
Prevotella buccalis1489JN867261clade_129NN
Prevotella timonensis1564ADEF01000012clade_129NN
Prevotella oralis1512AEPE01000021clade_130NN
Prevotella sp. SEQ0721525JN867238clade_130NN
Leuconostoc carnosum1177NR_040811clade_135NN
Leuconostoc gasicomitatum1179FN822744clade_135NN
Leuconostoc inhae1180NR_025204clade_135NN
Leuconostoc kimchii1181NR_075014clade_135NN
Edwardsiella tarda777CP002154clade_139NN
Photorhabdus asymbiotica1466Z76752clade_139NN
Psychrobacter arcticus1607CP000082clade_141NN
Psychrobacter cibarius1608HQ698586clade_141NN
Psychrobacter cryohalolentis1609CP000323clade_141NN
Psychrobacter faecalis1610HQ698566clade_141NN
Psychrobacter nivimaris1611HQ698587clade_141NN
Psychrobacter pulmonis1612HQ698582clade_141NN
Pseudomonas aeruginosa1592AABQ07000001clade_154NN
Pseudomonas sp. 2_1_261600ACWU01000257clade_154NN
Corynebacterium confusum691Y15886clade_158NN
Corynebacterium propinquum712NR_037038clade_158NN
Corynebacterium pseudodiphtheriticum713X84258clade_158NN
Bartonella bacilliformis338NC_008783clade_159NN
Bartonella grahamii339CP001562clade_159NN
Bartonella henselae340NC_005956clade_159NN
Bartonella quintana341BX897700clade_159NN
Bartonella tamiae342EF672728clade_159NN
Bartonella washoensis343FJ719017clade_159NN
Brucella abortus430ACBJ01000075clade_159NCategory-B
Brucella canis431NR_044652clade_159NCategory-B
Brucella ceti432ACJD01000006clade_159NCategory-B
Brucella melitensis433AE009462clade_159NCategory-B
Brucella microti434NR_042549clade_159NCategory-B
Brucella ovis435NC_009504clade_159NCategory-B
Brucella sp. 83_13436ACBQ01000040clade_159NCategory-B
Brucella sp. BO1437EU053207clade_159NCategory-B
Brucella suis438ACBK01000034clade_159NCategory-B
Ochrobactrum anthropi1360NC_009667clade_159NN
Ochrobactrum intermedium1361ACQA01000001clade_159NN
Ochrobactrum pseudintermedium1362DQ365921clade_159NN
Prevotella genomosp. C21496AY278625clade_164NN
Prevotella multisaccharivorax1509AFJE01000016clade_164NN
Prevotella sp. oral clone IDR_CEC_00551543AY550997clade_164NN
Prevotella sp. oral taxon 2921547GQ422735clade_164NN
Prevotella sp. oral taxon 3001549GU409549clade_164NN
Prevotella marshii1505AEEI01000070clade_166NN
Prevotella sp. oral clone IK0531544AY349401clade_166NN
Prevotella sp. oral taxon 7811554GQ422744clade_166NN
Prevotella stercorea1562AB244774clade_166NN
Prevotella brevis1487NR_041954clade_167NN
Prevotella ruminicola1516CP002006clade_167NN
Prevotella sp. sp241560AB003384clade_167NN
Prevotella sp. sp341561AB003385clade_167NN
Prevotella albensis1483NR_025300clade_168NN
Prevotella copri1490ACBX02000014clade_168NN
Prevotella oulorum1514L16472clade_168NN
Prevotella sp. BI_421518AJ581354clade_168NN
Prevotella sp. oral clone P4PB_83 P21546AY207050clade_168NN
Prevotella sp. oral taxon G601557GU432133clade_168NN
Prevotella amnii1484AB547670clade_169NN
Bacteroides caccae268EU136686clade_170NN
Bacteroides finegoldii277AB222699clade_170NN
Bacteroides intestinalis283ABJL02000006clade_171NN
Bacteroides sp. XB44A326AM230649clade_171NN
Bifidobacteriaceae genomosp. C1345AY278612clade_172NN
Bifidobacterium adolescentis346AAXD02000018clade_172NN
Bifidobacterium angulatum347ABYS02000004clade_172NN
Bifidobacterium animalis348CP001606clade_172NN
Bifidobacterium breve350CP002743clade_172NN
Bifidobacterium catenulatum351ABXY01000019clade_172NN
Bifidobacterium dentium352CP001750clade_172NOP
Bifidobacterium gallicum353ABXB03000004clade_172NN
Bifidobacterium infantis354AY151398clade_172NN
Bifidobacterium kashiwanohense355AB491757clade_172NN
Bifidobacterium longum356ABQQ01000041clade_172NN
Bifidobacterium pseudocatenulatum357ABXX02000002clade_172NN
Bifidobacterium pseudolongum358NR_043442clade_172NN
Bifidobacterium scardovii359AJ307005clade_172NN
Bifidobacterium sp. HM2360AB425276clade_172NN
Bifidobacterium sp. HMLN12361JF519685clade_172NN
Bifidobacterium sp. M45362HM626176clade_172NN
Bifidobacterium sp. MSX5B363HQ616382clade_172NN
Bifidobacterium sp. TM_7364AB218972clade_172NN
Bifidobacterium thermophilum365DQ340557clade_172NN
Leuconostoc citreum1178AM157444clade_175NN
Leuconostoc lactis1182NR_040823clade_175NN
Eubacterium saburreum858AB525414clade_178YN
Eubacterium sp. oral clone IR009866AY349376clade_178YN
Lachnospiraceae bacterium ICM621061HQ616401clade_178YN
Lachnospiraceae bacterium MSX331062HQ616384clade_178YN
Lachnospiraceae bacterium oral taxon 1071063ADDS01000069clade_178YN
Alicyclobacillus acidocaldarius122NR_074721clade_179YN
Alicyclobacillus acidoterrestris123NR_040844clade_179NN
Alicyclobacillus cycloheptanicus125NR_024754clade_179NN
Acinetobacter baumannii27ACYQ01000014clade_181NN
Acinetobacter calcoaceticus28AM157426clade_181NN
Acinetobacter genomosp. C129AY278636clade_181NN
Acinetobacter haemolyticus30ADMT01000017clade_181NN
Acinetobacter johnsonii31ACPL01000162clade_181NN
Acinetobacter junii32ACPM01000135clade_181NN
Acinetobacter lwoffii33ACPN01000204clade_181NN
Acinetobacter parvus34AIEB01000124clade_181NN
Acinetobacter schindleri36NR_025412clade_181NN
Acinetobacter sp. 56A137GQ178049clade_181NN
Acinetobacter sp. CIP 10193438JQ638573clade_181NN
Acinetobacter sp. CIP 10214339JQ638578clade_181NN
Acinetobacter sp. M16_2241HM366447clade_181NN
Acinetobacter sp. RUH262442ACQF01000094clade_181NN
Acinetobacter sp. SH02443ADCH01000068clade_181NN
Lactobacillus jensenii1092ACQD01000066clade_182NN
Alcaligenes faecalis119AB680368clade_183NN
Alcaligenes sp. CO14120DQ643040clade_183NN
Alcaligenes sp. S3121HQ262549clade_183NN
Oligella ureolytica1366NR_041998clade_183NN
Oligella urethralis1367NR_041753clade_183NN
Eikenella corrodens784ACEA01000028clade_185NN
Kingella denitrificans1019AEWV01000047clade_185NN
Kingella genomosp. P1 oral cone1020DQ003616clade_185NN
MB2_C20
Kingella kingae1021AFHS01000073clade_185NN
Kingella oralis1022ACJW02000005clade_185NN
Kingella sp. oral clone ID0591023AY349381clade_185NN
Neisseria elongate1330ADBF01000003clade_185NN
Neisseria genomosp. P2 oral clone1332DQ003630clade_185NN
MB5_P15
Neisseria sp. oral clone JC0121345AY349388clade_185NN
Neisseria sp. SMC_A91991342FJ763637clade_185NN
Simonsiella muelleri1731ADCY01000105clade_185NN
Corynebacterium glucuronolyticum700ABYP01000081clade_193NN
Corynebacterium pyruviciproducens716FJ185225clade_193NN
Rothia aeria1649DQ673320clade_194NN
Rothia dentocariosa1650ADDW01000024clade_194NN
Rothia sp. oral taxon 1881653GU470892clade_194NN
Corynebacterium accolens681ACGD01000048clade_195NN
Corynebacterium macginleyi707AB359393clade_195NN
Corynebacterium pseudogenitalium714ABYQ01000237clade_195NN
Corynebacterium tuberculostearicum729ACVP01000009clade_195NN
Lactobacillus casei1074CP000423clade_198NN
Lactobacillus paracasei1106ABQV01000067clade_198NN
Lactobacillus zeae1143NR_037122clade_198NN
Prevotella dentalis1492AB547678clade_205NN
Prevotella sp. oral clone ASCG101529AY923148clade_206NN
Prevotella sp. oral clone HF0501541AY349399clade_206NN
Prevotella sp. oral clone ID0191542AY349400clade_206NN
Prevotella sp. oral clone IK0621545AY349402clade_206NN
Prevotella genomosp. P9 oral clone1499DQ003633clade_207NN
MB7_G16
Prevotella sp. oral clone AU0691531AY005062clade_207NN
Prevotella sp. oral clone CY0061532AY005063clade_207NN
Prevotella sp. oral clone FL0191534AY349392clade_207NN
Actinomyces genomosp. C156AY278610clade_212NN
Actinomyces genomosp. C257AY278611clade_212NN
Actinomyces genomosp. P1 oral clone58DQ003632clade_212NN
MB6_C03
Actinomyces georgiae59GU561319clade_212NN
Actinomyces israelii60AF479270clade_212NN
Actinomyces massiliensis61AB545934clade_212NN
Actinomyces meyeri62GU561321clade_212NN
Actinomyces odontolyticus66ACYT01000123clade_212NN
Actinomyces orihominis68AJ575186clade_212NN
Actinomyces sp. CCUG 3729071AJ234058clade_212NN
Actinomyces sp. ICM3475HQ616391clade_212NN
Actinomyces sp. ICM4176HQ616392clade_212NN
Actinomyces sp. ICM4777HQ616395clade_212NN
Actinomyces sp. ICM5478HQ616398clade_212NN
Actinomyces sp. oral clone IP08187AY349366clade_212NN
Actinomyces sp. oral taxon 17891AEUH01000060clade_212NN
Actinomyces sp. oral taxon 18092AEPP01000041clade_212NN
Actinomyces sp. TeJ580GU561315clade_212NN
Haematobacter sp. BC14248968GU396991clade_213NN
Paracoccus denitrificans1424CP000490clade_213NN
Paracoccus marcusii1425NR_044922clade_213NN
Grimontia hollisae967ADAQ01000013clade_216NN
Shewanella putrefaciens1723CP002457clade_216NN
Afipia genomosp. 4111EU117385clade_217NN
Rhodopseudomonas palustris1626CP000301clade_217NN
Methylobacterium extorquens1223NC_010172clade_218NN
Methylobacterium podarium1224AY468363clade_218NN
Methylobacterium radiotolerans1225GU294320clade_218NN
Methylobacterium sp. 1sub1226AY468371clade_218NN
Methylobacterium sp. MM41227AY468370clade_218NN
Clostridium baratii555NR_029229clade_223YN
Clostridium colicanis576FJ957863clade_223YN
Clostridium paraputrificum611AB536771clade_223YN
Clostridium sardiniense621NR_041006clade_223YN
Eubacterium budayi837NR_024682clade_223YN
Eubacterium moniliforme851HF558373clade_223YN
Eubacterium multiforme852NR_024683clade_223YN
Eubacterium nitritogenes853NR_024684clade_223YN
Achromobacter denitrificans18NR_042021clade_224NN
Achromobacter piechaudii19ADMS01000149clade_224NN
Achromobacter xylosoxidans20ACRC01000072clade_224NN
Bordetella bronchiseptica384NR_025949clade_224NOP
Bordetella holmesii385AB683187clade_224NOP
Bordetella parapertussis386NR_025950clade_224NOP
Bordetella pertussis387BX640418clade_224NOP
Microbacterium chocolatum1230NR_037045clade_225NN
Microbacterium flavescens1231EU714363clade_225NN
Microbacterium lacticum1233EU714351clade_225NN
Microbacterium oleivorans1234EU714381clade_225NN
Microbacterium oxydans1235EU714348clade_225NN
Microbacterium paraoxydans1236AJ491806clade_225NN
Microbacterium phyllosphaerae1237EU714359clade_225NN
Microbacterium schleiferi1238NR_044936clade_225NN
Microbacterium sp. 7681239EU714378clade_225NN
Microbacterium sp. oral strain C24KA1240AF287752clade_225NN
Microbacterium testaceum1241EU714365clade_225NN
Corynebacterium atypicum686NR_025540clade_229NN
Corynebacterium mastitidis708AB359395clade_229NN
Corynebacterium sp. NML 97_0186725GU238411clade_229NN
Mycobacterium elephantis1275AF385898clade_237NOP
Mycobacterium paraterrae1288EU919229clade_237NOP
Mycobacterium phlei1289GU142920clade_237NOP
Mycobacterium sp. 17761293EU703152clade_237NN
Mycobacterium sp. 17811294EU703147clade_237NN
Mycobacterium sp. AQ1GA41297HM210417clade_237NN
Mycobacterium sp. GN_105461299FJ497243clade_237NN
Mycobacterium sp. GN_108271300FJ497247clade_237NN
Mycobacterium sp. GN_111241301FJ652846clade_237NN
Mycobacterium sp. GN_91881302FJ497240clade_237NN
Mycobacterium sp. GR_2007_2101303FJ555538clade_237NN
Anoxybacillus contaminans172NR_029006clade_238NN
Anoxybacillus flavithermus173NR_074667clade_238YN
Bacillus aeolius195NR_025557clade_238NN
Bacillus aerophilus196NR_042339clade_238YN
Bacillus aestuarii197GQ980243clade_238YN
Bacillus amyloliquefaciens199NR_075005clade_238YN
Bacillus anthracis200AAEN01000020clade_238YCategory-A
Bacillus atrophaeus201NR_075016clade_238YOP
Bacillus badius202NR_036893clade_238YOP
Bacillus cereus203ABDJ01000015clade_238YOP
Bacillus circulans204AB271747clade_238YOP
Bacillus firmus207NR_025842clade_238YOP
Bacillus flexus208NR_024691clade_238YOP
Bacillus fordii209NR_025786clade_238YOP
Bacillus halmapalus211NR_026144clade_238YOP
Bacillus herbersteinensis213NR_042286clade_238YOP
Bacillus idriensis215NR_043268clade_238YOP
Bacillus lentus216NR_040792clade_238YOP
Bacillus licheniformis217NC_006270clade_238YOP
Bacillus megaterium218GU252124clade_238YOP
Bacillus nealsonii219NR_044546clade_238YOP
Bacillus niabensis220NR_043334clade_238YOP
Bacillus niacini221NR_024695clade_238YOP
Bacillus pocheonensis222NR_041377clade_238YOP
Bacillus pumilus223NR_074977clade_238YOP
Bacillus safensis224JQ624766clade_238YOP
Bacillus simplex225NR_042136clade_238YOP
Bacillus sonorensis226NR_025130clade_238YOP
Bacillus sp. 10403023 MM10403188227CAET01000089clade_238YOP
Bacillus sp. 2_A_57_CT2230ACWD01000095clade_238YOP
Bacillus sp. 2008724126228GU252108clade_238YOP
Bacillus sp. 2008724139229GU252111clade_238YOP
Bacillus sp. 7_16AIA231FN397518clade_238YOP
Bacillus sp. AP8233JX101689clade_238YOP
Bacillus sp. B27(2008)234EU362173clade_238YOP
Bacillus sp. BT1B_CT2235ACWC01000034clade_238YOP
Bacillus sp. GB1.1236FJ897765clade_238YOP
Bacillus sp. GB9237FJ897766clade_238YOP
Bacillus sp. HU19.1238FJ897769clade_238YOP
Bacillus sp. HU29239FJ897771clade_238YOP
Bacillus sp. HU33.1240FJ897772clade_238YOP
Bacillus sp. JC6241JF824800clade_238YOP
Bacillus sp. oral taxon F79248HM099654clade_238YOP
Bacillus sp. SRC_DSF1243GU797283clade_238YOP
Bacillus sp. SRC_DSF10242GU797292clade_238YOP
Bacillus sp. SRC_DSF2244GU797284clade_238YOP
Bacillus sp. SRC_DSF6245GU797288clade_238YOP
Bacillus sp. tc09249HQ844242clade_238YOP
Bacillus sp. zh168250FJ851424clade_238YOP
Bacillus sphaericus251DQ286318clade_238YOP
Bacillus sporothermodurans252NR_026010clade_238YOP
Bacillus subtilis253EU627588clade_238YOP
Bacillus thermoamylovorans254NR_029151clade_238YOP
Bacillus thuringiensis255NC_008600clade_238YOP
Bacillus weihenstephanensis256NR_074926clade_238YOP
Brevibacterium frigoritolerans422NR_042639clade_238NN
Geobacillus kaustophilus933NR_074989clade_238YN
Geobacillus sp. E263934DQ647387clade_238NN
Geobacillus sp. WCH70935CP001638clade_238NN
Geobacillus stearothermophilus936NR_040794clade_238YN
Geobacillus thermocatenulatus937NR_043020clade_238NN
Geobacillus thermodenitrificans938NR_074976clade_238YN
Geobacillus thermoglucosidasius939NR_043022clade_238YN
Geobacillus thermoleovorans940NR_074931clade_238NN
Lysinibacillus fusiformis1192FN397522clade_238NN
Lysinibacillus sphaericus1193NR_074883clade_238YN
Planomicrobium koreense1468NR_025011clade_238NN
Sporosarcina newyorkensis1754AFPZ01000142clade_238NN
Sporosarcina sp. 26811755GU994081clade_238NN
Ureibacillus composti1968NR_043746clade_238NN
Ureibacillus suwonensis1969NR_043232clade_238NN
Ureibacillus terrenus1970NR_025394clade_238NN
Ureibacillus thermophilus1971NR_043747clade_238NN
Ureibacillus thermosphaericus1972NR_040961clade_238NN
Prevotella micans1507AGWK01000061clade_239NN
Prevotella sp. oral clone DA0581533AY005065clade_239NN
Prevotella sp. SEQ0531523JN867222clade_239NN
Treponema socranskii1937NR_024868clade_240NOP
Treponema sp. 6:H:D15A_41938AY005083clade_240NN
Treponema sp. oral taxon 2651953GU408850clade_240NN
Treponema sp. oral taxon G851958GU432215clade_240NN
Porphyromonas endodontalis1472ACNN01000021clade_241NN
Porphyromonas sp. oral clone BB1341478AY005068clade_241NN
Porphyromonas sp. oral clone F0161479AY005069clade_241NN
Porphyromonas sp. oral clone P2PB_52 P11480AY207054clade_241NN
Porphyromonas sp. oral clone P4GB_1001481AY207057clade_241NN
P2
Acidovorax sp. 98_6383326AY258065clade_245NN
Comamonadaceae bacterium NML000135663JN585335clade_245NN
Comamonadaceae bacterium NML790751664JN585331clade_245NN
Comamonadaceae bacterium NML910035665JN585332clade_245NN
Comamonadaceae bacterium NML910036666JN585333clade_245NN
Comamonas sp. NSP5668AB076850clade_245NN
Delftia acidovorans748CP000884clade_245NN
Xenophilus aerolatus2018JN585329clade_245NN
Clostridiales sp. SS3/4543AY305316clade_246YN
Oribacfcerium sp. oral taxon 0781380ACIQ02000009clade_246NN
Oribacterium sp. oral taxon 1021381GQ422713clade_246NN
Weissella cibaria2007NR_036924clade_247NN
Weissella confusa2008NR_040816clade_247NN
Weissella hellenica2009AB680902clade_247NN
Weissella kandleri2010NR_044659clade_247NN
Weissella koreensis2011NR_075058clade_247NN
Weissella paramesenteroides2012ACKU01000017clade_247NN
Weissella sp. KLDS 7.07012013EU600924clade_247NN
Mobiluncus curtisii1251AEPZ01000013clade_249NN
Clostridium beijerinckii557NR_074434clade_252YN
Clostridium botulinum560NC_010723clade_252YCategory-A
Clostridium butyricum561ABDT01000017clade_252YN
Clostridium chauvoei568EU106372clade_252YN
Clostridium favososporum582X76749clade_252YN
Clostridium histolyticum592HF558362clade_252YN
Clostridium isatidis597NR_026347clade_252YN
Clostridium limosum602FR870444clade_252YN
Clostridium sartagoforme622NR_026490clade_252YN
Clostridium septicum624NR_026020clade_252YN
Clostridium sp. 7_2_43FAA626ACDK01000101clade_252YN
Clostridium sporogenes645ABKW02000003clade_252YN
Clostridium tertium653Y18174clade_252YN
Clostridium carnis564NR_044716clade_253YN
Clostridium celatum565X77844clade_253YN
Clostridium disporicum579NR_026491clade_253YN
Clostridium gasigenes585NR_024945clade_253YN
Clostridium quinii616NR_026149clade_253YN
Enhydrobacter aerosaccus785ACYI01000081clade_256NN
Moraxella osloensis1262JN175341clade_256NN
Moraxella sp. GM21264JF837191clade_256NN
Brevibacterium casei420JF951998clade_257NN
Brevibacterium epidermidis421NR_029262clade_257NN
Brevibacterium sanguinis426NR_028016clade_257NN
Brevibacterium sp. H15427AB177640clade_257NN
Clostridium hylemonae593AB023973clade_260YN
Clostridium scindens623AF262238clade_260YN
Lachnospiraceae bacterium 5_1_57FAA1054ACTR01000020clade_260YN
Acinetobacter radioresistens35ACVR01000010clade_261NN
Clostridium glycyrrhizinilyticum588AB233029clade_262YN
Clostridium nexile607X73443clade_262YN
Coprococcus comes674ABVR01000038clade_262YN
Lachnospiraceae bacterium 1_1_57FAA1048ACTM01000065clade_262YN
Lachnospiraceae bacterium 1_4_56FAA1049ACTN01000028clade_262YN
Lachnospiraceae bacterium 8_1_57FAA1057ACWQ01000079clade_262YN
Ruminococcus lactaris1663ABOU02000049clade_262YN
Ruminococcus torques1670AAVP02000002clade_262YN
Lactobacillus alimentarius1068NR_044701clade_263NN
Lactobacillus farciminis1082NR_044707clade_263NN
Lactobacillus kimchii1097NR_025045clade_263NN
Lactobacillus nodensis1101NR_041629clade_263NN
Lactobacillus tucceti1138NR_042194clade_263NN
Pseudomonas mendocina1595AAUL01000021clade_265NN
Pseudomonas pseudoalcaligenes1598NR_037000clade_265NN
Pseudomonas sp. NP522b1602EU723211clade_265NN
Pseudomonas stutzeri1603AM905854clade_265NN
Paenibacillus barcinonensis1390NR_042272clade_270NN
Paenibacillus barengoltzii1391NR_042756clade_270NN
Paenibacillus chibensis1392NR_040885clade_270NN
Paenibacillus cookii1393NR_025372clade_270NN
Paenibacillus durus1394NR_037017clade_270NN
Paenibacillus glucanolyticus1395D78470clade_270NN
Paenibacillus lactis1396NR_025739clade_270NN
Paenibacillus lautus1397NR_040882clade_270YN
Paenibacillus pabuli1398NR_040853clade_270NN
Paenibacillus polymyxa1399NR_037006clade_270YN
Paenibacillus popilliae1400NR_040888clade_270NN
Paenibacillus sp. CIP 1010621401HM212646clade_270NN
Paenibacillus sp. HGF51402AEXS01000095clade_270YN
Paenibacillus sp. HGF71403AFDH01000147clade_270YN
Paenibacillus sp. JC661404JF824808clade_270NN
Paenibacillus sp. R_274131405HE586333clade_270NN
Paenibacillus sp. R_274221406HE586338clade_270NN
Paenibacillus timonensis1408NR_042844clade_270NN
Rothia mucilaginosa1651ACVO01000020clade_271NN
Rothia nasimurium1652NR_025310clade_271NN
Prevotella sp. oral taxon 3021550ACZK01000043clade_280NN
Prevotella sp. oral taxon F681556HM099652clade_280NN
Prevotella tannerae1563ACIJ02000018clade_280NN
Prevotellaceae bacterium P4P_62 P11566AY207061clade_280NN
Porphyromonas asaccharolytica1471AENO01000048clade_281NN
Porphyromonas gingivails1473AE015924clade_281NN
Porphyromonas macacae1475NR_025908clade_281NN
Porphyromonas sp. UQD 3011477EU012301clade_281NN
Porphyromonas uenonis1482ACLR01000152clade_281NN
Leptotrichia buccalis1165CP001685clade_282NN
Leptotrichia hofstadii1168ACVB02000032clade_282NN
Leptotrichia sp. oral clone HE0121173AY349386clade_282NN
Leptotrichia sp. oral taxon 2231176GU408547clade_282NN
Bacteroides fluxus278AFBN01000029clade_285NN
Bacteroides helcogenes281CP002352clade_285NN
Parabacteroides johnsonii1419ABYH01000014clade_286NN
Parabacteroides merdae1420EU136685clade_286NN
Treponema denticola1926ADEC01000002clade_288NOP
Treponema genomosp. P5 oral clone1929DQ003624clade_288NN
MB3_P23
Treponema putidum1935AJ543428clade_288NOP
Treponema sp. oral clone P2PB_53 P31942AY207055clade_288NN
Treponema sp. oral taxon 2471949GU408748clade_288NN
Treponema sp. oral taxon 2501950GU408776clade_288NN
Treponema sp. oral taxon 2511951GU408781clade_288NN
Anaerococcus hydrogenalis144ABXA01000039clade_289NN
Anaerococcus sp. 8404299148HM587318clade_289NN
Anaerococcus sp. gpac215156AM176540clade_289NN
Anaerococcus vaginalis158ACXU01000016clade_289NN
Propionibacterium acidipropionici1569NC_019395clade_290NN
Propionibacterium avidum1571AJ003055clade_290NN
Propionibacterium granulosum1573FJ785716clade_290NN
Propionibacterium jensenii1574NR_042269clade_290NN
Propionibacterium propionicum1575NR_025277clade_290NN
Propionibacterium sp. H4561577AB177643clade_290NN
Propionibacterium thoenii1581NR_042270clade_290NN
Bifidobacterium bifidum349ABQP01000027clade_293NN
Leuconostoc mesenteroides1183ACKV01000113clade_295NN
Leuconostoc pseudomesenteroides1184NR_040814clade_295NN
Eubacterium sp. oral clone JI012868AY349379clade_298YN
Johnsonella ignava1016X87152clade_298NN
Propionibacterium acnes1570ADJM01000010clade_299NN
Propionibacterium sp. 434_HC21576AFIL01000035clade_299NN
Propionibacterium sp. LG1578AY354921clade_299NN
Propionibacterium sp. S555a1579AB264622clade_299NN
Alicyclobacillus contaminans124NR_041475clade_301YN
Alicyclobacillus herbarius126NR_024753clade_301YN
Alicyclobacillus pomorum127NR_024801clade_301YN
Alicyclobacillus sp. CCUG 53762128HE613268clade_301NN
Actinomyces cardiffensis53GU470888clade_303NN
Actinomyces funkei55HQ906497clade_303NN
Actinomyces sp. HKU3174HQ335393clade_303NN
Actinomyces sp. oral taxon C5594HM099646clade_303NN
Kerstersia gyiorum1018NR_025669clade_307NN
Pigmentiphaga daeguensis1467JN585327clade_307NN
Aeromonas allosaccharophila104S39232clade_308NN
Aeromonas enteropelogenes105X71121clade_308NN
Aeromonas hydrophila106NC_008570clade_308NN
Aeromonas jandaei107X60413clade_308NN
Aeromonas salmonicida108NC_009348clade_308NN
Aeromonas trota109X60415clade_308NN
Aeromonas veronii110NR_044845clade_308NN
Blautia coccoides373AB571656clade_309YN
Blautia glucerasea374AB588023clade_309YN
Blautia glucerasei375AB439724clade_309YN
Blautia hansenii376ABYU02000037clade_309YN
Blautia luti378AB691576clade_309YN
Blautia producta379AB600998clade_309YN
Blautia schinkii380NR_026312clade_309YN
Blautia sp. M25381HM626178clade_309YN
Blautia stercoris382HM626177clade_309YN
Blautia wexlerae383EF036467clade_309YN
Bryantella formatexigens439ACCL02000018clade_309YN
Clostridium coccoides573EF025906clade_309YN
Eubacterium cellulosolvens839AY178842clade_309YN
Lachnospiraceae bacterium 6_1_63FAA1056ACTV01000014clade_309YN
Marvinbryantia formatexigens1196AJ505973clade_309NN
Ruminococcus hansenii1662M59114clade_309YN
Ruminococcus obeum1664AY169419clade_309YN
Ruminococcus sp. 5_1_39BFAA1666ACII01000172clade_309YN
Ruminococcus sp. K_11669AB222208clade_309YN
Syntrophococcus sucromutans1911NR_036869clade_309YN
Rhodobacter sp. oral taxon C301620HM099648clade_310NN
Rhodobacter sphaeroides1621CP000144clade_310NN
Lactobacillus antri1071ACLL01000037clade_313NN
Lactobacillus coleohominis1076ACOH01000030clade_313NN
Lactobacillus fermentum1083CP002033clade_313NN
Lactobacillus gastricus1085AICN01000060clade_313NN
Lactobacillus mucosae1099FR693800clade_313NN
Lactobacillus oris1103AEKL01000077clade_313NN
Lactobacillus pontis1111HM218420clade_313NN
Lactobacillus reuteri1112ACGW02000012clade_313NN
Lactobacillus sp. KLDS 1.07071127EU600911clade_313NN
Lactobacillus sp. KLDS 1.07091128EU600913clade_313NN
Lactobacillus sp. KLDS 1.07111129EU600915clade_313NN
Lactobacillus sp. KLDS 1.07131131EU600917clade_313NN
Lactobacillus sp. KLDS 1.07161132EU600921clade_313NN
Lactobacillus sp. KLDS 1.07181133EU600922clade_313NN
Lactobacillus sp. oral taxon 0521137GQ422710clade_313NN
Lactobacillus vaginalis1140ACGV01000168clade_313NN
Brevibacterium aurantiacum419NR_044854clade_314NN
Brevibacterium linens423AJ315491clade_314NN
Lactobacillus pentosus1108JN813103clade_315NN
Lactobacillus plantarum1110ACGZ02000033clade_315NN
Lactobacillus sp. KLDS 1.07021123EU600906clade_315NN
Lactobacillus sp. KLDS 1.07031124EU600907clade_315NN
Lactobacillus sp. KLDS 1.07041125EU600908clade_315NN
Lactobacillus sp. KLDS 1.07051126EU600909clade_315NN
Agrobacterium radiobacter115CP000628clade_316NN
Agrobacterium tumefaciens116AJ389893clade_316NN
Corynebacterium argentoratense685EF463055clade_317NN
Corynebacterium diphtheriae693NC_002935clade_317NOP
Corynebacterium pseudotuberculosis715NR_037070clade_317NN
Corynebacterium renale717NR_037069clade_317NN
Corynebacterium ulcerans731NR_074467clade_317NN
Aurantimonas coralicida191AY065627clade_318NN
Aureimonas altamirensis192FN658986clade_318NN
Lactobacillus acidipiscis1066NR_024718clade_320NN
Lactobacillus salivarius1117AEBA01000145clade_320NN
Lactobacillus sp. KLDS 1.07191134EU600923clade_320NN
Lactobacillus buchneri1073ACGH01000101clade_321NN
Lactobacillus genomosp. C11086AY278619clade_321NN
Lactobacillus genomosp. C21087AY278620clade_321NN
Lactobacillus hilgardii1089ACGP01000200clade_321NN
Lactobacillus kefiri1096NR_042230clade_321NN
Lactobacillus parabuchneri1105NR_041294clade_321NN
Lactobacillus parakefiri1107NR_029039clade_321NN
Lactobacillus curvatus1079NR_042437clade_322NN
Lactobacillus sakei1116DQ989236clade_322NN
Aneurinibacillus aneurinilyticus167AB101592clade_323NN
Aneurinibacillus danicus168NR_028657clade_323NN
Aneurinibacillus migulanus169NR_036799clade_323NN
Aneurinibacillus terranovensis170NR_042271clade_323NN
Staphylococcus aureus1757CP002643clade_325NCategory-B
Staphylococcus auricularis1758JQ624774clade_325NN
Staphylococcus capitis1759ACFR01000029clade_325NN
Staphylococcus caprae1760ACRH01000033clade_325NN
Staphylococcus carnosus1761NR_075003clade_325NN
Staphylococcus cohnii1762JN175375clade_325NN
Staphylococcus condimenti1763NR_029345clade_325NN
Staphylococcus epidermidis1764ACHE01000056clade_325NN
Staphylococcus equorum1765NR_027520clade_325NN
Staphylococcus haemolyticus1767NC_007168clade_325NN
Staphylococcus hominis1768AM157418clade_325NN
Staphylococcus lugdunensis1769AEQA01000024clade_325NN
Staphylococcus pasteuri1770FJ189773clade_325NN
Staphylococcus pseudintermedius1771CP002439clade_325NN
Staphylococcus saccharolyticus1772NR_029158clade_325NN
Staphylococcus saprophyticus1773NC_007350clade_325NN
Staphylococcus sp. clone bottae71777AF467424clade_325NN
Staphylococcus sp. H2921775AB177642clade_325NN
Staphylococcus sp. H7801776AB177644clade_325NN
Staphylococcus succinus1778NR_028667clade_325NN
Staphylococcus warneri1780ACPZ01000009clade_325NN
Staphylococcus xylosus1781AY395016clade_325NN
Cardiobacterium hominis490ACKY01000036clade_326NN
Cardiobacterium valvarum491NR_028847clade_326NN
Pseudomonas fluorescens1593AY622220clade_326NN
Pseudomonas gessardii1594FJ943496clade_326NN
Pseudomonas monteilii1596NR_024910clade_326NN
Pseudomonas poae1597GU188951clade_326NN
Pseudomonas putida1599AF094741clade_326NN
Pseudomonas sp. G12291601DQ910482clade_326NN
Pseudomonas tolaasii1604AF320988clade_326NN
Pseudomonas viridiflava1605NR_042764clade_326NN
Bacillus alcalophilus198X76436clade_327YN
Bacillus clausii205FN397477clade_327YOP
Bacillus gelatini210NR_025595clade_327YOP
Bacillus halodurans212AY144582clade_327YOP
Bacillus sp. oral taxon F26246HM099642clade_327YOP
Listeria grayi1185ACCR02000003clade_328NOP
Listeria innocua1186JF967625clade_328NN
Listeria ivanovii1187X56151clade_328NN
Listeria monocytogenes1188CP002003clade_328NCategory-B
Listeria welshimeri1189AM263198clade_328NOP
Capnocytophaga sp. oral clone ASCH05484AY923149clade_333NN
Capnocytophaga sputigena489ABZV01000054clade_333NN
Leptotrichia genomosp. C11166AY278621clade_334NN
Leptotrichia shahii1169AY029806clade_334NN
Leptotrichia sp. neutropenicPatient1170AF189244clade_334NN
Leptotrichia sp. oral clone GT0181171AY349384clade_334NN
Leptotrichia sp. oral clone GT0201172AY349385clade_334NN
Bacteroides sp. 20_3296ACRQ01000064clade_335NN
Bacteroides sp. 3_1_19307ADCJ01000062clade_335NN
Bacteroides sp. 3_2_5311ACIB01000079clade_335NN
Parabacteroides distasonis1416CP000140clade_335NN
Parabacteroides goldsteinii1417AY974070clade_335NN
Parabacteroides gordonii1418AB470344clade_335NN
Parabacteroides sp. D131421ACPW01000017clade_335NN
Capnocytophaga genomosp. C1477AY278613clade_336NN
Capnocytophaga ochracea480AEOH01000054clade_336NN
Capnocytophaga sp. GEJ8481GU561335clade_336NN
Capnocytophaga sp. oral strain A47ROY486AY005077clade_336NN
Capnocytophaga sp. S1b482U42009clade_336NN
Paraprevotella clara1426AFFY01000068clade_336NN
Bacteroides heparinolyticus282JN867284clade_338NN
Prevotella heparinolytica1500GQ422742clade_338NN
Treponema genomosp. P4 oral clone1928DQ003618clade_339NN
MB2_G19
Treponema genomosp. P6 oral clone1930DQ003625clade_339NN
MB4_G11
Treponema sp. oral taxon 2541952GU408803clade_339NN
Treponema sp. oral taxon 5081956GU413616clade_339NN
Treponema sp. oral taxon 5181957GU413640clade_339NN
Chlamydia muridarum502AE002160clade_341NOP
Chlamydia trachomatis504U68443clade_341NOP
Chlamydia psittaci503NR_036864clade_342NCategory-B
Chiamydophila pneumoniae509NC_002179clade_342NOP
Chlamydophila psittaci510D85712clade_342NOP
Anaerococcus octavius146NR_026360clade_343NN
Anaerococcus sp. 8405254149HM587319clade_343NN
Anaerococcus sp. 9401487150HM587322clade_343NN
Anaerococcus sp. 9403502151HM587325clade_343NN
Gardnerella vaginalis923CP001849clade_344NN
Campylobacter lari466CP000932clade_346NOP
Anaerobiospirillum succiniciproducens142NR_026075clade_347NN
Anaerobiospirillum thomasii143AJ420985clade_347NN
Ruminobacter amylophilus1654NR_026450clade_347NN
Succinatimonas hippei1897AEVO01000027clade_347NN
Actinomyces europaeus54NR_026363clade_348NN
Actinomyces sp. oral clone GU00982AY349361clade_348NN
Moraxella catarrhalis1260CP002005clade_349NN
Moraxella lincolnii1261FR822735clade_349NN
Moraxella sp. 162851263JF682466clade_349NN
Psychrobacter sp. 139831613HM212668clade_349NN
Actinobaculum massiliae49AF487679clade_350NN
Actinobaculum schaalii50AY957507clade_350NN
Actinobaculum sp. BM#10134251AY282578clade_350NN
Actinobaculum sp. P2P_19 P152AY207066clade_350NN
Actinomyces sp. oral clone IO07684AY349363clade_350NN
Actinomyces sp. oral taxon 84893ACUY01000072clade_350NN
Clostridium innocuum595M23732clade_351YN
Clostridium sp. HGF2628AENW01000022clade_351YN
Actinomyces neuii65X71862clade_352NN
Mobiluncus mulieris1252ACKW01000035clade_352NN
Clostridium perfringens612ABDW01000023clade_353YCategory-B
Sarcina ventriculi1687NR_026146clade_353YN
Clostridium bartlettii556ABEZ02000012clade_354YN
Clostridium bifermentans558X73437clade_354YN
Clostridium ghonii586AB542933clade_354YN
Clostridium glycolicum587FJ384385clade_354YN
Clostridium mayombei605FR733682clade_354YN
Clostridium sordellii625AB448946clade_354YN
Clostridium sp. MT4 E635FJ159523clade_354YN
Eubacterium tenue872M59118clade_354YN
Clostridium argentinense553NR_029232clade_355YN
Clostridium sp. JC122630CAEV01000127clade_355YN
Clostridium sp. NMBHI_1636JN093130clade_355YN
Clostridium subterminale650NR_041795clade_355YN
Clostridium sulfidigenes651NR_044161clade_355YN
Blastomonas natatoria372NR_040824clade_356NN
Novospbingobium aromaticivorans1357AAAV03000008clade_356NN
Sphingomonas sp. oral clone FI0121745AY349411clade_356NN
Sphingopyxis alaskensis1749CP000356clade_356NN
Oxalobacter formigenes1389ACDQ01000020clade_357NN
Veillonella atypica1974AEDS01000059clade_358NN
Veillonella dispar1975ACIK02000021clade_358NN
Veillonella genomosp. P1 oral clone1976DQ003631clade_358NN
MB5_P17
Veillonella parvula1978ADFU01000009clade_358NN
Veillonella sp. 3_1_441979ADCV01000019clade_358NN
Veillonella sp. 6_1_271980ADCW01000016clade_358NN
Veillonella sp. ACP11981HQ616359clade_358NN
Veillonella sp. AS161982HQ616365clade_358NN
Veillonella sp. BS32b1983HQ616368clade_358NN
Veillonella sp. ICM51a1984HQ616396clade_358NN
Veillonella sp. MSA121985HQ616381clade_358NN
Veillonella sp. NVG 100cf1986EF108443clade_358NN
Veillonella sp. OK111987JN695650clade_358NN
Veillonella sp. oral clone ASCG011990AY923144clade_358NN
Veillonella sp. oral clone ASCG021991AY953257clade_358NN
Veillonella sp. oral clone OH1A1992AY947495clade_358NN
Veillonella sp. oral taxon 1581993AENU01000007clade_358NN
Dorea formicigenerans773AAXA02000006clade_360YN
Dorea longicatena774AJ132842clade_360YN
Lachnospiraceae bacterium 2_1_46FAA1050ADLB01000035clade_360YN
Lachnospiraceae bacterium 2_1_58FAA1051ACTO01000052clade_360YN
Lachnospiraceae bacterium 4_1_37FAA1053ADCR01000030clade_360YN
Lachnospiraceae bacterium 9_1_43BFAA1058ACTX01000023clade_360YN
Ruminococcus gnavus1661X94967clade_360YN
Ruminococcus sp. ID81668AY960564clade_360YN
Kocuria marina1040GQ260086clade_365NN
Kocuria rhizophila1042AY030315clade_365NN
Kocuria rosea1043X87756clade_365NN
Kocuria varians1044AF542074clade_365NN
Blautia hydrogenotrophica377ACBZ01000217clade_368YN
Clostridiaceae bacterium END_2531EF451053clade_368NN
Lactonifactor longoviformis1147DQ100449clade_368YN
Robinsoniella peoriensis1633AF445258clade_368YN
Micrococcus antarcticus1242NR_025285clade_371NN
Micrococcus luteus1243NR_075062clade_371NN
Micrococcus lylae1244NR_026200clade_371NN
Micrococcus sp. 1851245EU714334clade_371NN
Lactobacillus brevis1072EU194349clade_372NN
Lactobacillus parabrevis1104NR_042456clade_372NN
Pediococcus acidilactici1436ACXB01000026clade_372NN
Pediococcus pentosaceus1437NR_075052clade_372NN
Lactobacillus dextrinicus1081NR_036861clade_373NN
Lactobacillus perolens1109NR_029360clade_373NN
Lactobacillus rhamnosus1113ABWJ01000068clade_373NN
Lactobacillus saniviri1118AB602569clade_373NN
Lactobacillus sp. BT61121HQ616370clade_373NN
Mycobacterium mageritense1282FR798914clade_374NOP
Mycobacterium neoaurum1286AF268445clade_374NOP
Mycobacterium smegmatis1291CP000480clade_374NOP
Mycobacterium sp. HE51304AJ012738clade_374NN
Dysgonomonas gadei775ADLV01000001clade_377NN
Dysgonomonas mossii776ADLW01000023clade_377NN
Porphyromonas levii1474NR_025907clade_377NN
Porphyromonas somerae1476AB547667clade_377NN
Bacteroides barnesiae267NR_041446clade_378NN
Bacteroides coprocola272ABIY02000050clade_378NN
Bacteroides coprophilus273ACBW01000012clade_378NN
Bacteroides dorei274ABWZ01000093clade_378NN
Bacteroides massiliensis284AB200226clade_378NN
Bacteroides plebeius289AB200218clade_378NN
Bacteroides sp. 3_1_33FAA309ACPS01000085clade_378NN
Bacteroides sp. 3_1_40A310ACRT01000136clade_378NN
Bacteroides sp. 4_3_47FAA313ACDR02000029clade_378NN
Bacteroides sp. 9_1_42FAA314ACAA01000096clade_378NN
Bacteroides sp. NB_8323AB117565clade_378NN
Bacteroides vulgatus331CP000139clade_378NN
Bacteroides ovatus287ACWH01000036clade_38NN
Bacteroides sp. 1_1_30294ADCL01000128clade_38NN
Bacteroides sp. 2_1_22297ACPQ01000117clade_38NN
Bacteroides sp. 2_2_4299ABZZ01000168clade_38NN
Bacteroides sp. 3_1_23308ACRS01000081clade_38NN
Bacteroides sp. D1318ACAB02000030clade_38NN
Bacteroides sp. D2321ACGA01000077clade_38NN
Bacteroides sp. D22320ADCK01000151clade_38NN
Bacteroides xylanisolvens332ADKP01000087clade_38NN
Treponema lecithinolyticum1931NR_026247clade_380NOP
Treponema parvum1933AF302937clade_380NOP
Treponema sp. oral clone JU0251940AY349417clade_380NN
Treponema sp. oral taxon 2701954GQ422733clade_380NN
Parascardovia denticolens1428ADEB01000020clade_381NN
Scardovia inopinata1688AB029087clade_381NN
Scardovia wiggsiae1689AY278626clade_381NN
Clostridiales bacterium 9400853533HM587320clade_384NN
Eubacterium infirmum849U13039clade_384YN
Eubacterium sp. WAL 14571864FJ687606clade_384YN
Mogibacterium diversum1254NR_027191clade_384NN
Mogibacterium neglectum1255NR_027203clade_384NN
Mogibacterium pumilum1256NR_028608clade_384NN
Mogibacterium timidum1257Z36296clade_384NN
Erysipeiotrichaceae bacterium 5_2_54FAA823ACZW01000054clade_385YN
Eubacterium biforme835ABYT01000002clade_385YN
Eubacterium cylindroides842FP929041clade_385YN
Eubacterium dolichum844L34682clade_385YN
Eubacterium sp. 3_1_31861ACTL01000045clade_385YN
Eubacterium tortuosum873NR_044648clade_385YN
Borrelia burgdorferi389ABGI01000001clade_386NOP
Borrelia garinii392ABJV01000001clade_386NOP
Borrelia sp. NE49397AJ224142clade_386NOP
Caldimonas manganoxidans457NR_040787clade_387NN
Comamonadaceae bacterium oral taxon667HM099651clade_387NN
F47
Lautropia mirabilis1149AEQP01000026clade_387NN
Lautropia sp. oral clone AP0091150AY005030clade_387NN
Bulleidia extructa441ADFR01000011clade_388YN
Solobacterium moorei1739AECQ01000039clade_388YN
Peptoniphilus asaccharolyticus1441D14145clade_389NN
Peptoniphilus duerdenii1442EU526290clade_389NN
Peptoniphilus harei1443NR_026358clade_389NN
Peptoniphilus indolicus1444AY153431clade_389NN
Peptoniphilus lacrimalis1446ADDO01000050clade_389NN
Peptoniphilus sp. gpac0771450AM176527clade_389NN
Peptoniphilus sp. JC1401447JF824803clade_389NN
Peptoniphilus sp. oral taxon 3861452ADCS01000031clade_389NN
Peptoniphilus sp. oral taxon 8361453AEAA01000090clade_389NN
Peptostreptococcaceae bacterium ph11454JN837495clade_389NN
Dialister pneumosintes765HM596297clade_390NN
Dialister sp. oral taxon 502767GQ422739clade_390NN
Cupriavidus metallidurans741GU230889clade_391NN
Herbaspirillum seropedicae1001CP002039clade_391NN
Herbaspirillum sp. JC2061002JN657219clade_391NN
Janthinobacterium sp. SY121015EF455530clade_391NN
Massilia sp. CCUG 43427A1197FR773700clade_391NN
Ralstonia pickettii1615NC_010682clade_391NN
Ralstonia sp. 5_7_47FAA1616ACUF01000076clade_391NN
Francisella novicida889ABSS01000002clade_392NN
Francisella philomiragia890AY928394clade_392NN
Francisella tularensis891ABAZ01000082clade_392NCategory-A
Ignatzschineria indica1009HQ823562clade_392NN
Ignatzschineria sp. NML 95_02601010HQ823559clade_392NN
Coprococcus catus673EU266552clade_393YN
Lachnospiraceae bacterium oral taxon F151064HM099641clade_393YN
Streptococcus mutans1814AP010655clade_394NN
Clostridium cochlearium574NR_044717clade_395YN
Clostridium malenominatum604FR749893clade_395YN
Clostridium tetani654NC_004557clade_395YN
Acetivibrio ethanolgignens6FR749897clade_396YN
Anaerosporobacter mobilis161NR_042953clade_396YN
Bacteroides pectinophilus288ABVQ01000036clade_396YN
Clostridium aminovalericum551NR_029245clade_396YN
Clostridium phytofermentans613NR_074652clade_396YN
Eubacterium hallii848L34621clade_396YN
Eubacterium xylanophilum875L34628clade_396YN
Lactobacillus gasseri1084ACOZ01000018clade_398NN
Lactobacillus hominis1090FR681902clade_398NN
Lactobacillus iners1091AEKJ01000002clade_398NN
Lactobacillus johnsonii1093AE017198clade_398NN
Lactobacillus senioris1119AB602570clade_398NN
Lactobacillus sp. oral clone HT0021135AY349382clade_398NN
Weissella beninensis2006EU439435clade_398NN
Sphingomonas echinoides1744NR_024700clade_399NN
Sphingomonas sp. oral taxon A091747HM099639clade_399NN
Sphingomonas sp. oral taxon F711748HM099645clade_399NN
Zymomonas mobilis2032NR_074274clade_399NN
Arcanobacterium haemolyticum174NR_025347clade_400NN
Arcanobacterium pyogenes175GU585578clade_400NN
Trueperella pyogenes1962NR_044858clade_400NN
Lactococcus garvieae1144AF061005clade_401NN
Lactococcus lactis1145CP002365clade_401NN
Brevibacterium mcbrellneri424ADNU01000076clade_402NN
Brevibacterium paucivorans425EU086796clade_402NN
Brevibacterium sp. JC43428JF824806clade_402NN
Selenomonas artemidis1692HM596274clade_403NN
Selenomonas sp. FOBRC91704HQ616378clade_403NN
Selenomonas sp. oral taxon 1371715AENV01000007clade_403NN
Desmospora activa751AM940019clade_404NN
Desmospora sp. 8437752AFHT01000143clade_404NN
Paenibacillus sp. oral taxon F451407HM099647clade_404NN
Corynebacterium ammoniagenes682ADNS01000011clade_405NN
Corynebacterium aurimucosum687ACLH01000041clade_405NN
Corynebacterium bovis688AF537590clade_405NN
Corynebacterium canis689GQ871934clade_405NN
Corynebacterium casei690NR_025101clade_405NN
Corynebacterium durum694Z97069clade_405NN
Corynebacterium efficiens695ACLI01000121clade_405NN
Corynebacterium falsenii696Y13024clade_405NN
Corynebacterium flavescens697NR_037040clade_405NN
Corynebacterium glutamicum701BA000036clade_405NN
Corynebacterium jeikeium704ACYW01000001clade_405NOP
Corynebacterium kroppenstedtii705NR_026380clade_405NN
Corynebacterium lipophiloflavum706ACHJ01000075clade_405NN
Corynebacterium matruchotii709ACSH02000003clade_405NN
Corynebacterium minutissimum710X82064clade_405NN
Corynebacterium resistens718ADGN01000058clade_405NN
Corynebacterium simulans720AF537604clade_405NN
Corynebacterium singulare721NR_026394clade_405NN
Corynebacterium sp. 1 ex sheep722Y13427clade_405NN
Corynebacterium sp. NML 99_0018726GU238413clade_405NN
Corynebacterium striatum727ACGE01000001clade_405NOP
Corynebacterium urealyticum732X81913clade_405NOP
Corynebacterium variabile734NR_025314clade_405NN
Ruminococcus callidus1658NR_029160clade_406YN
Ruminococcus champanellensis1659FP929052clade_406YN
Ruminococcus sp. 18P131665AJ515913clade_406YN
Ruminococcus sp. 9SE511667FM954974clade_406YN
Aerococcus sanguinicola98AY837833clade_407NN
Aerococcus urinae99CP002512clade_407NN
Aerococcus urinaeequi100NR_043443clade_407NN
Aerococcus viridans101ADNT01000041clade_407NN
Anaerostipes caccae162ABAX03000023clade_408YN
Anaerostipes sp. 3_2_56FAA163ACWB01000002clade_408YN
Clostridiales bacterium 1_7_47FAA541ABQR01000074clade_408YN
Clostridiales sp. SM4_1542FP929060clade_408YN
Clostridiales sp. SSC_2544FP929061clade_408YN
Clostridium aerotolerans546X76163clade_408YN
Clostridium aldenense547NR_043680clade_408YN
Clostridium algidixylanolyticum550NR_028726clade_408YN
Clostridium amygdalinum552AY353957clade_408YN
Clostridium asparagiforme554ACCJ01000522clade_408YN
Clostridium bolteae559ABCC02000039clade_408YN
Clostridium celerecrescens566JQ246092clade_408YN
Clostridium citroniae569ADLJ01000059clade_408YN
Clostridium clostridiiformes571M59089clade_408YN
Clostridium clostridioforme572NR_044715clade_408YN
Clostridium hathewayi590AY552788clade_408YN
Clostridium indolis594AF028351clade_408YN
Clostridium lavalense600EF564277clade_408YN
Clostridium saccharolyticum620CP002109clade_408YN
Clostridium sp. M62_1633ACFX02000046clade_408YN
Clostridium sp. SS2_1638ABGC03000041clade_408YN
Clostridium sphenoides643X73449clade_408YN
Clostridium symbiosum652ADLQ01000114clade_408YN
Clostridium xylanolyticum658NR_037068clade_408YN
Eubacterium hadrum847FR749933clade_408YN
Fusobacterium naviforme898HQ223106clade_408NN
Lachnospiraceae bacterium 3_1_57FAA1052ACTP01000124clade_408YN
Lachnospiraceae bacterium 5_1_63FAA1055ACTS01000081clade_408YN
Lachnospiraceae bacterium A41059DQ789118clade_408YN
Lachnospiraceae bacterium DJF VP301060EU728771clade_408YN
Lachnospiraceae genomosp. C11065AY278618clade_408YN
Moryella indoligenes1268AF527773clade_408NN
Clostridium difficile578NC_013315clade_409YOP
Selenomonas genomosp. P51697AY341820clade_410NN
Selenomonas sp. oral clone IQ0481710AY349408clade_410NN
Selenomonas sputigena1717ACKP02000033clade_410NN
Hyphomicrobium sulfonivorans1007AY468372clade_411NN
Methylocella silvestris1228NR_074237clade_411NN
Legionella pneumophila1153NC_002942clade_412NOP
Lactobacillus coryniformis1077NR_044705clade_413NN
Arthrobacter agilis178NR_026198clade_414NN
Arthrobacter arilaitensis179NR_074608clade_414NN
Arthrobacter bergerei180NR_025612clade_414NN
Arthrobacter globiformis181NR_026187clade_414NN
Arthrobacter nicotianae182NR_026190clade_414NN
Mycobacterium abscessus1269AGQU01000002clade_418NOP
Mycobacterium chelonae1273AB548610clade_418NOP
Bacteroides salanitronis291CP002530clade_419NN
Paraprevotella xylaniphila1427AFBR01000011clade_419NN
Barnesiella intestinihominis336AB370251clade_420NN
Barnesiella viscericola337NR_041508clade_420NN
Parabacteroides sp. NS31_31422JN029805clade_420NN
Porphyromonadaceae bacterium NML1470EF184292clade_420NN
060648
Tannerella forsythia1913CP003191clade_420NN
Tannerella sp. 6_1_58FAA_CT11914ACWX01000068clade_420NN
Mycoplasma amphoriforme1311AY531656clade_421NN
Mycoplasma genitalium1317L43967clade_421NN
Mycoplasma pneumoniae1322NC_000912clade_421NN
Mycoplasma penetrans1321NC_004432clade_422NN
Ureaplasma parvum1966AE002127clade_422NN
Ureaplasma urealyticum1967AAYN01000002clade_422NN
Treponema genomosp. P11927AY341822clade_425NN
Treponema sp. oral taxon 2281943GU408580clade_425NN
Treponema sp. oral taxon 2301944GU408603clade_425NN
Treponema sp. oral taxon 2311945GU408631clade_425NN
Treponema sp. oral taxon 2321946GU408646clade_425NN
Treponema sp. oral taxon 2351947GU408673clade_425NN
Treponema sp. ovine footrot1959AJ010951clade_425NN
Treponema vincentii1960ACYH01000036clade_425NOP
Eubacterium sp. AS15b862HQ616364clade_428YN
Eubacterium sp. OBRC9863HQ616354clade_428YN
Eubacterium sp. oral clone OH3A871AY947497clade_428YN
Eubacterium yurii876AEES01000073clade_428YN
Clostridium acetobutylicum545NR_074511clade_430YN
Clostridium algidicarnis549NR_041746clade_430YN
Clostridium cadaveris562AB542932clade_430YN
Clostridium carboxidivorans563FR733710clade_430YN
Clostridium estertheticum580NR_042153clade_430YN
Clostridium fallax581NR_044714clade_430YN
Clostridium felsineum583AF270502clade_430YN
Clostridium frigidicarnis584NR_024919clade_430YN
Clostridium kluyveri598NR_074165clade_430YN
Clostridium magnum603X77835clade_430YN
Clostridium putrefaciens615NR_024995clade_430YN
Clostridium sp. HPB_46629AY862516clade_430YN
Clostridium tyrobutyricum656NR_044718clade_430YN
Burkholderiales bacterium 1_1_47452ADCQ01000066clade_432NOP
Parasutterella excrementihominis1429AFBP01000029clade_432NN
Parasutterella secunda1430AB491209clade_432NN
Sutterella morbirenis1898AJ832129clade_432NN
Sutterella parvirubra1899AB300989clade_432YN
Sutterella sanguinus1900AJ748647clade_432NN
Sutterella sp. YIT 120721901AB491210clade_432NN
Sutterella stercoricanis1902NR_025600clade_432NN
Sutterella wadsworthensis1903ADMF01000048clade_432NN
Propionibacterium freudenreichii1572NR_036972clade_433NN
Propionibacterium sp. oral taxon 1921580GQ422728clade_433NN
Tessaracoccus sp. oral taxon F041917HM099640clade_433NN
Peptoniphilus ivorii1445Y07840clade_434NN
Peptoniphilus sp. gpac0071448AM176517clade_434NN
Peptoniphilus sp. gpac018A1449AM176519clade_434NN
Peptoniphilus sp. gpac1481451AM176535clade_434NN
Flexispira rappini887AY126479clade_436NN
Helicobacter bilis993ACDN01000023clade_436NN
Helicobacter cinaedi995ABQT01000054clade_436NN
Helicobacter sp. None998U44756clade_436NN
Brevundimonas subvibrioides429CP002102clade_438NN
Hyphomonas neptunium1008NR_074092clade_438NN
Phenylobacterium zucineum1465AY628697clade_438NN
Acetanaerobaeterium elongatum4NR_042930clade_439YN
Clostridium cellulosi567NR_044624clade_439YN
Ethanoligenens harbinense832AY675965clade_439YN
Streptococcus downei1793AEKN01000002clade_441NN
Streptococcus sp. SHV5151848Y07601clade_441NN
Acinetobacter sp. CIP 53.8240JQ638584clade_443NN
Halomonas elongata990NR_074782clade_443NN
Halomonas johnsoniae991FR775979clade_443NN
Butyrivibrio fibrisolvens456U41172clade_444NN
Eubacterium rectale856FP929042clade_444YN
Eubacterium sp. oral clone GI038865AY349374clade_444YN
Lachnobacterium bovis1045GU324407clade_444YN
Roseburia cecicola1634GU233441clade_444YN
Roseburia faecalis1635AY804149clade_444YN
Roseburia faecis1636AY305310clade_444YN
Roseburia hominis1637AJ270482clade_444YN
Roseburia intestinalis1638FP929050clade_444YN
Roseburia inulinivorans1639AJ270473clade_444YN
Roseburia sp. 11SE371640FM954975clade_444NN
Roseburia sp. 11SE381641FM954976clade_444NN
Shuttleworthia satelles1728ACIP02000004clade_444NN
Shuttleworthia sp. MSX8B1729HQ616383clade_444NN
Shuttleworthia sp. oral taxon G691730GU432167clade_444NN
Bdellovibrio sp. MPA344AY294215clade_445NN
Desulfobulbus sp. oral clone CH031755AY005036clade_445NN
Desulfovibrio desulfuricans757DQ092636clade_445NN
Desulfovibrio fairfieldensis758U42221clade_445NN
Desulfovibrio piger759AF192152clade_445NN
Desulfovibrio sp. 3_1_syn3760ADDR01000239clade_445NN
Geobacter bemidjiensis941CP001124clade_445NN
Brachybacterium alimentarium401NR_026269clade_446NN
Brachybacterium conglomeratum402AB537169clade_446NN
Brachybacterium tyrofermentans403NR_026272clade_446NN
Dermabacter hominis749FJ263375clade_446NN
Aneurinibacillus thermoaerophilus171NR_029303clade_448NN
Brevibacillus agri409NR_040983clade_448NN
Brevibacillus brevis410NR_041524clade_448YN
Brevibacillus centrosporus411NR_043414clade_448NN
Brevibacillus choshinensis412NR_040980clade_448NN
Brevibacillus invocatus413NR_041836clade_448NN
Brevibacillus laterosporus414NR_037005clade_448YN
Brevibacillus parabrevis415NR_040981clade_448NN
Brevibacillus reuszeri416NR_040982clade_448NN
Brevibacillus sp. phR417JN837488clade_448NN
Brevibacillus thermoruber418NR_026514clade_448NN
Lactobacillus murinus1100NR_042231clade_449NN
Lactobacillus oeni1102NR_043095clade_449NN
Lactobacillus ruminis1115ACGS02000043clade_449NN
Lactobacillus vini1141NR_042196clade_449NN
Gemella haemolysans924ACDZ02000012clade_450NN
Gemella morbillorum925NR_025904clade_450NN
Gemella morbillorum926ACRX01000010clade_450NN
Gemella sanguinis927ACRY01000057clade_450NN
Gemella sp. oral clone ASCE02929AY923133clade_450NN
Gemella sp. oral clone ASCF04930AY923139clade_450NN
Gemella sp. oral clone ASCF12931AY923143clade_450NN
Gemella sp. WAL 1945J928EU427463clade_450NN
Bacillus coagulans206DQ297928clade_451YOP
Sporolactobacillus inulinus1752NR_040962clade_451YN
Sporolactobacillus nakayamae1753NR_042247clade_451NN
Gluconacetobacter entanii945NR_028909clade_452NN
Gluconacetobacter europaeus946NR_026513clade_452NN
Gluconacetobacter hansenii947NR_026133clade_452NN
Gluconacetobacter oboediens949NR_041295clade_452NN
Gluconacetobacter xylinus950NR_074338clade_452NN
Auritibacter ignavus193FN554542clade_453NN
Dermacoccus sp. Ellin185750AEIQ01000090clade_453NN
Janibacter limosus1013NR_026362clade_453NN
Janibacter melonis1014EF063716clade_453NN
Kocuria palustris1041EU333884clade_453YN
Acetobacter aceti7NR_026121clade_454NN
Acetobacter fabarum8NR_042678clade_454NN
Acetobacter lovaniensis9NR_040832clade_454NN
Acetobacter malorum10NR_025513clade_454NN
Acetobacter orientalis11NR_028625clade_454NN
Acetobacter pasteurianus12NR_026107clade_454NN
Acetobacter pomorum13NR_042112clade_454NN
Acetobacter syzygii14NR_040868clade_454NN
Acetobacter tropicalis15NR_036881clade_454NN
Gluconacetobacter azotocaptans943NR_028767clade_454NN
Gluconacetobacter diazotrophicus944NR_074292clade_454NN
Gluconacetobacter johannae948NR_024959clade_454NN
Nocardia brasiliensis1351AIHV01000038clade_455NN
Nocardia cyriacigeorgica1352HQ009486clade_455NN
Nocardia farcinica1353NC_006361clade_455YN
Nocardia puris1354NR_028994clade_455NN
Nocardia sp. 01_Je_0251355GU574059clade_455NN
Rhodococcus equi1623ADNW01000058clade_455NN
Bacillus sp. oral taxon F28247HM099650clade_456YOP
Oceanobacillus caeni1358NR_041533clade_456NN
Oceanobacillus sr. Ndiop1359CAER01000083clade_456NN
Ornithinibacillus bavariensis1384NR_044923clade_456NN
Ornithinibacillus sp. 7_10AIA1385FN397526clade_456NN
Virgibacillus proomii2005NR_025308clade_456NN
Corynebacterium amycolatum683ABZU01000033clade_457NOP
Corynebacterium hansenii702AM946639clade_457NN
Corynebacterium xerosis735FN179330clade_457NOP
Staphylococcaceae bacterium NML1756AY841362clade_458NN
92 _0017
Staphylococcus fleurettii1766NR_041326clade_458NN
Staphylococcus sciuri1774NR_025520clade_458NN
Staphylococcus vitulinus1779NR_024670clade_458NN
Stenotrophomonas maltophilia1782AAVZ01000005clade_459NN
Stenotrophomonas sp. FG_61783EF017810clade_459NN
Mycobacterium africanum1270AF480605clade_46NOP
Mycobacterium alsiensis1271AJ938169clade_46NOP
Mycobacterium avium1272CP000479clade_46NOP
Mycobacterium colombiense1274AM062764clade_46NOP
Mycobacterium gordonae1276GU142930clade_46NOP
Mycobacterium intracellulare1277GQ153276clade_46NOP
Mycobacterium kansasii1278AF480601clade_46NOP
Mycobacterium lacus1279NR_025175clade_46NOP
Mycobacterium leprae1280FM211192clade_46NOP
Mycobacterium lepromatosis1281EU203590clade_46NOP
Mycobacterium mantenii1283FJ042897clade_46NOP
Mycobacterium marinum1284NC_010612clade_46NOP
Mycobacterium microti1285NR_025234clade_46NOP
Mycobacterium parascrofulaceum1287ADNV01000350clade_46NOP
Mycobacterium seoulense1290DQ536403clade_46NOP
Mycobacterium sp. 17611292EU703150clade_46NN
Mycobacterium sp. 17911295EU703148clade_46NN
Mycobacterium sp. 17971296EU703149clade_46NN
Mycobacterium sp. B10_07.09.02061298HQ174245clade_46NN
Mycobacterium sp. NLA0010007361305HM627011clade_46NN
Mycobacterium sp. W1306DQ437715clade_46NN
Mycobacterium tuberculosis1307CP001658clade_46NCategory-C
Mycobacterium ulcerans1308AB548725clade_46NOP
Mycobacterium vulneris1309EU834055clade_46NOP
Xanthomonas campestris2016EF101975clade_461NN
Xanthomonas sp. kmd_4892017EU723184clade_461NN
Dietzia natronolimnaea769GQ870426clade_462NN
Dietzia sp. BBDP51770DQ337512clade_462NN
Dietzia sp. CA149771GQ870422clade_462NN
Dietzia timorensis772GQ870424clade_462NN
Gordonia bronchialis951NR_027594clade_463NN
Gordonia polyisoprenivorans952DQ385609clade_463NN
Gordonia sp. KTR9953DQ068383clade_463NN
Gordonia sputi954FJ536304clade_463NN
Gordonia terrae955GQ848239clade_463NN
Leptotrichia goodfellowii1167ADAD01000110clade_465NN
Leptotrichia sp. oral clone IK0401174AY349387clade_465NN
Leptotrichia sp. oral clone P2PB_51 P11175AY207053clade_465NN
Bacteroidales genomosp. P7 oral clone264DQ003623clade_466NN
MB3_P19
Butyricimonas virosa454AB443949clade_466NN
Odoribacter laneus1363AB490805clade_466NN
Odoribacter splanchnicus1364CP002544clade_466NN
Capnocytophaga gingivalis478ACLQ01000011clade_467NN
Capnocytophaga granulosa479X97248clade_467NN
Capnocytophaga sp. oral clone AH015483AY005074clade_467NN
Copnocytophoga sp. oral strain S3487AY005073clade_467NN
Copnocytophaga sp. oral taxon 338488AEXX01000050clade_467NN
Capnocytophaga canimorsus476CP002113clade_468NN
Copnocytophoga sp. oral clone ID062485AY349368clade_468NN
Catenibacterium mitsuokai495AB030224clade_469YN
Clostridium sp. TM_40640AB249652clade_469YN
Coprobacillus cateniformis670AB030218clade_469YN
Coprobacillus sp. 29_1671ADKX01000057clade_469YN
Lactobacillus catenaformis1075M23729clade_469NN
Lactobacillus vitulinus1142NR_041305clade_469NN
Cetobacterium somerae501AJ438155clade_470NN
Clostridium rectum618NR_029271clade_470YN
Fusobacterium gonidiaformans896ACET01000043clade_470NN
Fusobacterium mortiferum897ACDB02000034clade_470NN
Fusobacterium necrogenes899X55408clade_470NN
Fusobacterium necrophorum900AM905356clade_470NN
Fusobacterium sp. 12_1B905AGWJ01000070clade_470NN
Fusobacterium sp. 3_1_5R911ACDD01000078clade_470NN
Fusobacterium sp. D12918ACDG02000036clade_470NN
Fusobacterium ulcerans921ACDH01000090clade_470NN
Fusobacterium varium922ACIE01000009clade_470NN
Mycoplasma arthritidis1312NC_011025clade_473NN
Mycoplasma faucium1314NR_024983clade_473NN
Mycoplasma hominis1318AF443616clade_473NN
Mycoplasma orale1319AY796060clade_473NN
Mycoplasma salivarium1324M24661clade_473NN
Mitsuokella jalaludinii1247NR_028840clade_474NN
Mitsuokella multacida1248ABWK02000005clade_474NN
Mitsuokella sp. oral taxon 5211249GU413658clade_474NN
Mitsuokella sp. oral taxon G681250GU432166clade_474NN
Selenomonas genomosp. C11695AY278627clade_474NN
Selenomonas genomosp. P8 oral clone1700DQ003628clade_474NN
MB5_P06
Selenomonas ruminantium1703NR_075026clade_474NN
Veillonellaceae bacterium oral taxon 1311994GU402916clade_474NN
Alloscardoria omnicolens139NR_042583clade_475NN
Alloscardovia sp. OB7196140AB425070clade_475NN
Bifidobacterium urinalis366AJ278695clade_475NN
Eubacterium nodatum854U13041clade_476YN
Eubacterium saphenum859NR_026031clade_476YN
Eubacterium sp. oral clone JH012867AY349373clade_476YN
Eubacterium sp. oral clone JS001870AY349378clade_476YN
Faecalibacterium prausnitzii880ACOP02000011clade_478YN
Gemmiger formicilis932GU562446clade_478YN
Subdoligranulum variabile1896AJ518869clade_478YN
Clostridiaceae bacterium JC13532JF824807clade_479YN
Clostridium sp. MLG055634AF304435clade_479YN
Erysipelotrichaceae bacterium 3_1_53822ACTJ01000113clade_479YN
Prevotella loescheii1503JN867231clade_48NN
Prevotella sp. oral clone ASCG121530DQ272511clade_48NN
Prevotella sp. oral clone GU0271540AY349398clade_48NN
Prevotella sp. oral taxon 4721553ACZS01000106clade_48NN
Selenomonas dianae1693GQ422719clade_480NN
Selenomonas flueggei1694AF287803clade_480NN
Selenomonas genomosp. C21696AY278628clade_480NN
Selenomonas genomosp. P6 oral clone1698DQ003636clade_480NN
MB3_C41
Selenomonas genomosp. P7 oral clone1699DQ003627clade_480NN
MB5_C08
Selenomonas infelix1701AF287802clade_480NN
Selenomonas noxia1702GU470909clade_480NN
Selenomonas sp. oral clone FT0501705AY349403clade_480NN
Selenomonas sp. oral clone GI0641706AY349404clade_480NN
Selenomonas sp. oral clone GT0101707AY349405clade_480NN
Selenomonas sp. oral clone HU0511708AY349406clade_480NN
Selenomonas sp. oral clone IK0041709AY349407clade_480NN
Selenomonas sp. oral clone JI0211711AY349409clade_480NN
Selenomonas sp. oral clone JS0311712AY349410clade_480NN
Selenomonas sp. oral clone OH4A1713AY947498clade_480NN
Selenomonas sp. oral clone P2PA_80 P41714AY207052clade_480NN
Selenomonas sp. oral taxon 1491716AEEJ01000007clade_480NN
Veillonellaceae bacterium oral taxon 1551995GU470897clade_480NN
Clostridium cocleatum575NR_026495clade_481YN
Clostridium ramosum617M23731clade_481YN
Clostridium saccharogumia619DQ100445clade_481YN
Clostridium spiroforme644X73441clade_481YN
Coprobacillus sp. D7672ACDT01000199clade_481YN
Clostridiales bacterium SY8519535AB477431clade_482YN
Clostridium sp. SY8519639AP012212clade_482YN
Eubacterium ramulus855AJ011522clade_482YN
Agrococcus jenensis117NR_026275clade_484YN
Microbacterium gubbeenense1232NR_025098clade_484NN
Pseudoclavibacter sp. Timone1590FJ375951clade_484NN
Tropheryma whipplei1961BX251412clade_484NN
Zimmermannella bifida2031AB012592clade_484NN
Erysipelothrix inopinata819NR_025594clade_485YN
Erysipelothrix rhusiopathiae820ACLK01000021clade_485YN
Erysipelothrix tonsillarum821NR_040871clade_485YN
Holdemania filiformis1004Y11466clade_485YN
Mollicutes bacterium pACH931258AY297808clade_485YN
Coxiella burnetii736CP000890clade_486YCategory-B
Legionella hackeliae1151M36028clade_486NOP
Legionella longbeachae1152M36029clade_486NOP
Legionella sp. D39231154JN380999clade_486NOP
Legionella sp. D40881155JN381012clade_486NOP
Legionella sp. H631156JF831047clade_486NOP
Legionella sp. NML 93L0541157GU062706clade_486NOP
Legionella steelei1158HQ398202clade_486NOP
Tatlockia micdadei1915M36032clade_486NN
Clostridium hiranonis591AB023970clade_487YN
Clostridium irregulare596NR_029249clade_487YN
Helicobacter pullorum996ABQU01000097clade_489NN
Acetobacteraceae bacterium AT_584416AGEZ01000040clade_490NN
Roseomonas cervicalis1643ADVL01000363clade_490NN
Roseomonas mucosa1644NR_028857clade_490NN
Roseomonas sp. NML94_01931645AF533357clade_490NN
Roseomonas sp. NML97_01211646AF533359clade_490NN
Roseornonas sp. NML98_00091647AF533358clade_490NN
Roseomonas sp. NML98_01571648AF533360clade_490NN
Rickettsia akari1627CP000847clade_492NOP
Rickettsia conorii1628AE008647clade_492NOP
Rickettsia prowazekii1629M21789clade_492NCategory-B
Rickettsia rickettsii1630NC_010263clade_492NOP
Rickettsia slovaca1631L36224clade_492NOP
Rickettsia typhi1632AE017197clade_492NOP
Anaeroglobus geminatus160AGCJ01000054clade_493NN
Megasphaera genomosp. C11201AY278622clade_493NN
Megasphaera micronuciformis1203AECS01000020clade_493NN
Clostridium orbiscindens609Y18187clade_494YN
Clostridium sp. NML 04A032637EU815224clade_494YN
Flavonifractor plautii886AY724678clade_494YN
Pseudoflavonifractor capillosus1591AY136666clade_494YN
Ruminococcaceae bacterium D161655ADDX01000083clade_494YN
Acetivibrio cellulolyticus5NR_025917clade_495YN
Clostridiales genomosp. BVAB3540CP001850clade_495NN
Clostridium aldrichii548NR_026099clade_495YN
Clostridium clariflavum570NR_041235clade_495YN
Clostridium stercorarium647NR_025100clade_495YN
Clostridium straminisolvens649NR_024829clade_495YN
Clostridium thermocellum655NR_074629clade_495YN
Tsukamurella paurometabola1963X80628clade_496NN
Tsukamurella tyrosinosolvens1964AB478958clade_496NN
Abiotrophia para_adiacens2AB022027clade_497NN
Carnobacterium divergens492NR_044706clade_497NN
Carnobacterium maltaromaticum493NC_019425clade_497NN
Enterococcus avium800AF133535clade_497NN
Enterococcus caccae801AY943820clade_497NN
Enterococcus casseliflavus802AEWT01000047clade_497NN
Enterococcus durans803AJ276354clade_497NN
Enterococcus faecalis804AE016830clade_497NN
Enterococcus faecium805AM157434clade_497NN
Enterococcus gallinarum806AB269767clade_497NN
Enterococcus gilvus807AY033814clade_497NN
Enterococcus hawaiiensis808AY321377clade_497NN
Enterococcus hirae809AF061011clade_497NN
Enterococcus italicus810AEPV01000109clade_497NN
Enterococcus mundtii811NR_024906clade_497NN
Enterococcus raffinosus812FN600541clade_497NN
Enterococcus sp. BV2CASA2813JN809766clade_497NN
Enterococcus sp. CCRI 16620814GU457263clade_497NN
Enterococcus sp. F95815FJ463817clade_497NN
Enterococcus sp. RfL6816AJ133478clade_497NN
Enterococcus thailandicus817AY321376clade_497NN
Fusobacterium canifelinum893AY162222clade_497NN
Fusobacterium genomosp. C1894AY278616clade_497NN
Fusobacterium genomosp. C2895AY278617clade_497NN
Fusobacterium nucleatum901ADVK01000034clade_497YN
Fusobacterium periodonticum902ACJY01000002clade_497NN
Fusobacterium sp. 1_1_41FAA906ADGG01000053clade_497NN
Fusobacterium sp. 11_3_2904ACUO01000052clade_497NN
Fusobacterium sp. 2_1_31907ACDC02000018clade_497NN
Fusobacterium sp. 3_1_27908ADGF01000045clade_497NN
Fusobacterium sp. 3_1_33909ACQE01000178clade_497NN
Fusobacterium sp. 3_1_36A2910ACPU01000044clade_497NN
Fusobacterium sp. AC18912HQ616357clade_497NN
Fusobacterium sp. ACB2913HQ616358clade_497NN
Fusobacterium sp. AS2914HQ616361clade_497NN
Fusobacterium sp. CM1915HQ616371clade_497NN
Fusobacterium sp. CM21916HQ616375clade_497NN
Fusobacterium sp. CM22917HQ616376clade_497NN
Fusobacterium sp. oral clone ASCF06919AY923141clade_497NN
Fusobacterium sp. oral clone ASCF11920AY953256clade_497NN
Granulicatella adiacens959ACKZ01000002clade_497NN
Granulicatella elegans960AB252689clade_497NN
Granulicatella paradiacens961AY879298clade_497NN
Granulicatella sp. oral clone ASC02963AY923126clade_497NN
Granulicatella sp. oral clone ASCA05964DQ341469clade_497NN
Granulicatella sp. oral clone ASCB09965AY953251clade_497NN
Granulicatella sp. oral. clone ASCG05966AY923146clade_497NN
Tetragenococcus halophilus1918NR_075020clade_497NN
Tetragenococcus koreensis1919NR_043113clade_497NN
Vagococcus fluvialis1973NR_026489clade_497NN
Chryseobacterium anthropi514AM982793clade_498NN
Chryseobacterium gleum515ACKQ02000003clade_498NN
Chryseobacterium hominis516NR_042517clade_498NN
Treponema refringens1936AF426101clade_499NOP
Treponema sp. oral clone JU0311941AY349416clade_499NN
Treponema sp. oral taxon 2391948GU408738clade_499NN
Treponema sp. oral taxon 2711955GU408871clade_499NN
Alistipes finegoldii129NR_043064clade_500NN
Alistipes onderdonkii131NR_043318clade_500NN
Alistipes putredinis132ABFK02000017clade_500NN
Alistipes shahii133FP929032clade_500NN
Alistipes sp. HGB5134AENZ01000082clade_500NN
Alistipes sp. JC50135JF824804clade_500NN
Alistipes sp. RMA 9912136GQ140629clade_500NN
Mycoplasma agalactiae1310AF010477clade_501NN
Mycoplasma bovoculi1313NR_025987clade_501NN
Mycoplasma fermentans1315CP002458clade_501NN
Mycoplasma flocculare1316X62699clade_501NN
Mycoplasma ovipneumoniae1320NR_025989clade_501NN
Arcobacter butzleri176AEPT01000071clade_502NN
Arcobacter cryaerophilus177NR_025905clade_502NN
Campylobacter curvus461NC_009715clade_502NOP
Campylobacter rectus467ACFU01000050clade_502NOP
Campylobacter showae468ACVQ01000030clade_502NOP
Campylobacter sp. FOBRC14469HQ616379clade_502NOP
Campylobacter sp. FOBRC15470HQ616380clade_502NOP
Campylobacter sp. oral clone BB120471AY005038clade_502NOP
Campylobacter sputorum472NR_044839clade_502NOP
Bacteroides ureolyticus330GQ167666clade_504NN
Campylobacter gracilis463ACYG01000026clade_504NOP
Campylobacter hominis464NC_009714clade_504NOP
Dialister invisus762ACIM02000001clade_506NN
Dialister micraerophilus763AFBB01000028clade_506NN
Dialister microaerophilus764AENT01000008clade_506NN
Dialister propionicifaciens766NR_043231clade_506NN
Dialister succinatiphilus768AB370249clade_506NN
Megasphaera elsdenii1200AY038996clade_506NN
Megasphaera genomosp. type_11202ADGP01000010clade_506NN
Megasphaera sp. BLPYG_071204HM990964clade_506NN
Megasphaera sp. UPII 199_61205AFIJ01000040clade_506NN
Chromobacterium violaceum513NC_005085clade_507NN
Laribacter hongkongensis1148CP001154clade_507NN
Methylophilus sp. ECd51279AY436794clade_507NN
Finegoldia magna883ACHM02000001clade_509NN
Parvimonas micra1431AB729072clade_509NN
Parvimonas sp. oral taxon 1101432AFII01000002clade_509NN
Peptostreptococcus micros1456AM176538clade_509NN
Peptostreptococcus sp. oral clone FJ0231460AY349390clade_509NN
Peptostreptococcus sp. P4P_31 P31458AY207059clade_509NN
Helicobacter pylori997CP00001.2clade_510NOP
Anaplasma marginale165ABOR01000019clade_511NN
Anaplasma phagocytophilum166NC_007797clade_511NN
Ehrlichia chaffeensis783AAIF01000035clade_511NOP
Neorickettsia risticii1349CP001431clade_511NN
Neorickettsia sennetsu1350NC_007798clade_511NN
Eubacterium barkeri834NR_044661clade_512YN
Eubacterium callanderi838NR_026310clade_512NN
Eubacterium limosum850CP002273clade_512YN
Pseudoramibacter alactolyticus1606AB036759clade_512NN
Veillonella montpellierensis1977AF473836clade_513NN
Veillonella sp. oral clone ASCA081988AY923118clade_513NN
Veillonella sp. oral clone ASCB031989AY923122clade_513NN
Inquilinus limosus1012NR_029046clade_514NN
Sphingomonas sp. oral clone FZ0161746AY349412clade_514NN
Anaerococcus lactolyticus145ABYO01000217clade_515NN
Anaerococcus prevotii147CP001708clade_515NN
Anaerococcus sp. gpac104152AM176528clade_515NN
Anaerococcus sp. gpac126153AM176530clade_515NN
Anaerococcus sp. gpac155154AM176536clade_515NN
Anaerococcus sp. gpac199155AM176539clade_515NN
Anaerococcus tetradius157ACGC01000107clade_515NN
Bacteroides coagulans271AB547639clade_515NN
Clostridiales bacterium 9403326534HM587324clade_515NN
Clostridiales bacterium ph2539JN837487clade_515NN
Peptostreptococcus sp. 9succ11457X90471clade_515NN
Peptostreptococcus sp. oral clone AP241459AB175072clade_515NN
Tissierella praeacuta1924NR_044860clade_515NN
Anaerotruncus colihominis164ABGD02000021clade_516YN
Clostridium methylpentosum606ACEC01000059clade_516YN
Clostridium sp. YIT 12070642AB491208clade_516YN
Hydrogenoanaerobacterium saccharovorans1005NR_044425clade_516YN
Ruminococcus albus1656AY445600clade_516YN
Ruminococcus flavefaciens1660NR_025931clade_516YN
Clostridium haemolyticum589NR_024749clade_517YN
Clostridium novyi608NR_074343clade_517YN
Clostridium sp. LMG 16094632X95274clade_517YN
Helicobacter canadensis994ABQS01000108clade_518NN
Eubacterium ventriosum874L34421clade_519YN
Peptostreptococcus anaerobius1455AY326462clade_520NN
Peptostreptococcus stomatis1461ADGQ01000048clade_520NN
Bilophila wadsworthia367ADCP01000166clade_521NN
Desulfovibrio vulgaris761NR_074897clade_521NN
Bacteroides galacturonicus280DQ497994clade_522YN
Eubacterium eligens845CP001104clade_522YN
Lachnospira multipara1046FR733699clade_522YN
Lachnospira pectinoschiza1047L14675clade_522YN
Lactobacillus rogosae1114GU269544clade_522YN
Actinomyces nasicola64AJ508455clade_523NN
Cellulosimicrobium funkei500AY501364clade_523NN
Lactococcus raffinolactis1146NR_044359clade_524NN
Bacillus horti214NR_036860clade_527YOP
Bacillus sp. 9_3AIA232FN397519clade_527YOP
Bacteroidales genomosp. P1258AY341819clade_529NN
Bacteroidales genomosp. P2 oral clone259DQ003613clade_529NN
MB1_G13
Bacteroidales genomosp. P3 oral clone260DQ003615clade_529NN
MB1_G34
Bacteroidales genomosp. P4 oral clone261DQ003617clade_529NN
MB2_G17
Bacteroidales genomosp. P5 oral clone262DQ003619clade_529NN
MB2_P04
Bacteroidales genomosp. P6 oral clone263DQ003634clade_529NN
MB3_C19
Bacteroidales genomosp. P8 oral clone265DQ003626clade_529NN
MB4_G15
Bacteroidetes bacterium oral taxon D27333HM099638clade_530NN
Bacteroidetes bacterium oral taxon F31334HM099643clade_530NN
Bacteroidetes bacterium oral taxon F44335HM099649clade_530NN
Flavobacterium sp. NF2_1885FJ195988clade_530NN
Myroides odoratimimus1326NR_042354clade_530NN
Myroides sp. MY151327GU253339clade_530NN
Chlamydiales bacterium NS16507JN606076clade_531NN
Chlamydophila pecorum508D88317clade_531NOP
Parachlamydia sp. UWE251423BX908798clade_531NN
Fusobacterium russii903NR_044687clade_532NN
Streptobacillus moniliformis1784NR_027615clade_532NN
Eubacteriaceae bacterium P4P_50 P4833AY207060clade_533NN
Eubacterium brachy836U13038clade_533YN
Filifactor alocis881CP002390clade_533YN
Filifactor villosus882NR_041928clade_533YN
Abiotrophia defectiva1ACIN02000016clade_534NN
Abiotrophia sp. oral clone P4PA_155 P13AY207063clade_534NN
Catonella genomosp. P1 oral clone496DQ003629clade_534NN
MB5_P12
Catonella morbi497ACIL02000016clade_534NN
Catonella sp. oral clone FL037498AY349369clade_534NN
Eremococcus coleocola818AENN01000008clade_534NN
Facklamia hominis879Y10772clade_534NN
Granulicatella sp. M658_99_3962AJ271861clade_534NN
Campylobacter coli459AAFL01000004clade_535NOP
Campylobacter concisus460CP000792clade_535NOP
Campylobacter fetus462ACLG01001177clade_535NOP
Campylobacter jejuni465AL139074clade_535NCategory-B
Campylobacter upsaliensis473AEPU01000040clade_535NOP
Clostridium leptum601AJ305238clade_537YN
Clostridium sp. YIT 12069641AB491207clade_537YN
Clostridium sporosphaeroides646NR_044835clade_537YN
Eubacterium coprostanoligenes841HM037995clade_537YN
Ruminococcus bromii1657EU266549clade_537YN
Eubacterium siraeum860ABCA03000054clade_538YN
Atopobium minutum183HM007583clade_539NN
Atopobium parvulum184CP001721clade_539NN
Atopobium rimae185ACFE01000007clade_539NN
Atopobium sp. BS2186HQ616367clade_539NN
Atopobium sp. F0209187EU592966clade_539NN
Atopobium sp. ICM42b10188HQ616393clade_539NN
Atopobium sp. ICM57189HQ616400clade_539NN
Atopobium vaginae190AEDQ01000024clade_539NN
Coriobacteriaceae bacterium BV3Ac1677JN809768clade_539NN
Actinomyces naeslundii63X81062clade_54NN
Actinomyces oricola67NR_025559clade_54NN
Actinomyces oris69BABV01000070clade_54NN
Actinomyces sp. 740094270EU484334clade_54NN
Actinomyces sp. ChDC B19772AF543275clade_54NN
Actinomyces sp. GEJ1573GU561313clade_54NN
Actinomyces sp. M2231_94_179AJ234063clade_54NN
Actinomyces sp. oral clone GU06783AY349362clade_54NN
Actinomyces sp. oral clone IO07785AY349364clade_54NN
Actinomyces sp. oral clone IP07386AY349365clade_54NN
Actinomyces sp. oral clone JA06388AY349367clade_54NN
Actinomyces sp. oral taxon 17089AFBL01000010clade_54NN
Actinomyces sp. oral taxon 17190AECW01000034clade_54NN
Actinomyces urogenitalis95ACFH01000038clade_54NN
Actinomyces viscosus96ACRE01000096clade_54NN
Clostridium viride657NR_026204clade_540YN
Oscillibacter sp. G21386HM626173clade_540YN
Oscillibacter valericigenes1387NR_074793clade_540YN
Oscillospira guilliermondii1388AB040495clade_540YN
Orientia tsutsugamushi1383AP008981clade_541NOP
Megamonas funiformis1198AB300988clade_542NN
Megamonas hypermegale1199AJ420107clade_542NN
Butyrivibrio crossotus455ABWN01000012clade_543YN
Clostridium sp. L2_50631AAYW02000018clade_543YN
Coprococcus eutactus675EF031543clade_543YN
Coprococcus sp. ART55_1676AY350746clade_543YN
Eubacterium ruminantium857NR_024661clade_543YN
Aeromicrobium marinum102NR_025681clade_544NN
Aeromicrobium sp. JC14103JF824798clade_544NN
Luteococcus sanguinis1190NR_025507clade_544NN
Propionibacteriaceae bacterium NML1568EF599122clade_544NN
02_0265
Rhodococcus corynebacterioides1622X80615clade_546NN
Rhodococcus erythropolis1624ACNO01000030clade_546NN
Rhodococcus fascians1625NR_037021clade_546NN
Segniliparus rotundus1690CP001958clade_546NN
Segniliparus rugosus1691ACZI01000025clade_546NN
Exiguobacterium acetylicum878FJ970034clade_547NN
Micrococcus caseolyticus1194NR_074941clade_547NN
Streptomyces sp. 1 AIP_20091890FJ176782clade_548NN
Streptomyces sp. SD 5241892EU544234clade_548NN
Streptomyces sp. SD 5281893EU544233clade_548NN
Streptomyces thermoviolaceus1895NR_027616clade_548NN
Borrelia afzelii388ABCU01000001clade_549NOP
Borrelia crocidurae390DQ057990clade_549NOP
Borrelia duttonii391NC_011229clade_549NOP
Borrelia hermsii393AY597657clade_549NOP
Borrelia hispanica394DQ057988clade_549NOP
Borrelia persica395HM161645clade_549NOP
Borrelia recurrentis396AF107367clade_549NOP
Borrelia spielmanii398ABKB01000002clade_549NOP
Borrelia turicatae399NC_008710clade_549NOP
Borrelia valaisiana400ABCY01000002clade_549NOP
Providencia alcalifaciens1586ABXW01000071clade_55NN
Providencia rettgeri1587AM040492clade_55NN
Providencia rustigianii1588AM040489clade_55NN
Providencia stuartii1589AF008581clade_55NN
Treponema pallidum1932CP001752clade_550NOP
Treponema phagedenis1934AEFH01000172clade_550NN
Treponema sp. clone DDKL_41939Y08894clade_550NN
Acholeplasma laidlawii17NR_074448clade_551NN
Mycoplasma putrefaciens1323U26055clade_551NN
Mycoplasmataceae genomosp P1 oral clone1325DQ003614clade_551NN
Spiroplasma insolitum1750NR_025705clade_551NN
Collinsella aerofaciens659AAVN02000007clade_553YN
Collinsella intestinalis660ABXH02000037clade_553NN
Collinsella stercoris661ABXJ01000150clade_553NN
Collinsella tanakaei662AB490807clade_553NN
Alkaliphilus metalliredigenes137AY137848clade_554YN
Alkaliphilus oremlandii138NR_043674clade_554YN
Caminicella sporogenes458NR_025485clade_554NN
Clostridium sticklandii648L04167clade_554YN
Turicibacter sanguinis1965AF349724clade_555YN
Acidaminococcus fermentans21CP001859clade_556NN
Acidaminococcus intestini22CP003058clade_556NN
Acidaminococcus sp. D2123ACGB01000071clade_556NN
Phascolarctobacterium faecium1462NR_026111clade_556NN
Phascolarctobacterium sp. YIT 120681463AB490812clade_556NN
Phascolarctobacterium succinatutens1464AB490811clade_556NN
Acidithiobacillus ferrivorans25NR_074660clade_557NN
Fulvimonas sp. NML 060897892EF589680clade_557YN
Xanthomonadaceae bacterium NML2015EU313791clade_557NN
03_0222
Catabacter hongkongensis494AB671763clade_558NN
Christensenella minuta512AB490809clade_558NN
Clostridiales bacterium oral clone P4PA536AY207065clade_558NN
Clostridiales bacterium oral taxon 093537GQ422712clade_558NN
Desulfitobacterium frappieri753AJ276701clade_560YN
Desulfitobacterium hafniense754NR_074996clade_560YN
Desulfotomaculum nigrificans756NR_044832clade_560YN
Heliobacterium modesticaldum1000NR_074517clade_560NN
Alistipes indistinctus130AB490804clade_561NN
Bacteroidales bacterium ph8257JN837494clade_561NN
Candidatus Sulcia muelleri475CP002163clade_561NN
Cytophaga xylanolytica742FR733683clade_561NN
Flavobacteriaceae genomosp. C1884AY278614clade_561NN
Gramella forsetii958NR_074707clade_561NN
Sphingobacterium faecium1740NR_025537clade_562NN
Sphingobacterium mizutaii1741JF708889clade_562NN
Sphingobacterium multivorum1742NR_040953clade_562NN
Sphingobacterium spiritivorum1743ACHA02000013clade_562NN
Jonquetella anthropi1017ACOO02000004clade_563NN
Pyramidobacter piscolens1614AY207056clade_563NN
Synergistes genomosp. C11904AY278615clade_563NN
Synergistes sp. RMA 145511905DQ412722clade_563NN
Synergistetes bacterium ADV8971906GQ258968clade_563NN
Candidatus Arthromitus sp.474NR_074460clade_564NN
SFB_mouse_Yit
Gracilibacter thermotolerans957NR_043559clade_564NN
Lutispora thermophila1191NR_041236clade_564YN
Brachyspira aalborgi404FM178386clade_565NN
Brachyspira pilosicoli405NR_075069clade_565YN
Brachyspira sp. HIS3406FM178387clade_565NN
Brachyspira sp. HIS4407FM178388clade_565NN
Brachyspira sp. HIS5408FM178389clade_565NN
Adlercreutzia equolifaciens97AB306661clade_566NN
Coriobacteriaceae bacterium JC110678CAEM01000062clade_566NN
Coriobacteriaceae bacterium phI679JN837493clade_566NN
Cryptobacterium curtum740GQ422741clade_566NN
Eggerthella lenta778AF292375clade_566YN
Eggerthella sinensis779AY321958clade_566NN
Eggerthella sp. 1_3_56FAA780ACWN01000099clade_566NN
Eggerthella sp. HGA1781AEXR01000021clade_566NN
Eggerthella sp. YY7918782AP012211clade_566NN
Gordonibacter pamelaeae680AM886059clade_566NN
Gordonibacter pamelaeae956FP929047clade_566NN
Slackia equolifaciens1732EU377663clade_566NN
Slackia exigua1733ACUX01000029clade_566NN
Slackia faecicanis1734NR_042220clade_566NN
Slackia heliotrinireducens1735NR_074439clade_566NN
Slackia isoflavoniconvertens1736AB566418clade_566NN
Slackia piriformis1737AB490806clade_566NN
Slackia sp. NATTS1738AB505075clade_566NN
Streptomyces albus1888AJ697941clade_566YN
Chlamydiales bacterium NS11505JN606074clade_567YN
Chlamydiales bacterium NS13506JN606075clade_567NN
Victivallaceae bacterium NML 0800352003FJ394915clade_567NN
Victivallis vadensis2004ABDE02000010clade_567NN
Anaerofustis stercorihominis159ABIL02000005clade_570YN
Butyricicoccus pullicaecorum453HH793440clade_572YN
Eubacterium desmolans843NR_044644clade_572YN
Papillibacter cinnamivorans1415NR_025025clade_572YN
Sporobacter termitidis1751NR_044972clade_572YN
Streptomyces griseus1889NR_074787clade_573NN
Streptomyces sp. SD 5111891EU544231clade_573NN
Streptomyces sp. SD 5341894EU544232clade_573NN
Cloacibacillus evryensis530GQ258966clade_575NN
Deferribacteres sp. oral clone JV001743AY349370clade_575NN
Deferribacteres sp. oral clone JV006744AY349371clade_575YN
Deferribacteres sp. oral clone JV023745AY349372clade_575NN
Synergistetes bacterium LBVCM11571907GQ258969clade_575NN
Synergistetes bacterium oral taxon 3621909GU410752clade_575NN
Synergistetes bacterium oral taxon D481910GU430992clade_575NN
Clostridium colinum577NR_026151clade_576YN
Clostridium lactatifermentans599NR_025651clade_576YN
Clostridium piliforme614D14639clade_576YN
Peptococcus sp. oral clone JM0481439AY349389clade_576NN
Helicobacter winghamensis999ACDO01000013clade_577NN
Wolinella succinogenes2014BX571657clade_577NN
Olsenella genomosp. C11368AY278623clade_578NN
Olsenella profusa1369FN178466clade_578NN
Olsenella sp. F00041370EU592964clade_578NN
Olsenella sp. oral taxon 8091371ACVE01000002clade_578NN
Olsenella uli1372CP002106clade_578NN
Nocardiopsis dassonvillei1356CP002041clade_579NN
Saccharomonospora viridis1671X54286clade_579YN
Thermobifida fusca1921NC_007333clade_579YN
Peptococcus niger1438NR_029221clade_580NN
Peptococcus sp. oral taxon 1671440GQ422727clade_580NN
Akkermansia muciniphila118CP001071clade_583NN
Opitutus terrae1373NR_074978clade_583NN
Clostridiales bacterium oral taxon F32538HM099644clade_584NN
Leptospira borgpetersenii1161NC_008508clade_585NOP
Leptospira broomii1162NR_043200clade_585NOP
Leptospira interrogans3163NC_005823clade_585NOP
Leptospira licerasiae1164EF612284clade_585YOP
Methanobrevibacter gottschalkii1213NR_044789clade_587NN
Methanobrevibacter millerae1214NR_042785clade_587NN
Methanobrevibacter oralis1216HE654003clade_587NN
Methanobrevibacter thaueri1219NR_044787clade_587NN
Methanobrevibacter smithii1218ABYV02000002clade_588NN
Deinococcus radiodurans746AE000513clade_589NN
Deinococcus sp. R_43890747FR682752clade_589NN
Thermus aquaticus1923NR_025900clade_589NN
Actinomyces sp. c10981AB167239clade_590NN
Moorella thermoacetica1259NR_075001clade_590YN
Syntrophomonadaceae genomosp. P11912AY341821clade_590NN
Thermoanaerobacter pseudethanolicus1920CP000924clade_590YN
Anaerobaculum hydrogeniformans141ACJX02000009clade_591NN
Flexistipes sinusarabici888NR_074881clade_591YN
Microcystis aeruginosa1246NC_010296clade_592NN
Prochlorococcus marinus1567CP000551clade_592NN
Methanobrevibacter acididurans1208NR_028779clade_593NN
Methanobrevibacter arboriphilus1209NR_042783clade_593NN
Methanobrevibacter curvatus1210NR_044796clade_593NN
Methanobrevibacter cuticularis1211NR_044776clade_593NN
Methanobrevibacter filiformis1212NR_044801clade_593NN
Methanobrevibacter woesei1220NR_044788clade_593NN
Roseiflexus castenholzii1642CP000804clade_594NN
Methanobrevibacter olleyae1215NR_043024clade_595NN
Methanobrevibacter ruminantium1217NR_042784clade_595NN
Methanobrevibacter wolinii1221NR_044790clade_595NN
Methanosphaera stadtmanae1222AY196684clade_595NN
Chloroflexi genomosp. P1511AY331414clade_596NN
Gloeobacter violaceus942NR_074282clade_596YN
Halorubrum lipolyticum992AB477978clade_597NN
Methanobacterium formicicum1207NR_025028clade_597NN
Acidilobus saccharovorans24AY350586clade_598NN
Hyperthermus butylicus1006CP000493clade_598NN
Ignicoccus islandicus1011X99562clade_598NN
Metallosphaera sedula1206D26491clade_598NN
Thermofilum pendens1922X14835clade_598NN
Prevotella melaninogenica1506CP002122clade_6NN
Prevotella sp. ICM11520HQ616385clade_6NN
Prevotella sp. oral clone FU0481535AY349393clade_6NN
Prevotella sp. oral done GI0301537AY349395clade_6NN
Prevotella sp. SEQ1161526JN867246clade_6NN
Streptococcus anginosus1787AECT01000011clade_60NN
Streptococcus milleri1812X81023clade_60NN
Streptococcus sp. 163621829JN590019clade_60NN
Streptococcus sp. 691301832X78825clade_60NN
Streptococcus sp. AC151833HQ616356clade_60NN
Streptococcus sp. CM71839HQ616373clade_60NN
Streptococcus sp. OBRC61847HQ616352clade_60NN
Burkholderia ambifaria442AAUZ01000009clade_61NOP
Burkholderia cenocepacia443AAHI001000060clade_61NOP
Burkholderia cepacia444NR_041719clade_61NOP
Burkholderia mallei445CP000547clade_61NCategory-B
Burkholderia multivorans446NC_010086clade_61NOP
Burkholderia oklahomensis447DQ108388clade_61NOP
Burkholderia pseudomallei448CP001408clade_61NCategory-B
Burkholderia rhizoxinica449HQ005410clade_61NOP
Burkholderia sp. 383450CP000151clade_61NOP
Burkholderia xenovorans451U86373clade_61NOP
Prevotella buccae1488ACRB01000001clade_62NN
Prevotella genomosp. P8 oral clone1498DQ003622clade_62NN
MB3_P13
Prevotella sp. oral clone FW0351536AY349394clade_62NN
Prevotella bivia1486ADFO01000096clade_63NN
Prevotella disiens1494AEDO01000026clade_64NN
Bacteroides faecis276GQ496624clade_65NN
Bacteroides fragilis279AP006841clade_65NN
Bacteroides nordii285NR_043017clade_65NN
Bacteroides salyersiae292EU136690clade_65NN
Bacteroides sp. 1_1_14293ACRP01000155clade_65NN
Bacteroides sp. 1_1_6295ACIC01000215clade_65NN
Bacteroides sp. 2_1_56FAA298ACWI01000065clade_65NN
Bacteroides sp. AR29316AF139525clade_65NN
Bacteroides sp. B2317EU722733clade_65NN
Bacteroides thetaiotaomicron328NR_074277clade_65NN
Actinobacillus minor45ACFT01000025clade_69NN
Haemophilus parasuis978GU226366clade_69NN
Vibrio cholerae1996AAUR01000095clade_71NCategory-B
Vibrio fluvialis1997X76335clade_71NCategory-B
Vibrio furnissii1998CP002377clade_71NCategory-B
Vibrio mimicus1999ADAF01000001clade_71NCategory-B
Vibrio parahaemolyticus2000AAWQ01000116clade_71NCategory-B
Vibrio sp. RC3412001ACZT01000024clade_71NCategory-B
Vibrio vulnificus2002AE016796clade_71NCategory-B
Lactobacillus acidophilus1067CP000033clade_72NN
Lactobacillus amylolyticus1069ADNY01000006clade_72NN
Lactobacillus amylovorus1070CP002338clade_72NN
Lactobacillus crispatus1078ACOG01000151clade_72NN
Lactobacillus delbrueckii1080CP002341clade_72NN
Lactobacillus helveticus1088ACLM01000202clade_72NN
Lactobacillus kalixensis1094NR_029083clade_72NN
Lactobacillus kefiranofaciens1095NR_042440clade_72NN
Lactobacillus leichmannii1098JX986966clade_72NN
Lactobacillus sp. 66c1120FR681900clade_72NN
Lactobacillus sp. KLDS 1.07011122EU600905clade_72NN
Lactobacillus sp. KLDS 1.07121130EU600916clade_72NN
Lactobacillus sp. oral clone HT0701136AY349383clade_72NN
Lactobacillus ultunensis1139ACGU01000081clade_72NN
Prevotella intermedia1502AF414829clade_81NN
Prevotella nigrescens1511AFPX01000069clade_81NN
Prevotella pallens1515AFPY01000135clade_81NN
Prevotella sp. oral taxon 3101551GQ422737clade_81NN
Prevotella genomosp. C11495AY278624clade_82NN
Prevotella sp. CM381519HQ610181clade_82NN
Prevotella sp. oral taxon 3171552ACQH01000158clade_82NN
Prevotella sp. SG121527GU561343clade_82NN
Prevotella denticola1493CP002589clade_83NN
Prevotella genomosp. P7 oral clone1497DQ003620clade_83NN
MB2_P31
Prevotella histicola1501JN867315clade_83NN
Prevotella multiformis1508AEWX01000054clade_83NN
Prevotella sp. JCM 63301522AB547699clade_83NN
Prevotella sp. oral clone GI0591539AY349397clade_83NN
Prevotella sp. oral taxon 7821555GQ422745clade_83NN
Prevotella sp. oral taxon G711559GU432180clade_83NN
Prevotella sp. SEQ0651524JN867234clade_83NN
Prevotella veroralis1565ACVA01000027clade_83NN
Bacteroides acidifaciens266NR_028607clade_85NN
Bacteroides cellulosilyticus269ACCH01000108clade_85NN
Bacteroides clarus270AFBM01000011clade_85NN
Bacteroides eggerthii275ACWG01000065clade_85NN
Bacteroides oleiciplenus286AB547644clade_85NN
Bacteroides pyogenes290NR_041280clade_85NN
Bacteroides sp. 315_5300FJ848547clade_85NN
Bacteroides sp. 31SF15301AJ583248clade_85NN
Bacteroides sp. 31SF18302AJ583249clade_85NN
Bacteroides sp. 35AE31303AJ583244clade_85NN
Bacteroides sp. 35AE37304AJ583245clade_85NN
Bacteroides sp. 35BE34305AJ583246clade_85NN
Bacteroides sp. 35BE35306AJ583247clade_85NN
Bacteroides sp. WH2324AY895180clade_85NN
Bacteroides sp. XB12B325AM230648clade_85NN
Bacteroides stercoris327ABFZ02000022clade_85NN
Actinobacillus pleuropneumoniae46NR_074857clade_88NN
Actinobacillus ureae48AEVG01000167clade_88NN
Haemophilus aegyptius969AFBC01000053clade_88NN
Haemophilus ducreyi970AE017143clade_88NOP
Haemophilus haemolyticus973JN175335clade_88NN
Haemophilus influenzae974AADP01000001clade_88NOP
Haemophilus parahaemolyticus975GU561425clade_88NN
Haemophilus parainfluenzae976AEWU01000024clade_88NN
Haemophilus paraphrophaemolyticus977M75076clade_88NN
Haemophilus somnus979NC_008309clade_88NN
Haemophilus sp. 70334980HQ680854clade_88NN
Haemophilus sp. HK445981FJ685624clade_88NN
Haemophilus sp. oral clone ASCA07982AY923117clade_88NN
Haemophilus sp. oral clone ASCG06983AY923147clade_88NN
Haemophilus sp. oral clone BJ021984AY005034clade_88NN
Haemophilus sp. oral clone BJ095985AY005033clade_88NN
Haemophilus sp. oral taxon 851987AGRK01000004clade_88NN
Haemophilus sputorum988AFNK01000005clade_88NN
Histophilus somni1003AF549387clade_88NN
Mannheimia haemolytica1195ACZX01000102clade_88NN
Pasteurella bettyae1433L06088clade_88NN
Moellerella wisconsensis1253JN175344clade_89NN
Morganella morganii1265AJ301681clade_89NN
Morganella sp. JB_T161266AJ781005clade_89NN
Proteus mirabilis1582ACLE01000013clade_89NN
Proteus penneri1583ABVP01000020clade_89NN
Proteus sp. HS75141584DQ512963clade_89NN
Proteus vulgaris1585AJ233425clade_89NN
Eubacterium sp. oral clone JN088869AY349377clade_90YN
Oribacterium sinus1374ACKX01000142clade_90NN
Oribacterium sp. ACB11375HM120210clade_90NN
Oribacterium sp. ACB71376HM120211clade_90NN
Oribacterium sp. CM121377HQ616374clade_90NN
Oribacterium sp. ICM511378HQ616397clade_90NN
Oribacterium sp. OBRC121379HQ616355clade_90NN
Oribacterium sp. oral taxon 1081382AFIH01000001clade_90NN
Actinobacillus actinomycetemcomitans44AY362885clade_92NN
Actinobacillus succinogenes47CP000746clade_92NN
Aggregatibacter actinomycetemcomitans112CP001733clade_92NN
Aggregatibacter aphrophilus113CP001607clade_92NN
Aggregatibacter segnis114AEPS01000017clade_92NN
Averyella dalhousiensis194DQ481464clade_92NN
Bisgaard Taxon368AY683487clade_92NN
Bisgaard Taxon369AY683489clade_92NN
Bisgaard Taxon370AY683491clade_92NN
Bisgaard Taxon371AY683492clade_92NN
Buchnera aphidicola440NR_074609clade_92NN
Cedecea davisae499AF493976clade_92NN
Citrobacter amalonaticus517FR870441clade_92NN
Citrobacter braakii518NR_028687clade_92NN
Citrobacter farmeri519AF025371clade_92NN
Citrobacter freundii520NR_028894clade_92NN
Citrobacter gillenii521AF025367clade_92NN
Citrobacter koseri522NC_009792clade_92NN
Citrobacter murliniae523AF025369clade_92NN
Citrobacter rodentium524NR_074903clade_92NN
Citrobacter sedlakii525AF025364clade_92NN
Citrobacter sp. 30_2526ACDJ01000053clade_92NN
Citrobacter sp. KMSI_3527GQ468398clade_92NN
Citrobacter werkmanii528AF025373clade_92NN
Citrobacter youngae529ABWL02000011clade_92NN
Cronobacter malonaticus737GU122174clade_92NN
Cronobacter sakazakii738NC_009778clade_92NN
Cronobacter turicensis739FN543093clade_92NN
Enterobacter aerogenes786AJ251468clade_92NN
Enterobacter asburiae787NR_024640clade_92NN
Enterobacter cancerogenus788Z96078clade_92NN
Enterobacter cloacae789FP929040clade_92NN
Enterobacter cowanii790NR_025566clade_92NN
Enterobacter hormaechei791AFHR01000079clade_92NN
Enterobacter sp. 247BMC792HQ122932clade_92NN
Enterobacter sp. 638793NR_074777clade_92NN
Enterobacter sp. JC163794JN657217clade_92NN
Enterobacter sp. SCSS795HM007811clade_92NN
Enterobacter sp. TSE38796HM156134clade_92NN
Enterobacteriaceae bacterium 9_2_54FAA797ADCU01000033clade_92NN
Enterobacteriaceae bacterium CF01Ent_1798AJ489826clade_92NN
Enterobacteriaceae bacterium Smarlab799AY538694clade_92NN
3302238
Escherichia albertii824ABKX01000012clade_92NN
Escherichia coli825NC_008563clade_92NCategory-B
Escherichia fergusonii826CU928158clade_92NN
Escherichia hermannii827HQ407266clade_92NN
Escherichia sp. 1_1_43828ACID01000033clade_92NN
Escherichia sp. 4_1_40B829ACDM02000056clade_92NN
Escherichia sp. B4830EU722735clade_92NN
Escherichia vulneris831NR_041927clade_92NN
Ewingella americana877JN175329clade_92NN
Haemophilus genomosp. P2 oral clone971DQ003621clade_92NN
MB3_C24
Haemophilus genomosp. P3 oral clone972DQ003635clade_92NN
MB3_C38
Haemophilus sp. oral clone JM053986AY349380clade_92NN
Hafnia alvei989DQ412565clade_92NN
Klebsiella oxytoca1024AY292871clade_92NOP
Klebsiella pneumoniae1025CP000647clade_92NOP
Klebsiella sp. AS101026HQ616362clade_92NN
Klebsiella sp. Co99351027DQ068764clade_92NN
Klebsiella sp. enrichment culture clone1036HM195210clade_92NN
SRC _DSD25
Klebsiella sp. OBRC71028HQ616353clade_92NN
Klebsiella sp. SP_BA1029FJ999767clade_92NN
Klebsiella sp. SRC_DSD11033GU797254clade_92NN
Klebsiella sp. SRC_DSD111030GU797263clade_92NN
Klebsiella sp. SRC_DSD121031GU797264clade_92NN
Klebsiella sp. SRC_DSD151032GU797267clade_92NN
Klebsiella sp. SRC_DSD21034GU797253clade_92NN
Klebsiella sp. SRC_DSD61035GU797258clade_92NN
Klebsiella variicola1037CP001891clade_92NN
Kluyvera ascorbata1038NR_028677clade_92NN
Kluyvera cryocrescens1039NR_028803clade_92NN
Leminorella grimontii1159AJ233421clade_92NN
Leminorella richardii1160HF558368clade_92NN
Pantoea agglomerans1409AY335552clade_92NN
Pantoea ananatis1410CP001875clade_92NN
Pantoea brenneri1411EU216735clade_92NN
Pantoea citrea1412EF688008clade_92NN
Pantoea conspicua1413EU216737clade_92NN
Pantoea septica1414EU216734clade_92NN
Pasteurella dagmatis1434ACZR01000003clade_92NN
Pasteurella multocida1435NC_002663clade_92NN
Plesiomonas shigelloides1469X60418clade_92NN
Raoultella ornithinolytica1617AB364958clade_92NN
Raoultella planticola1618AF129443clade_92NN
Raoultella terrigena1619NR_037085clade_92NN
Salmonella bongori1683NR_041699clade_92NCategory-B
Salmonella enterica1672NC_011149clade_92NCategory-B
Salmonella enterica1673NC_011205clade_92NCategory-B
Salmonella enterica1674DQ344532clade_92NCategory-B
Salmonella enterica1675ABEH02000004clade_92NCategory-B
Salmonella enterica1676ABAK02000001clade_92NCategory-B
Salmonella enterica1677NC_011080clade_92NCategory-B
Salmonella enterica1678EU118094clade_92NCategory-B
Salmonella enterica1679NC_011094clade_92NCategory-B
Salmonella enterica1680AE014613clade_92NCategory-B
Salmonella enterica1682ABFH02000001clade_92NCategory-B
Salmonella enterica1684ABEM01000001clade_92NCategory-B
Salmonella enterica1685ABAM02000001clade_92NCategory-B
Salmonella typhimurium1681DQ344533clade_92NCategory-B
Salmonella typhimurium1686AF170176clade_92NCategory-B
Serratia fonticola1718NR_025339clade_92NN
Serratia liquefaciens1719NR_042062clade_92NN
Serratia marcescens1720GU826157clade_92NN
Serratia odorifera1721ADBY01000001clade_92NN
Serratia proteamaculans1722AAUN01000015clade_92NN
Shigella boydii1724AAKA01000007clade_92NCategory-B
Shigella dysenteriae1725NC_007606clade_92NCategory-B
Shigella flexneri1726AE005674clade_92NCategory-B
Shigella sonnei1727NC_007384clade_92NCategory-B
Tatumella ptyseos1916NR_025342clade_92NN
Trabulsiella guamensis1925AY373830clade_92NN
Yersinia aldovae2019AJ871363clade_92NOP
Yersinia aleksiciae2020AJ627597clade_92NOP
Yersinia bercovieri2021AF366377clade_92NOP
Yersinia enterocolitica2022FR729477clade_92NCategory-B
Yersinia frederiksenii2023AF366379clade_92NOP
Yersinia intermedia2024AF366380clade_92NOP
Yersinia kristensenii2025ACCA01000078clade_92NOP
Yersinia mollaretii2026NR_027546clade_92NOP
Yersinia pestis2027AE013632clade_92NCategory-A
Yersinia pseudotuberculosis2028NC_009708clade_92NOP
Yersinia rohdei2029ACCD01000071clade_92NOP
Yokenella regensburgei2030AB273739clade_92NN
Conchiformibius kuhniae669NR_041821clade_94NN
Morococcus cerebrosus1267JN175352clade_94NN
Neisseria bacilliformis1328AFAY01000058clade_94NN
Neisseria cinerea1329ACDY01000037clade_94NN
Neisseria flavescens1331ACQV01000025clade_94NN
Neisseria gonorrhoeae1333CP002440clade_94NOP
Neisseria lactamica1334ACEQ01000095clade_94NN
Neisseria macacae1335AFQE01000146clade_94NN
Neisseria meningitidis1336NC_003112clade_94NOP
Neisseria mucosa1337ACDX01000110clade_94NN
Neisseria pharyngis1338AJ239281clade_94NN
Neisseria polysaccharea1339ADBE01000137clade_94NN
Neisseria sicca1340ACKO02000016clade_94NN
Neisseria sp. KEM2321341GQ203291clade_94NN
Neisseria sp. oral clone AP1321344AY005027clade_94NN
Neisseria sp. oral strain B33KA1346AY005028clade_94NN
Neisseria sp. oral taxon 0141347ADEA01000039clade_94NN
Neisseria sp. TM10_11343DQ279352clade_94NN
Neisseria subflava1348ACEO01000067clade_94NN
Clostridium oroticum610FR749922clade_96YN
Clostridium sp. D5627ADBG01000142clade_96YN
Eubacterium contortum840FR749946clade_96YN
Eubacterium fissicatena846FR749935clade_96YN
Okadaella gastrococcus1365HQ699465clade_98NN
Streptococcus agalactiae1785AAJO01000130clade_98NN
Streptococcus alactolyticus1786NR_041781clade_98NN
Streptococcus australis1788AEQR01000024clade_98NN
Streptococcus bovis1789AEEL01000030clade_98NN
Streptococcus canis1790AJ413203clade_98NN
Streptococcus constellatus1791AY277942clade_98NN
Streptococcus cristatus1792AEVC01000028clade_98NN
Streptococcus dysgalactiae1794AP010935clade_98NN
Streptococcus equi1795CP001129clade_98NN
Streptococcus equinus1796AEVB01000043clade_98NN
Streptococcus gallolyticus1797FR824043clade_98NN
Streptococcus genomosp. C11798AY278629clade_98NN
Streptococcus genomosp. C21799AY278630clade_98NN
Streptococcus genomosp. C31800AY278631clade_98NN
Streptococcus genomosp. C41801AY278632clade_98NN
Streptococcus genomosp. C51802AY278633clade_98NN
Streptococcus genomosp. C61803AY278634clade_98NN
Streptococcus genomosp. C71804AY278635clade_98NN
Streptococcus genomosp. C81805AY278609clade_98NN
Streptococcus gordonii1806NC_009785clade_98NN
Streptococcus infantarius1807ABJK02000017clade_98NN
Streptococcus infantis1808AFNN01000024clade_98NN
Streptococcus intermedius1809NR_028736clade_98NN
Streptococcus lutetiensis1810NR_037096clade_98NN
Streptococcus massiliensis1811AY769997clade_98NN
Streptococcus mitis1813AM157420clade_98NN
Streptococcus oligofermentans1815AY099095clade_98NN
Streptococcus oralis1816ADMV01000001clade_98NN
Streptococcus parasanguinis1817AEKM01000012clade_98NN
Streptococcus pasteurianus1818AP012054clade_98NN
Streptococcus peroris1819AEVF01000016clade_98NN
Streptococcus pneumoniae1820AE008537clade_98NN
Streptococcus porcinus1821EF121439clade_98NN
Streptococcus pseudopneumoniae1822FJ827123clade_98NN
Streptococcus pseudoporcinus1823AENS01000003clade_98NN
Streptococcus pyogenes1824AE006496clade_98NOP
Streptococcus ratti1825X58304clade_98NN
Streptococcus salivarius1826AGBV01000001clade_98NN
Streptococcus sanguinis1827NR_074974clade_98NN
Streptococcus sinensis1828AF432857clade_98NN
Streptococcus sp. 2_1_36FAA1831ACOI01000028clade_98NN
Streptococcus sp. 2285_971830AJ131965clade_98NN
Streptococcus sp. ACS21834HQ616360clade_98NN
Streptococcus sp. AS201835HQ616366clade_98NN
Streptococcus sp. BS35a1836HQ616369clade_98NN
Streptococcus sp. C1501837ACRI01000045clade_98NN
Streptococcus sp. CM61838HQ616372clade_98NN
Streptococcus sp. ICM101840HQ616389clade_98NN
Streptococcus sp. ICM121841HQ616390clade_98NN
Streptococcus sp. ICM21842HQ616386clade_98NN
Streptococcus sp. ICM41844HQ616387clade_98NN
Streptococcus sp. ICM451843HQ616394clade_98NN
Streptococcus sp. M1431845ACRK01000025clade_98NN
Streptococcus sp. M3341846ACRL01000052clade_98NN
Streptococcus sp. oral clone ASB021849AY923121clade_98NN
Streptococcus sp. oral clone ASCA031850DQ272504clade_98NN
Streptococcus sp. oral clone ASCA041851AY923116clade_98NN
Streptococcus sp. oral clone ASCA091852AY923119clade_98NN
Streptococcus sp. oral clone ASCB041853AY923123clade_98NN
Streptococcus sp. oral clone ASCB061854AY923124clade_98NN
Streptococcus sp. oral clone ASCC041855AY923127clade_98NN
Streptococcus sp. oral clone ASCC051856AY923128clade_98NN
Streptococcus sp. oral clone ASCC121857DQ272507clade_98NN
Streptococcus sp. oral clone ASCD011858AY923129clade_98NN
Streptococcus sp. oral clone ASCD091859AY923130clade_98NN
Streptococcus sp. oral clone ASCD101860DQ272509clade_98NN
Streptococcus sp. oral clone ASCE031861AY923134clade_98NN
Streptococcus sp. oral clone ASCE041862AY953253clade_98NN
Streptococcus sp. oral clone ASCE051863DQ272510clade_98NN
Streptococcus sp. oral clone ASCE061864AY923135clade_98NN
Streptococcus sp. oral clone ASCE091865AY923136clade_98NN
Streptococcus sp. oral clone ASCE101866AY923137clade_98NN
Streptococcus sp. oral clone ASCE121867AY923138clade_98NN
Streptococcus sp. oral clone ASCF051868AY923140clade_98NN
Streptococcus sp. oral clone ASCF071869AY953255clade_98NN
Streptococcus sp. oral clone ASCF091870AY923142clade_98NN
Streptococcus sp. oral clone ASCG041871AY923145clade_98NN
Streptococcus sp. oral clone BW0091872AY005042clade_98NN
Streptococcus sp. oral clone CH0161873AY005044clade_98NN
Streptococcus sp. oral clone GK0511874AY349413clade_98NN
Streptococcus sp. oral clone GM0061875AY349414clade_98NN
Streptococcus sp. oral clone P2PA_41 P21876AY207051clade_98NN
Streptococcus sp. oral clone P4PA_30 P41877AY207064clade_98NN
Streptococcus sp. oral taxon 0711878AEEP01000019clade_98NN
Streptococcus sp. oral taxon G591879GU432132clade_98NN
Streptococcus sp. oral taxon G621880GU432146clade_98NN
Streptococcus sp. oral taxon G631881GU432150clade_98NN
Streptococcus suis1882FM252032clade_98NN
Streptococcus thermophilus1883CP000419clade_98NN
Streptococcus uberis1884HQ391900clade_98NN
Streptococcus urinalis1885DQ303194clade_98NN
Streptococcus vestibularis1886AEKO01000008clade_98NN
Streptococcus viridans1887AF076036clade_98NN
Synergistetes bacterium oral clone 03 51908GU227192clade_98NN
D05

[0357]

clade_172Bifidobacteriaceae genomosp. C1, Bifidobacterium adolescentis, Bifidobacterium angulatum,
Bifidobacterium animalis, Bifidobacterium breve, Bifidobacterium catenulatum, Bifidobacterium
dentium, Bifidobacterium gallicuin, Bifidobacterium infantis, Bifidobacterium kashiwanohense,
Bifidobacterium longum, Bifidobacterium pseudocatenulatum, Bifidobacterium pseudolongum,
Bifidobacterium scardovii, Bifidobacterium sp. HM2, Bifidobacterium sp. HMLN12, Bifidobacterium
sp. M45, Bifidobacterium sp. MSX5B, Bifidobacterium sp. TM_7, Bifidobacterium thermophilum
clade_172iBifidobacteriaceae genomosp. C1, Bifidobacterium angulatum, Bifidobacterium animalis,
Bifidobacterium breve, Bifidobacterium catenulatum, Bifidobacterium dentium, Bifidobacterium
gallicum, Bifidobacterium infantis, Bifidobacterium kashiwanohense, Bifidobacterium
pseudocatenulatum, Bifidobacterium pseudolongum, Bifidobacterium scardovii, Bifidobacterium sp.
HM2, Bifidobacterium sp. HMLN12, Bifidobacterium sp. M45, Bifidobacterium sp. MSX5B,
Bifidobacterium sp. TM 7, Bifidobacterium thermophilum
clade_198Lactobacillus casei, Lactobacillus paracasei, Lactobacillus zeae
clade_198iLactobacillus zeae
clade_260Clostridium hylemonae, Clostridium scindens, Lachnospiraceae bacterium 5_1_57FAA
clade_260cClostridium hylemonae, Lachnospiraceae bacterium 5_1_57FAA
clade_260gClostridium hylemonae, Lachnospiraceae bacterium 5_1_57FAA
clade_260hClostridium hylemonae, Lachnospiraceae bacterium 5_1_57FAA
clade_262Clostridium glycyrrhizinilyticum, Clostridium nexile, Coprococcus comes, Lachnospiraceae bacterium
1_1_57FAA, Lachnospiraceae bacterium 1_4_56FAA, Lachnospiraceae bacterium 8_1_57FAA,
Ruminococcus lactaris, Rummococcus torques
clade_262iClostridium glycyrrhizinilyticum, Clostridium nexile, Coprococcus comes, Lachnospiraceae bacterium
1_1_57FAA, Lachnospiraceae bacterium 1_4_56FAA, Lachnospiraceae bacterium 8_1_57FAA,
Ruminococcus lactaris
clade_309Blautia coccoides, Blautia glucerasea, Blautia glucerasei, Blautia hansenii, Blautia luti, Blautia producta,
Blautia schinkii, Blautia sp. M25, Blautia stercoris, Blautia wexlerae, Bryantella formatexigens,
Clostridium coccoides, Eubacterium cellulosolveris, Lachnospiraceae bacterium 6_1_63FAA,
Marvinbryantia formatexigens, Ruminococcus hansenii, Ruminococcus obeum, Ruminococcus sp.
5_1_39BFAA, Ruminococcus sp. K_1, Syntrophococcus sucromutans
clade_309cBlautia coccoides, Blautia glucerasea, Blautia glucerasei, Blautia hansenii, Blautia luti, Blautia schinkii,
Blautia sp. M25, Blautia stercoris, Blautia wexlerae, Bryantella formatexigens, Clostridium coccoides,
Eubacterium cellulosolvens, Lachnospiraceae bacterium 6_1_63FAA, Marvinbryantia formatexigens,
Ruminococcus hansenii, Ruminococcus obeum, Ruminococcus sp. 5_1_39BFAA, Ruminococcus sp.
K_1, Syntrophococcus sucromutans
clade_309eBlautia coccoides, Blautia glucerasea, Blautia glucerasei, Blautia hansenii, Blautia luti, Blautia schinkii,
Blautia sp. M25, Blautia stercoris, Blautia wexlerae, Bryantella formatexigens, Clostridium coccoides,
Eubacterium cellulosolvens, Lachnospiraceae bacterium 6_1_63FAA, Marvinbryantia formatexigens,
Ruminococcus hansenii, Ruminococcus obeum, Ruminococcus sp. 5_1_39BFAA, Ruminococcus sp.
K_1, Syntrophococcus sucromutans
clade_309gBlautia coccoides, Blautia glucerasea, Blautia glucerasei, Blautia hansenii, Blautia luti, Blautia schinkii,
Blautia sp. M25, Blautia stercoris, Blautia wexlerae, Bryantella formatexigens, Clostridium coccoides,
Eubacterium cellulosolvens, Lachnospiraceae bacterium 6_1_63FAA, Marvinbryantia formatexigens,
Ruminococcus hansenii, Ruminococcus obeum, Ruminococcus sp. 5_1_39BFAA, Ruminococcus sp.
K_1, Syntrophococcus sucromutans
clade_309hBlautia coccoides, Blautia glucerasea, Blautia glucerasei, Blautia hansenii, Blautia luti, Blautia schinkii,
Blautia sp. M25, Blautia stercoris, Blautia wexlerae, Bryantella formatexigens, Clostridium coccoides,
Eubacterium cellulosolvens, Lachnospiraceae bacterium 6_1_63FAA, Marvinbryantia formatexigens,
Ruminococcus hansenii, Ruminococcus obeum, Ruminococcus sp. 5_1_39BFAA, Ruminococcus sp.
K_1, Syntrophococcus sucromutans
clade_309iBlautia coccoides, Blautia glucerasea, Blautia glucerasei, Blautia hansenii, Blautia luti, Blautia schinkii,
Blautia sp. M25, Blautia stercoris, Blautia wexlerae, Bryantella formatexigens, Clostridium coccoides,
Eubacterium cellulosolvens, Lachnospiraceae bacterium 6_1_63FAA, Marvinbryantia formatexigens,
Ruminococcus hansenii, Ruminococcus sp. 5_1_39BFAA, Ruminococcus sp. K_1, Syntrophococcus
sucromutans
clade_313Lactobacillus antri, Lactobacillus coleohominis, Lactobacillus fermentum, Lactobacillus gastricus,
Lactobacillus mucosae, Lactobacillus oris, Lactobacillus pontis, Lactobacillus reuteri, Lactobacillus sp.
KLDS 1.0707, Lactobacillus sp. KLDS 1.0709, Lactobacillus sp. KLDS 1.0711, Lactobacillus sp. KLDS
1.0713, Lactobacillus sp. KLDS 1.0716, Lactobacillus sp. KLDS 1.0718, Lactobacillus sp. oral taxon
052, Lactobacillus vaginalis
clade_313fLactobacillus antri, Lactobacillus coleohominis, Lactobacillus fermentum, Lactobacillus gastricus,
Lactobacillus mucosae, Lactobacillus oris, Lactobacillus pontis, Lactobacillus sp. KLDS 1.0707,
Lactobacillus sp. KLDS 1.0709, Lactobacillus sp. KLDS 1.0711, Lactobacillus sp. KLDS 1.0713,
Lactobacillus sp. KLDS 1.0716, Lactobacillus sp. KLDS 1.0718, Lactobacillus sp. oral taxon 052,
Lactobacillus vaginalis
clade_325Staphylococcus aureus, Staphylococcus auricularis, Staphylococcus capitis, Staphylococcus caprae,
Staphylococcus carnosus, Staphylococcus cohnii, Staphylococcus condimenti, Staphylococcus
epidermidis, Staphylococcus equorum, Staphylococcus haemolyticus, Staphylococcus hominis,
Staphylococcus lugdunensis, Staphylococcus pasteuri, Staphylococcus pseudintermedius,
Staphylococcus saccharolyticus, Staphylococcus saprophyticus, Staphylococcus sp. H292,
Staphylococcus sp. H780, Staphylococcus sp. clone bottae7, Staphylococcus succinus, Staphylococcus
warneri, Staphylococcus xylosus
clade_325fStaphylococcus aureus, Staphylococcus auricularis, Staphylococcus capitis, Staphylococcus caprae,
Staphylococcus carnosus, Staphylococcus cohnii, Staphylococcus condimenti, Staphylococcus
epidermidis, Staphylococcus equorum, Staphylococcus haemolyticus, Staphylococcus hominis,
Staphylococcus lugdunensis, Staphylococcus pseudintermedius, Staphylococcus saccharolyticus,
Staphylococcus saprophyticus, Staphylococcus sp. H292, Staphylococcus sp. H780, Staphylococcus sp.
clone bottae7, Staphylococcus succinus, Staphylococcus xylosus
clade_335Bacteroides sp. 20_3, Bacteroides sp. 3_1_19, Bacteroides sp. 3_2_5, Parabacteroides distasonis,
Parabacteroides goldsteinii, Parabacteroides gordonii, Parabacteroides sp. D13
clade_335iBacteroides sp. 20_3, Bacteroides sp. 3_1_19, Bacteroides sp. 3_2_5, Parabacteroides goldsteinii,
Parabacteroides gordonii, Parabacteroides sp. D13
clade_351Clostridium innocuum, Clostridium sp. HGF2
clade_351eClostridium sp. HGF2
clade_354Clostridium bartlettii, Clostridium bifermentans, Clostridium ghonii, Clostridium glycolicum,
Clostridium mayombei, Clostridium sordellii, Clostridium sp. MT4 E, Eubacterium tenue
clade_354eClostridium bartlettii, Clostridium ghonii, Clostridium glycolicum, Clostridium mayombei, Clostridium
sordellii, Clostridium sp. MT4 E, Eubacterium tenue
clade_360Dorea formicigenerans, Dorea longicatena, Lachnospiraceae bacterium 2_1_46FAA, Lachnospiraceae
bacterium 2_1_58FAA, Lachnospiraceae bacterium 4_1_37FAA, Lachnospiraceae bacterium
9_1_43BFAA, Ruminococcus gnavus, Ruminococcus sp. ID8
clade_360cDorea formicigenerans, Dorea longicatena, Lachnospiraceae bacterium 2_1_46FAA, Lachnospiraceae
bacterium 2_1_58FAA, Lachnospiraceae bacterium 4_1_37FAA, Lachnospiraceae bacterium
9_1_43BFAA, Ruminococcus gnavus
clade_360gDorea formicigenerans, Dorea longicatena, Lachnospiraceae bacterium 2_1_46FAA, Lachnospiraceae
bacterium 2_1_58FAA, Lachnospiraceae bacterium 4_1_37FAA, Lachnospiraceae bacterium
9_1_43BFAA, Ruminococcus gnavus
clade_360hDorea formicigenerans, Dorea longicatena, Lachnospiraceae bacterium 2_1_46FAA, Lachnospiraceae
bacterium 2_1_58FAA, Lachnospiraceae bacterium 4_1_37FAA, Lachnospiraceae bacterium
9_1_43BFAA, Ruminococcus gnavus
clade_360iDorea formicigenerans, Lachnospiraceae bacterium 2_1_46FAA, Lachnospiraceae bacterium
2_1_58FAA, Lachnospiraceae bacterium 4_1_37FAA, Lachnospiraceae bacterium 9_1_43BFAA,
Ruminococcus gnavus, Ruminococcus sp. ID8
clade_378Bacteroides barnesiae, Bacteroides coprocola, Bacteroides coprophilus, Bacteroides dorei, Bacteroides
massiliensis, Bacteroides plebeius, Bacteroides sp. 3_1_33FAA, Bacteroides sp. 3_1_40A, Bacteroides
sp. 4_3_47FAA, Bacteroides sp. 9_1_42FAA, Bacteroides sp. NB_8, Bacteroides vulgatus
clade_378eBacteroides barnesiae, Bacteroides coprocola, Bacteroides coprophilus, Bacteroides dorei, Bacteroides
massiliensis, Bacteroides plebeius, Bacteroides sp. 3_1_33FAA, Bacteroides sp. 3_1_40A, Bacteroides
sp. 4_3_47FAA, Bacteroides sp. 9_1_42FAA, Bacteroides sp. NB_8
clade_38Bacteroides ovatus, Bacteroides sp. 1_1_30, Bacteroides sp. 2_1_22, Bacteroides sp. 2_2_4, Bacteroides
sp. 3_1_23, Bacteroides sp. D1, Bacteroides sp. D2, Bacteroides sp. D22, Bacteroides xylanisolvens
clade_38eBacteroides sp. 1_1_30, Bacteroides sp. 2_1_22, Bacteroides sp. 2_2_4, Bacteroides sp. 3_1_23,
Bacteroides sp. D1, Bacteroides sp. D2, Bacteroides sp. D22, Bacteroides xylanisolvens
clade_38iBacteroides sp. 1_1_30, Bacteroides sp. 2_1_22, Bacteroides sp. 2_2_4, Bacteroides sp. 3_1_23,
Bacteroides sp. D1, Bacteroides sp. D2, Bacteroides sp. D22, Bacteroides xylanisolvens
clade_408Anaerostipes caccae, Anaerostipes sp. 3_2_56FAA, Clostridiales bacterium 1_7_47FAA, Clostridiales
sp. SM4_1, Clostridiales sp. SSC_2, Clostridium aerotolerans, Clostridium aldenense, Clostridium
algidixylanolyticum, Clostridium amygdalinum, Clostridium asparagiforme, Clostridium bolteae,
Clostridium celerecrescens, Clostridium citroniae, Clostridium clostridiiformes, Clostridium
clostridioforme, Clostridium hathewayi, Clostridium indolis, Clostridium lavalense, Clostridium
saccharolyticum, Clostridium sp. M62_1, Clostridium sp. SS2_1, Clostridium sphenoides, Clostridium
symbiosum, Clostridium xylanolyticum, Eubacterium hadrum, Fusobacterium naviforme,
Lachnospiraceae bacterium 3_1_57FAA, Lachnospiraceae bacterium 5_1_63FAA, Lachnospiraceae
bacterium A4, Lachnospiraceae bacterium DJF VP30, Lachnospiraceae genomosp. C1, Moryella
indoligenes
clade_408bAnaerostipes caccae, Anaerostipes sp. 3_2_56FAA, Clostridiales bacterium 1_7_47FAA, Clostridiales
sp. SM4_1, Clostridiales sp. SSC_2, Clostridium aerotolerans, Clostridium aldenense, Clostridium
algidixylanolyticum, Clostridium amygdalinum, Clostridium asparagiforme, Clostridium bolteae,
Clostridium celerecrescens, Clostridium citroniae, Clostridium clostridiiformes, Clostridium
clostridioforme, Clostridium indolis, Clostridium lavalense, Clostridium saccharolyticum, Clostridium
sp. M62_1, Clostridium sp. SS2_1, Clostridium sphenoides, Clostridium symbiosum, Clostridium
xylanolyticum, Eubacterium hadrum, Fusobacterium naviforme, Lachnospiraceae bacterium
5_1_63FAA, Lachnospiraceae bacterium A4, Lachnospiraceae bacterium DJF VP30, Lachnospiraceae
genomosp. C1, Moryella indoligenes
clade_408dAnaerostipes caccae, Anaerostipes sp. 3_2_56FAA, Clostridiales sp. SM4_1, Clostridiales sp. SSC_2,
Clostridium aerotolerans, Clostridium aldenense, Clostridium algidixylanolyticum, Clostridium
amygdalinum, Clostridium celerecrescens, Clostridium citroniae, Clostridium clostridiiformes,
Clostridium clostridioforme, Clostridium hathewayi, Clostridium lavalense, Clostridium
saccharolyticum, Clostridium sp. M62_1, Clostridium sp. SS2_1, Clostridium sphenoides, Clostridium
symbiosum, Clostridium xylanolyticum, Eubacterium hadrum, Fusobacterium naviforme,
Lachnospiraceae bacterium 3_1_57FAA, Lachnospiraceae bacterium 5_1_63FAA, Lachnospiraceae
bacterium A4, Lachnospiraceae bacterium DJF VP30, Lachnospiraceae genomosp. C1, Moryella
indoligenes
clade_408fAnaerostipes sp. 3_2_56FAA, Clostridiales bacterium 1_7_47FAA, Clostridiales sp. SM4_1,
Clostridiales sp. SSC_2, Clostridium aerotolerans, Clostridium aldenense, Clostridium
algidixylanolyticum, Clostridium amygdalinum, Clostridium asparagiforme, Clostridium bolteae,
Clostridium celerecrescens, Clostridium citroniae, Clostridium clostridiiformes, Clostridium
clostridioforme, Clostridium hathewayi, Clostridium lavalense, Clostridium saccharolyticum,
Clostridium sp. M62_1, Clostridium sp. SS2_1, Clostridium sphenoides, Clostridium symbiosum,
Clostridium xylanolyticum, Eubacterium hadrum, Fusobacterium naviforme, Lachnospiraceae bacterium
3_1_57FAA, Lachnospiraceae bacterium 5_1_63FAA, Lachnospiraceae bacterium A4, Lachnospiraceae
bacterium DJF VP30, Lachnospiraceae genomosp. C1, Moryella indoligenes
clade_408gAnaerostipes caccae, Anaerostipes sp. 3_2_56FAA, Clostridiales sp. SM4_1, Clostridiales sp. SSC_2,
Clostridium aerotolerans, Clostridium aldenense, Clostridium algidixylanolyticum, Clostridium
amygdalinum, Clostridium celerecrescens, Clostridium citroniae, Clostridium clostridiiformes,
Clostridium clostridioforme, Clostridium lavalense, Clostridium saccharolyticum, Clostridium sp.
M62_1, Clostridium sp. SS2_1, Clostridium sphenoides, Clostridium symbiosum, Clostridium
xylanolyticum, Eubacterium hadrum, Fusobacterium naviforme, Lachnospiraceae bacterium
5_1_63FAA, Lachnospiraceae bacterium A4, Lachnospiraceae bacterium DJF VP30, Lachnospiraceae
genomosp. C1, Moryella indoligenes
clade_408hAnaerostipes caccae, Anaerostipes sp. 3_2_56FAA, Clostridiales sp. SM4_1, Clostridiales sp. SSC_2,
Clostridium aerotolerans, Clostridium aldenense, Clostridium algidixylanolyticum, Clostridium
amygdalinum, Clostridium celerecrescens, Clostridium citroniae, Clostridium clostridiiformes,
Clostridium clostridioforme, Clostridium lavalense, Clostridium saccharolyticum, Clostridium sp.
M62_1, Clostridium sp. SS2_1, Clostridium sphenoides, Clostridium symbiosum, Clostridium
xylanolyticum, Eubacterium hadrum, Fusobacterium naviforme, Lachnospiraceae bacterium
5_1_63FAA, Lachnospiraceae bacterium A4, Lachnospiraceae bacterium DJF VP30, Lachnospiraceae
genomosp. C1, Moryella indoligenes
clade_420Barnesiella intestinihominis, Barnesiella viscericola, Parabacteroides sp. NS31_3, Porphyromonadaceae
bacterium NML 060648, Tannerella forsythia, Tannerella sp. 6_1_58FAA_CT1
clade_420fBarnesiella viscericola, Parabacteroides sp. NS31_3. Porphyromonadaceae bacterium NML 060648,
Tannerella forsythia, Tannerella sp. 6_1_58FAA_CT1
clade_444Butyrivibrio fibrisolvens, Eubacterium rectale, Eubacterium sp. oral clone GI038, Lachnobacterium
bovis, Roseburia cecicola, Roseburia faecalis, Roseburia faecis, Roseburia hominis, Roseburia
intestinalis, Roseburia inulinivorans, Roseburia sp. 11SE37, Roseburia sp. 11SE38, Shuttleworthia
satelles, Shuttleworthia sp. MSX8B, Shuttleworthia sp. oral taxon G69
clade_444iButyrivibrio fibrisolvens, Eubacterium sp. oral clone GI038, Lachnobacterium bovis, Roseburia
cecicola, Roseburia faecis, Roseburia hominis, Roseburia inulinivorans, Roseburia sp. 11SE37,
Roseburia sp. 11SE38, Shuttleworthia satelles, Shuttleworthia sp. MSX8B, Shuttleworthia sp. oral taxon
G69
clade_478Faecalibacterium prausnitzii, Gemmiger formicilis, Subdoligranulum variabile
clade_478iGemmiger formicilis, Subdoligranulum variabile
clade_479Clostridiaceae bacterium JC13, Clostridium sp. MLG055, Erysipelotrichaceae bacterium 3_1_53
clade_479cClostridium sp. MLG055, Erysipelotrichaceae bacterium 3_1_53
clade_479gClostridium sp. MLG055, Erysipelotrichaceae bacterium 3_1_53
clade_479hClostridium sp. MLG055, Erysipelotrichaceae bacterium 3_1_53
clade_481Clostridium cocleatum, Clostridium ramosum, Clostridium saccharogumia, Clostridium spiroforme,
Coprobacillus sp. D7
clade_481aClostridium cocleatum, Clostridium spiroforme, Coprobacillus sp. D7
clade_481bClostridium cocleatum, Clostridium ramosum, Clostridium spiroforme, Coprobacillus sp. D7
clade_481eClostridium cocleatum, Clostridium saccharogumia, Clostridium spiroforme, Coprobacillus sp. D7
clade_481gClostridium cocleatum, Clostridium spiroforme, Coprobacillus sp. D7
clade_481hClostridium cocleatum, Clostridium spiroforme, Coprobacillus sp. D7
clade_481iClostridium ramosum, Clostridium saccharogumia, Clostridium spiroforme, Coprobacillus sp. D7
clade_497Abiotrophia para_adiacens, Carnobacterium divergens, Carnobacterium maltaromaticum, Enterococcus
avium, Enterococcus caccae, Enterococcus casseliflavus, Enterococcus durans, Enterococcus faecalis,
Enterococcus faecium, Enterococcus gallinarum, Enterococcus gilvus, Enterococcus hawaiiensis,
Enterococcus hirae, Enterococcus italicus, Enterococcus mundtii, Enterococcus raffinosus, Enterococcus
sp. BV2CASA2, Enterococcus sp. CCRI 16620, Enterococcus sp. F95, Enterococcus sp. RfL6,
Enterococcus thailandieus, Fusobacterium canifelinum, Fusobacterium genomosp. C1, Fusobacterium
genomosp. C2, Fusobacterium nucleatum, Fusobacterium periodonticum, Fusobacterium sp. 11_3_2,
Fusobacterium sp. 1_1_41FAA, Fusobacterium sp. 2_1_31, Fusobacterium sp. 3_1_27, Fusobacterium
sp. 3_1_33, Fusobacterium sp. 3_1_36A2, Fusobacterium sp. AC18, Fusobacterium sp. ACB2,
Fusobacterium sp. AS2, Fusobacterium sp. CM1, Fusobacterium sp. CM21, Fusobacterium sp. CM22,
Fusobacterium sp. oral clone ASCF06, Fusobacterium sp. oral clone ASCF11, Granulicatella adiacens,
Granulicatella elegans, Granulicatella paradiacens, Granulicatella sp. oral clone ASC02, Granulicatella
sp. oral clone ASCA05, Granulicatella sp. oral clone ASCB09, Granulicatella sp. oral clone ASCG05,
Tetragenococcus halophilus, Tetragenococcus koreensis, Vagococcus fluvialis
clade_497eAbiotrophia para_adiacens, Carnobacterium divergens, Carnobacterium maltaromaticum, Enterococcus
avium, Enterococcus caccae, Enterococcus casseliflavus, Enterococcus durans, Enterococcus faecium,
Enterococcus gallinarum, Enterococcus gilvus, Enterococcus hawaiiensis, Enterococcus hirae,
Enterococcus italicus, Enterococcus mundtii, Enterococcus raffinosus, Enterococcus sp. BV2CASA2,
Enterococcus sp. CCRI 16620, Enterococcus sp. F95, Enterococcus sp. RfL6, Enterococcus thailandicus,
Fusobacterium canifelinum, Fusobacterium genomosp. C1, Fusobacterium genomosp. C2,
Fusobacterium nucleatum, Fusobacterium periodonticum, Fusobacterium sp. 11_3_2, Fusobacterium sp.
1_1_41FAA, Fusobacterium sp. 2_1_31, Fusobacterium sp. 3_1_27, Fusobacterium sp. 3_1_33,
Fusobacterium sp. 3_1_36A2, Fusobacterium sp. AC18, Fusobacterium sp. ACB2, Fusobacterium sp.
AS2, Fusobacterium sp. CM1, Fusobacterium sp. CM21, Fusobacterium sp. CM22, Fusobacterium sp.
oral clone ASCF06, Fusobacterium sp. oral clone ASCF11, Granulicatella adiacens, Granulicatella
elegans, Granulicatella paradiacens, Granulicatella sp. oral clone ASC02, Granulicatella sp. oral clone
ASCA05, Granulicatella sp. oral clone ASCB09, Granulicatella sp. oral clone ASCG05,
Tetragenococcus halophilus, Tetragenococcus koreensis, Vagococcus fluvialis
clade_497fAbiotrophia para_adiacens, Carnobacterium divergens, Carnobacterium maltaromaticum, Enterococcus
avium, Enterococcus caccae, Enterococcus casseliflavus, Enterococcus faecalis, Enterococcus
gallinarum, Enterococcus gilvus, Enterococcus hawaiiensis, Enterococcus italicus, Enterococcus
mundtii, Enterococcus raffinosus, Enterococcus sp. BV2CASA2, Enterococcus sp. CCRI 16620,
Enterococcus sp. F95, Enterococcus sp. RfL6, Enterococcus thailandicus, Fusobacterium canifelinum,
Fusobacterium genomosp. C1, Fusobacterium genomosp. C2, Fusobacterium nucleatum, Fusobacterium
periodonticum, Fusobacterium sp. 11_3_2, Fusobacterium sp. 1_1_41FAA, Fusobacterium sp. 2_1_31,
Fusobacterium sp. 3_1_27, Fusobacterium sp. 3_1_33, Fusobacterium sp. 3_1_36A2, Fusobacterium sp.
AC18, Fusobacterium sp. ACB2, Fusobacterium sp. AS2, Fusobacterium sp. CM1, Fusobacterium sp.
CM21, Fusobacterium sp. CM22, Fusobacterium sp. oral clone ASCF06, Fusobacterium sp. oral clone
ASCF11, Granulicatella adiacens, Granulicatella elegans, Granulicatella paradiacens, Granulicatella sp.
oral clone ASC02, Granulicatella sp. oral clone ASCA05, Granulicatella sp. oral clone ASCB09,
Granulicatella sp. oral clone ASCG05, Tetragenococcus halophilus, Tetragenococcus koreensis,
Vagococcus fluvialis
clade_512Eubacterium barkeri, Eubacterium callanderi, Eubacterium limosum, Pseudoramibacter alactolyticus
clade_512iEubacterium barkeri, Eubacterium callanderi, Pseudoramibacter alactolyticus
clade_516Anaerotruncus colihominis, Clostridium methylpentosum, Clostridium sp. YIT 12070,
Hydrogenoanaerobacterium saccharovorans, Ruminococcus albus, Ruminococcus flavefaciens
clade_516cClostridium methylpentosum, Clostridium sp. YIT 12070, Hydrogenoanaerobacterium saccharovorans,
Ruminococcus albus, Ruminococcus flavefaciens
clade_516gClostridium methylpentosum, Clostridium sp. YIT 12070, Hydrogenoanaerobacterium saccharovorans,
Ruminococcus albus, Ruminococcus flavefaciens
clade_516hClostridium methylpentosum, Clostridium sp. YIT 12070, Hydrogenoanaerobacterium saccharovorans,
Ruminococcus albus, Ruminococcus flavefaciens
clade_519Eubacterium ventriosum
clade_522Bacteroides galacturonicus, Eubacterium eligens, Lachnospira multipara, Lachnospira pectinoschiza,
Lactobacillus rogosae
clade_522iBacteroides galacturonicus, Lachnospira multipara, Lachnospira pectinoschiza, Lactobacillus rogosae
clade_553Collinsella aerofaciens, Collinsella intestinalis, Collinsella stercoris, Collinsella tanakaei
clade_553iCollinsella intestinalis, Collinsella stercoris, Collinsella tanakaei
clade_566Adlercreutzia equolifaciens, Coriobacteriaceae bacterium JC110, Coriobacteriaceae bacterium phI,
Cryptobacterium curtum, Eggerthella lenta, Eggerthella sinensis, Eggerthella sp. 1_3_56FAA,
Eggerthella sp. HGA1, Eggerthella sp. YY7918, Gordonibacter pamelaeae, Slackia equolifaciens,
Slackia exigua, Slackia faecicanis, Slackia heliotrinireducens, Slackia isoflavoniconvertens, Slackia
piriformis, Slackia sp. NATTS, Streptomyces albus
clade_566fCoriobacteriaceae bacterium JC110, Coriobacteriaceae bacterium phI, Cryptobacterium curtum,
Eggerthella lenta, Eggerthella sinensis, Eggerthella sp. 1_3_56FAA, Eggerthella sp. HGA1, Eggerthella
sp. YY7918, Gordonibacter pamelaeae, Slackia equolifaciens, Slackia exigua, Slackia faecicanis,
Slackia heliotrinireducens, Slackia isoflavoniconvertens, Slackia piriformis, Slackia sp. NATTS,
Streptomyces albus
clade_572Butyricicoccus pullicaecorum, Eubacterium desmolans, Papillibacter cinnamivorans, Sporobacter
termitidis
clade_572iButyricicoccus pullicaecorum, Papillibacter cinnamivorans, Sporobacter termitidis
clade_65Bacteroides faecis, Bacteroides fragilis, Bacteroides nordii, Bacteroides salyersiae, Bacteroides sp.
1_1_14, Bacteroides sp. 1_1_6, Bacteroides sp. 2_1_56FAA, Bacteroides sp. AR29, Bacteroides sp. B2,
Bacteroides thetaiotaomicron
clade_65eBacteroides faecis, Bacteroides fragilis, Bacteroides nordii, Bacteroides salyersiae, Bacteroides sp.
1_1_14, Bacteroides sp. 1_1_6, Bacteroides sp. 2_1_56FAA, Bacteroides sp. AR29, Bacteroides sp. B2
clade_92Actinobacillus actinomycetemcomitans, Actinobacillus succinogenes, Aggregatibacter
actinomycetemcomitans, Aggregatibacter aphrophilus, Aggregatibacter segnis, Averyella dalhousiensis,
Bisgaard Taxon, Buchnera aphidicola, Cedecea davisae, Citrobacter amalonaticus, Citrobacter braakii,
Citrobacter farmeri, Citrobacter freundii, Citrobacter gillenii, Citrobacter koseri, Citrobacter murliniae,
Citrobacter rodentium, Citrobacter sedlakii, Citrobacter sp. 30_2, Citrobacter sp. KMSI_3, Citrobacter
werkmanii, Citrobacter youngae, Cronobacter malonaticus, Cronobacter sakazakii, Cronobacter
turicensis, Enterobacter aerogenes, Enterobacter asburiae, Enterobacter cancerogenus, Enterobacter
cloacae, Enterobacter cowanii, Enterobacter hormaechei, Enterobacter sp. 247BMC, Enterobacter sp.
638, Enterobacter sp. JC163, Enterobacter sp. SCSS, Enterobacter sp. TSE38, Enterobacteriaceae
bacterium 9_2_54FAA, Enterobacteriaceae bacterium CF01Ent_1, Enterobacteriaceae bacterium
Smarlab 3302238, Escherichia albertii, Escherichia coli, Escherichia fergusonii, Escherichia hermannii,
Escherichia sp. 1_1_43, Escherichia sp. 4_1_40B, Escherichia sp. B4, Escherichia vulneris, Ewingella
americana, Haemophilus genomosp. P2 oral clone MB3_C24, Haemophilus genomosp. P3 oral clone
MB3_C38, Haemophilus sp. oral clone JM053, Hafnia alvei, Klebsiella oxytoca, Klebsiella pneumoniae,
Klebsiella sp. AS10, Klebsiella sp. Co9935, Klebsiella sp. OBRC7, Klebsiella sp. SP_BA, Klebsiella sp.
SRC_DSD1, Klebsiella sp. SRC_DSD11, Klebsiella sp. SRC_DSD12, Klebsiella sp. SRC_DSD15,
Klebsiella sp. SRC_DSD2, Klebsiella sp. SRC_DSD6, Klebsiella sp. enrichment culture clone
SRC_DSD25, Klebsiella variicola, Kluyvera ascorbata, Kluyvera cryocrescens, Leminorella grimontii,
Leminorella richardii, Pantoea agglomerans, Pantoea ananatis, Pantoea brenneri, Pantoea citrea, Pantoea
conspicua, Pantoea septica, Pasteurella dagmatis, Pasteurella multocida, Plesiomonas shigelloides,
Raoultella ornithinolytica, Raoultella planticola, Raoultella terrigena, Salmonella bongori, Salmonella
enterica, Salmonella typhimurium, Serratia fonticola, Serratia liquefaciens, Serratia marcescens, Serratia
odorifera, Serratia proteamaculans, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella
sonnei, Tatumella ptyseos, Trabulsiella guamensis, Yersinia aldovae, Yersinia aleksiciae, Yersinia
bercovieri, Yersinia enterocolitica, Yersinia frederiksenii, Yersinia intermedia, Yersinia kristensenii,
Yersinia mollaretii, Yersinia pestis, Yersinia pseudotuberculosis, Yersinia rohdei, Yokenella
regensburgei
clade_92eActinobacillus actinomycetemcomitans, Actinobacillus succinogenes, Aggregatibacter
actinomycetemcomitans, Aggregatibacter aphrophilus, Aggregatibacter segnis, Averyella dalhousiensis,
Bisgaard Taxon, Buchnera aphidicola, Cedecea davisae, Citrobacter amalonaticus, Citrobacter braakii,
Citrobacter farmeri, Citrobacter freundii, Citrobacter gillenii, Citrobacter koseri, Citrobacter murliniae,
Citrobacter rodentium, Citrobacter sedlakii, Citrobacter sp. 30_2, Citrobacter sp. KMSI_3, Citrobacter
werkmanii, Citrobacter youngae, Cronobacter malonaticus, Cronobacter sakazakii, Cronobacter
turicensis, Enterobacter aerogenes, Enterobacter asburiae, Enterobacter cancerogenus, Enterobacter
cloacae, Enterobacter cowanii, Enterobacter hormaechei, Enterobacter sp. 247BMC, Enterobacter sp.
638, Enterobacter sp. JC163, Enterobacter sp. SCSS, Enterobacter sp. TSE38, Enterobacteriaceae
bacterium 9_2_54FAA, Enterobacteriaceae bacterium CF01Ent_1, Enterobacteriaceae bacterium
Smarlab 3302238, Escherichia albertii, Escherichia fergusonii, Escherichia hermannii, Escherichia sp.
1_1_43, Escherichia sp. 4_1_40B, Escherichia sp. B4, Escherichia vulneris, Ewingella americana,
Haemophilus genomosp. P2 oral clone MB3_C24, Haemophilus genomosp. P3 oral clone MB3_C38,
Haemophilus sp. oral clone JM053, Hafnia alvei, Klebsiella oxytoca, Klebsiella pneumoniae, Klebsiella
sp. AS10, Klebsiella sp. Co9935, Klebsiella sp. OBRC7, Klebsiella sp. SP_BA, Klebsiella sp.
SRC_DSD1, Klebsiella sp. SRC_DSD11, Klebsiella sp. SRC_DSD12, Klebsiella sp. SRC_DSD15,
Klebsiella sp. SRC_DSD2, Klebsiella sp. SRC_DSD6, Klebsiella sp. enrichment culture clone
SRC_DSD25, Klebsiella variicola, Kluyvera ascorbata, Kluyvera cryocrescens, Leminorella grimontii,
Leminorella richardii, Pantoea agglomerans, Pantoea ananatis, Pantoea brenneri, Pantoea citrea, Pantoea
conspicua, Pantoea septica, Pasteurella dagmatis, Pasteurella multocida, Plesiomonas shigelloides,
Raoultella ornithinolytica, Raoultella planticola, Raoultella terrigena, Salmonella bongori, Salmonella
enterica, Salmonella typhimurium, Serratia fonticola, Serratia liquefaciens, Serratia marcescens, Serratia
odorifera, Serratia proteamaculans, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella
sonnei, Tatumella ptyseos, Trabulsiella guamensis, Yersinia aldovae, Yersinia aleksiciae, Yersinia
bercovieri, Yersinia enterocolitica, Yersinia frederiksenii, Yersinia intermedia, Yersinia kristensenii,
Yersinia mollaretii, Yersinia pestis, Yersinia pseudotuberculosis, Yersinia rohdei, Yokenella
regensburgei
clade_92iActinobacillus actinomycetemcomitans, Actinobacillus succinogenes, Aggregatibacter
actinomycetemcomitans, Aggregatibacter aphrophilus, Aggregatibacter segnis, Averyella dalhousiensis,
Bisgaard Taxon, Buchnera aphidicola, Cedecea davisae, Citrobacter amalonaticus, Citrobacter braakii,
Citrobacter farmeri, Citrobacter freundii, Citrobacter gillenii, Citrobacter koseri, Citrobacter murliniae,
Citrobacter rodentium, Citrobacter sedlakii, Citrobacter sp. 30_2, Citrobacter sp. KMSI_3, Citrobacter
werkmanii, Citrobacter youngae, Cronobacter malonaticus, Cronobacter sakazakii, Cronobacter
turicensis, Enterobacter aerogenes, Enterobacter asburiae, Enterobacter cancerogenus, Enterobacter
cloacae, Enterobacter cowanii, Enterobacter hormaechei, Enterobacter sp. 247BMC, Enterobacter sp.
638, Enterobacter sp. JC163, Enterobacter sp. SCSS, Enterobacter sp. TSE38, Enterobacteriaceae
bacterium 9_2_54FAA, Enterobacteriaceae bacterium CF01Ent_1, Enterobacteriaceae bacterium
Smarlab 3302238, Escherichia albertii, Escherichia fergusonii, Escherichia hermannii, Escherichia sp.
1_1_43, Escherichia sp. 4_1_40B, Escherichia sp. B4, Escherichia vulneris, Ewingella americana,
Haemophilus genomosp. P2 oral clone MB3_C24, Haemophilus genomosp. P3 oral clone MB3_C38,
Haemophilus sp. oral clone JM053, Hafnia alvei, Klebsiella oxytoca, Klebsiella pneumoniae, Klebsiella
sp. AS10, Klebsiella sp. Co9935, Klebsiella sp. OBRC7, Klebsiella sp. SP_BA, Klebsiella sp.
SRC_DSD1, Klebsiella sp. SRC_DSD11, Klebsiella sp. SRC_DSD12, Klebsiella sp. SRC_DSD15,
Klebsiella sp. SRC_DSD2, Klebsiella sp. SRC_DSD6, Klebsiella sp. enrichment culture clone
SRC_DSD25, Klebsiella variicola, Kluyvera ascorbata, Kluyvera cryocrescens, Leminorella grimontii,
Leminorella richardii, Pantoea agglomerans, Pantoea ananatis, Pantoea brenneri, Pantoea citrea, Pantoea
conspicua, Pantoea septica, Pasteurella dagmatis, Pasteurella multocida, Plesiomonas shigelloides,
Raoultella ornithinolytica, Raoultella planticola, Raoultella terrigena, Salmonella bongori, Salmonella
enterica, Salmonella typhimurium, Serratia fonticola, Serratia liquefaciens, Serratia marcescens, Serratia
odorifera, Serratia proteamaculans, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella
sonnei, Tatumella ptyseos, Trabulsiella guamensis, Yersinia aldovae, Yersinia aleksiciae, Yersinia
bercovieri, Yersinia enterocolitica, Yersinia frederiksenii, Yersinia intermedia, Yersinia kristensenii,
Yersinia mollaretii, Yersinia pestis, Yersinia pseudotuberculosis, Yersinia rohdei, Yokenella
regensburgei
clade_96Clostridium oroticum, Clostridium sp. D5, Eubacterium contortum, Eubacterium fissicatena
clade_96gClostridium oroticum, Clostridium sp. D5, Eubacterium fissicatena
clade_96hClostridium oroticum, Clostridium sp. D5, Eubacterium fissicatena
clade_98Okadaella gastrococcus, Streptococcus agalactiae, Streptococcus alactolyticus, Streptococcus australis,
Streptococcus bovis, Streptococcus canis, Streptococcus constellatus, Streptococcus cristatus,
Streptococcus dysgalactiae, Streptococcus equi, Streptococcus equinus, Streptococcus gallolyticus,
Streptococcus genomosp. C1, Streptococcus genomosp. C2, Streptococcus genomosp. C3, Streptococcus
genomosp. C4, Streptococcus genomosp. C5, Streptococcus genomosp. C6, Streptococcus genomosp.
C7, Streptococcus genomosp. C8, Streptococcus gordonii, Streptococcus infantarius, Streptococcus
infantis, Streptococcus intermedius, Streptococcus lutetiensis, Streptococcus massiliensis, Streptococcus
mitis, Streptococcus oligofermentans, Streptococcus oralis, Streptococcus parasanguinis, Streptococcus
pasteurianus, Streptococcus peroris, Streptococcus pneumoniae, Streptococcus porcinus, Streptococcus
pseudopneumoniae, Streptococcus pseudoporcinus, Streptococcus pyogenes, Streptococcus ratti,
Streptococcus salivarius, Streptococcus sanguinis, Streptococcus sinensis, Streptococcus sp. 2285_97,
Streptococcus sp. 2_1_36FAA, Streptococcus sp. ACS2, Streptococcus sp. AS20, Streptococcus sp.
BS35a, Streptococcus sp. C150, Streptococcus sp. CM6, Streptococcus sp. ICM10, Streptococcus sp.
ICM12, Streptococcus sp. ICM2, Streptococcus sp. ICM4, Streptococcus sp. ICM45, Streptococcus sp.
M143, Streptococcus sp. M334, Streptococcus sp. oral clone ASB02, Streptococcus sp. oral clone
ASCA03, Streptococcus sp. oral clone ASCA04, Streptococcus sp. oral clone ASCA09, Streptococcus
sp. oral clone ASCB04, Streptococcus sp. oral clone ASCB06, Streptococcus sp. oral clone ASCC04,
Streptococcus sp. oral clone ASCC05, Streptococcus sp. oral clone ASCC12, Streptococcus sp. oral
clone ASCD01, Streptococcus sp. oral clone ASCD09, Streptococcus sp. oral clone ASCD10,
Streptococcus sp. oral clone ASCE03, Streptococcus sp. oral clone ASCE04, Streptococcus sp. oral
clone ASCE05, Streptococcus sp. oral clone ASCE06, Streptococcus sp. oral clone ASCE09,
Streptococcus sp. oral clone ASCE10, Streptococcus sp. oral clone ASCE12, Streptococcus sp. oral
clone ASCF05, Streptococcus sp. oral clone ASCF07, Streptococcus sp. oral clone ASCF09,
Streptococcus sp. oral clone ASCG04, Streptococcus sp. oral clone RW009, Streptococcus sp. oral clone
CH016, Streptococcus sp. oral clone GK051, Streptococcus sp. oral clone GM006, Streptococcus sp.
oral clone P2PA_41 P2, Streptococcus sp. oral clone P4PA_30 P4, Streptococcus sp. oral taxon 071,
Streptococcus sp. oral taxon G59, Streptococcus sp. oral taxon G62, Streptococcus sp. oral taxon G63,
Streptococcus suis, Streptococcus thermophilus, Streptococcus uberis, Streptococcus urinalis,
Streptococcus vestibularis, Streptococcus viridans, Synergistetes bacterium oral clone 03 5 D05
clade_98iOkadaella gastrococcus, Streptococcus agalactiae, Streptococcus alactolyticus, Streptococcus australis,
Streptococcus bovis, Streptococcus canis, Streptococcus constellatus, Streptococcus cristatus,
Streptococcus dysgalactiae, Streptococcus equi, Streptococcus equinus, Streptococcus gallolyticus,
Streptococcus genomosp. C1, Streptococcus genomosp. C2, Streptococcus genomosp. C3, Streptococcus
genomosp. C4, Streptococcus genomosp. C5, Streptococcus genomosp. C6, Streptococcus genomosp.
C7, Streptococcus genomosp. C8, Streptococcus gordonii, Streptococcus infantarius, Streptococcus
infantis, Streptococcus intermedius, Streptococcus lutetiensis, Streptococcus massiliensis, Streptococcus
oligofermentans, Streptococcus oralis, Streptococcus parasanguinis, Streptococcus pasteurianus,
Streptococcus peroris, Streptococcus pneumoniae, Streptococcus porcinus, Streptococcus
pseudopneumoniae, Streptococcus pseudoporcinus, Streptococcus pyogenes, Streptococcus ratti,
Streptococcus salivarius, Streptococcus sanguinis, Streptococcus sinensis, Streptococcus sp. 2285_97,
Streptococcus sp. 2_1_36FAA, Streptococcus sp. ACS2, Streptococcus sp. AS20, Streptococcus sp.
BS35a, Streptococcus sp. C150, Streptococcus sp. CM6, Streptococcus sp. ICM10, Streptococcus sp.
ICM12, Streptococcus sp. ICM2, Streptococcus sp. ICM4, Streptococcus sp. ICM45, Streptococcus sp.
M143, Streptococcus sp. M334, Streptococcus sp. oral clone ASB02, Streptococcus sp. oral clone
ASCA03, Streptococcus sp. oral clone ASCA04, Streptococcus sp. oral clone ASCA09, Streptococcus
sp. oral clone ASCB04, Streptococcus sp. oral clone ASCB06, Streptococcus sp. oral clone ASCC04,
Streptococcus sp. oral clone ASCC05, Streptococcus sp. oral clone ASCC12, Streptococcus sp. oral
clone ASCD01, Streptococcus sp. oral clone ASCD09, Streptococcus sp. oral clone ASCD10,
Streptococcus sp. oral clone ASCE03, Streptococcus sp. oral clone ASCE04, Streptococcus sp. oral
clone ASCE05, Streptococcus sp. oral clone ASCE06, Streptococcus sp. oral clone ASCE09,
Streptococcus sp. oral clone ASCE10, Streptococcus sp. oral clone ASCE12, Streptococcus sp. oral
clone ASCF05, Streptococcus sp. oral clone ASCF07, Streptococcus sp. oral clone ASCF09,
Streptococcus sp. oral clone ASCG04, Streptococcus sp. oral clone BW009, Streptococcus sp. oral clone
CH016, Streptococcus sp. oral clone GK051, Streptococcus sp. oral clone GM006, Streptococcus sp.
oral clone P2PA_41 P2, Streptococcus sp. oral clone P4PA_30 P4, Streptococcus sp. oral taxon 071,
Streptococcus sp. oral taxon G59, Streptococcus sp. oral taxon G62, Streptococcus sp. oral taxon G63,
Streptococcus suis, Streptococcus thermophilus, Streptococcus uberis, Streptococcus urinalis,
Streptococcus vestibularis, Streptococcus viridans, Synergistetes bacterium oral clone 03 5 D05

[0358]

Abdominal cavity inflammation
Absidia infection
Acinetobacter baumanii infection
Acinetobacter infection
Acinetobacter lwoffii infection
Acne
Actinomyces israelii infection
Adenovirus infection
Adult varicella zoster virus infection
Aging
Alcoholism (and effects)
Allergic conjunctivitis
Allergic rhinitis
Allergy
ALS
Alzheimers disease
Amoeba infection
Anal cancer
Antibiotic treatment
Antitbiotic associated diarrhea
Arteriosclerosis
Arthritis
Aspergillus fumigatus infection
Aspergillus infection
Asthma
Atherosclerosis
Atopic dermatitis
Atopy/Allergic Sensitivity
Autism
Autoimmune disease
Bacillus anthracis infection
Bacillus infection
Bacterial endocarditis
Bacterial eye infection
Bacterial infection
Bacterial meningitis
Bacterial pneumonia
Bacterial respiratory tract infection
Bacterial skin infection
Bacterial susceptibility
Bacterial urinary tract infection
Bacterial vaginosis
Bacteroides caccae infection
Bacteroides fragilis infection
Bacteroides infection
Bacteroides thetaiotaomicron infection
Bacteroides uniformis infection
Bacteroides vulgatus infection
Bartonella bacilliformis infection
Bartonella infection
Bifidobacterium infection
Biliary cancer
Biliary cirrhosis
Biliary tract disease
Biliary tract infection
Biliary tumor
BK virus infection
Blastomyces infection
Bone and joint infection
Bone infection
Bordetella pertussis infection
Borrelia burgdorferi infection
Borrelia recurrentis infection
Brucella infection
Burkholderia infection
Cachexia
Campylobacter fetus infection
Campylobacter infection
Campylobacter jejuni infection
Cancer
Candida albicans infection
Candida infection
Candida krusei infection
Celiac Disease
Cervix infection
Chemotherapy-induced diarrhea
Chlamydia infection
Chlamydia pneumoniae infection
Chlamydia trachomatis infection
Chlamydiae infection
Chronic fatigue syndrome
Chronic infection
Chronic inflammatory demyelinating polyneuropathy
Chronic Polio Shedders
Circadian rhythm sleep disorder
Cirrhosis
Citrobacter infection
Cladophialophora infection
Clostridiaceae infection
Clostridium botulinum infection
Clostridium difficile infection
Clostridium infection
Clostridium tetani infection
Coccidioides infection
Colitis
Colon cancer
Colorectal cancer
Common cold
Compensated liver cirrhosis
Complicated skin and skin structure infection
Complicated urinary tract infection
Constipation
Constipation predominant irritable bowel syndrome
Corynebacterium diphtheriae infection
Corynebacterium infection
Coxiella infection
carbapenem-resistant Enterobacteriaceae (CRE) infection
Crohns disease
Cryptococcus infection
Cryptococcus neoformans infection
Cryptosporidium infection
Cutaneous lupus erythematosus
Cystic fibrosis
Cystitis
Cytomegalovirus infection
Dementia
Dengue virus infection
Depression
Dermatitis
Diabetes mellitus
Diabetic complication
Diabetic foot ulcer
Diarrhea
Diarrhea predominant irritable bowel syndrome
Discoid lupus erythematosus
Diverticulitis
DNA virus infection
Duodenal ulcer
Ebola virus infection
Entamoeba histolytica infection
Enterobacter aerogenes infection
Enterobacter cloacae infection
Enterobacter infection
Enterobacteriaceae infection
Enterococcus faecalis infection
Enterococcus faecium infection
Enterococcus infection
Enterocolitis
Enterovirus 71 infection
Epidermophyton infection
Epstein Barr virus infection
ESBL (Extended Spectrum Beta Lactamase)
Producing Bacterial Infection
Escherichia coli infection
Esophageal cancer
Exophiala infection
Familial cold autoinflammatory syndrome
Fasciola hepatica infection
Female genital tract infection
Female genital tract tumor
Female infertility
Fibrosis
Flavivirus infection
Food Allergy
Francisella tularensis infection
Functional bowel disorder
Fungal infection
Fungal respiratory tract infection
Fungal urinary tract infection
Fusarium infection
Fusobacterium infection
Gastric ulcers
Gastrointestinal infection
Gastrointestinal pain
Gastrointestinal ulcer
Genital tract infection
Genitourinary disease
Genitourinary tract rumor
Gestational diabetes
Giardia lamblia infection
Gingivitis
Gram negative bacterium infection
Gram positive bacterium infection
Haemophilus aegyptus infection
Haemophilus ducreyi infection
Haemophilus infection
Haemophilus influenzae infection
Haemophilus parainfluenzae infection
Hantavirus infection
Helicobacter pylori infection
Helminth infection
Hepatitis A virus infection
Hepatitis B virus infection
Hepatitis C virus infection
Hepatitis D virus infection
Hepatitis E virus infection
Hepatitis virus infection
Herpes simplex virus infection
Herpesvirus infection
Histoplasma infection
HIV infection
HIV-1 infection
HIV-2 infection
HSV-1 infection
HSV-2 infection
Human T cell leukemia virus 1 infection
Hypercholesterolemia
Hyperoxaluria
Hypertension
Infectious arthritis
Infectious disease
Infectious endocarditis
Infertility
Inflammatory bowel disease
Inflammatory disease
Influenza virus A infection
Influenza virus B infection
Influenza virus infection
Insomnia
Insulin dependent diabetes
Intestine infection
Irritable bowel syndrome
Japanese encephalitis virus infection
Joint infection
Juvenile rheumatoid arthritis
Klebsiella granulomatis infection
Klebsiella infection
Klebsiella pneumoniae infection
Legionella infection
Legionella pneumophila infection
Leishmania braziliensis infection
Leishmania donovani infection
Leishmania infection
Leishmania tropica infection
Leptospiraceae infection
Listeria monocytogenes infection
Listerosis
Liver cirrhosis
Liver fibrosis
Lower respiratory tract infection
Lung infection
Lung inflammation
Lupus erythematosus panniculitis
Lupus nephritis
Lyme disease
Male infertility
Marburg virus infection
Measles virus infection
Metabolic disorder
Metabolic Syndrome
Metastatic colon cancer
Metastatic colorectal cancer
Metastatic esophageal cancer
Metastatic gastrointestinal cancer
Metastatic stomach cancer
Micrococcaceae infection
Micrococcus infection
Microsporidial infection
Microsporum infection
Molluscum contagiosum infection
Monkeypox virus infection
Moraxella catarrhalis infection
Moraxella infection
Morganella infection
Morganella morganii infection
MRSA infection
Mucor infection
Multidrug resistant infection
Multiple sclerosis
Mumps virus infection
Musculoskeletal system inflammation
Mycobacterium infection
Mycobacterium leprae infection
Mycobacterium tuberculosis infection
Mycoplasma infection
Mycoplasma pneumoniae infection
Necrotizing enterocolitis
Necrotizing Pancreatitis
Neisseria gonorrhoeae infection
Neisseria infection
Neisseria meningitidis infection
Nematode infection
Non alcoholic fatty liver disease
Non-alcoholic steatohepatitis
Non-insulin dependent diabetes
Obesity
Ocular infection
Ocular inflammation
Orbital inflammatory disease
Osteoarthritis
Otorhinolaryngological infection
Pain
Papillomavirus infection
Parasitic infection
Parkinsons disease
Pediatric varicella zoster virus infection
Pelvic inflammatory disease
Peptostreptococcus infection
Perennial allergic rhinitis
Periarthritis
Pink eye infection
Plasmodium falciparum infection
Plasmodium infection
Plasmodium malariae infection
Plasmodium vivax infection
Pneumocystis carinii infection
Poliovirus infection
Polyomavirus infection
Post-surgical bacterial leakage
Pouchitis
Prevotella infection
Primary biliary cirrhosis
Primary sclerosing cholangitis
Propionibacterium acnes infection
Propionibacterium infection
Prostate cancer
Proteus infection
Proteus mirabilis infection
Protozoal infection
Providencia infection
Pseudomonas aeruginosa infection
Pseudomonas infection
Psoriasis
Psoriatic arthritis
Pulmonary fibrosis
Rabies virus infection
Rectal cancer
Respiratory syncytial virus infection
Respiratory tract infection
Respiratory tract inflammation
Rheumatoid arthritis
Rhinitis
Rhizomucor infection
Rhizopus infection
Rickettsia infection
Ross River virus infection
Rotavirus infection
Rubella virus infection
Salmonella infection
Salmonella typhi infection
Sarcopenia
SARS coronavirus infection
Scabies infection
Scedosporium infection
Scleroderma
Seasonal allergic rhinitis
Serratia infection
Serratia marcescens infection
Shigella boydii infection
Shigella dysenteriae infection
Shigella flexneri infection
Shigella infection
Shigella sonnei infection
Short bowel syndrome
Skin allergy
Skin cancer
Skin infection
Skin Inflammatory disease
Sleep disorder
Spondylarthritis
Staphylococcus aureus infection
Staphylococcus epidermidis infection
Staphylococcus infection
Staphylococcus saprophyticus infection
Stenotrophomonas maltophilia infection
Stomach cancer
Stomach infection
Stomach ulcer
Streptococcus agalactiae infection
Streptococcus constellatus infection
Streptococcus infection
Streptococcus intermedius infection
Streptococcus mitis infection
Streptococcus oralis infection
Streptococcus pneumoniae infection
Streptococcus pyogenes infection
Systemic lupus erythematosus
Traveler's diarrhea
Trench mouth
Treponema infection
Treponema pallidum infection
Trichomonas infection
Trichophyton infection
Trypanosoma brucei infection
Trypanosoma cruzi infection
Type 1 Diabetes
Type 2 Diabetes
Ulcerative colitis
Upper respiratory tract infection
Ureaplasma urealyticum infection
Urinary tract disease
Urinary tract infection
Urinary tract tumor
Urogenital tract infection
Uterus infection
Vaccinia virus infection
Vaginal infection
Varicella zoster virus infection
Variola virus infection
Vibrio cholerae infection
Viral eye infection
Viral infection
Viral respiratory tract infection
Viridans group Streptococcus infection
Vancomycin-Resistant Enterococcus infection
Wasting Syndrome
Weight loss
West Nile virus infection
Whipple's disease
Xenobiotic metabolism
Yellow fever virus infection
Yersinia pestis infection
Flatulence
Gastrointestinal Disorder
General Inflammation

[0359]

Strain ID
OTU1 of CompositionOTU2 of CompositionOTU3 of CompositionOTU1
Escherichia_coliEscherichia_coliSPC00001
Escherichia_coliBacteroides_vulgatusSPC00001
Escherichia_coliBacteroides_sp_1_1_6SPC00001
Escherichia_coliBacteroides_sp_3_1_23SPC00001
Escherichia_coliEnterococcus_faecalisSPC00001
Escherichia_coliCoprobacillus_sp_D7SPC00001
Escherichia_coliStreptococcus_thermophilusSPC00001
Escherichia_coliDorea_formicigeneransSPC00001
Escherichia_coliBlautia_productaSPC00001
Escherichia_coliEubacterium_eligensSPC00001
Escherichia_coliClostridium_nexileSPC00001
Escherichia_coliClostridium_sp_HGF2SPC00001
Escherichia_coliFaecalibacterium_prausnitziiSPC00001
Escherichia_coliOdoribacter_splanchnicusSPC00001
Escherichia_coliDorea_longicatenaSPC00001
Escherichia_coliRoseburia_intestinalisSPC00001
Escherichia_coliCoprococcus_catusSPC00001
Escherichia_coliErysipelotrichaceae_bacterium_3_1_53SPC00001
Escherichia_coliBacteroides_sp_D20SPC00001
Escherichia_coliBacteroides_ovatusSPC00001
Escherichia_coliParabacteroides_merdaeSPC00001
Escherichia_coliBacteroides_vulgatusSPC00001
Escherichia_coliCollinsella_aerofaciensSPC00001
Escherichia_coliEscherichia_coliSPC00001
Escherichia_coliRuminococcus_obeumSPC00001
Escherichia_coliBacteroides_caccaeSPC00001
Escherichia_coliBacteroides_eggerthiiSPC00001
Escherichia_coliRuminococcus_torquesSPC00001
Escherichia_coliClostridium_hathewayiSPC00001
Escherichia_coliBifidobacterium_pseudocatenulatumSPC00001
Escherichia_coliBifidobacterium_adolescentisSPC00001
Escherichia_coliCoprococcus_comesSPC00001
Escherichia_coliClostridium_symbiosumSPC00001
Escherichia_coliEubacterium_rectaleSPC00001
Escherichia_coliFaecalibacterium_prausnitziiSPC00001
Escherichia_coliOdoribacter_splanchnicusSPC00001
Escherichia_coliLachnospiraceae_bacterium_5_1_57FAASPC00001
Escherichia_coliBlautia_schinkiiSPC00001
Escherichia_coliAlistipes_shahiiSPC00001
Escherichia_coliBlautia_productaSPC00001
Bacteroides_vulgatusBacteroides_vulgatusSPC00005
Bacteroides_vulgatusBacteroides_sp_1_1_6SPC00005
Bacteroides_vulgatusBacteroides_sp_3_1_23SPC00005
Bacteroides_vulgatusEnterococcus_faecalisSPC00005
Bacteroides_vulgatusCoprobacillus_sp_D7SPC00005
Bacteroides_vulgatusStreptococcus_thermophilusSPC00005
Bacteroides_vulgatusDorea_formicigeneransSPC00005
Bacteroides_vulgatusBlautia_productaSPC00005
Bacteroides_vulgatusEubacterium_eligensSPC00005
Bacteroides_vulgatusClostridium_nexileSPC00005
Bacteroides_vulgatusClostridium_sp_HGF2SPC00005
Bacteroides_vulgatusFaecalibacterium_prausnitziiSPC00005
Bacteroides_vulgatusOdoribacter_splanchnicusSPC00005
Bacteroides_vulgatusDorea_longicatenaSPC00005
Bacteroides_vulgatusRoseburia_intestinalisSPC00005
Bacteroides_vulgatusCoprococcus_catusSPC00005
Bacteroides_vulgatusErysipelotrichaceae_bacterium_3_1_53SPC00005
Bacteroides_vulgatusBacteroides_sp_D20SPC00005
Bacteroides_vulgatusBacteroides_ovatusSPC00005
Bacteroides_vulgatusParabacteroides_merdaeSPC00005
Bacteroides_vulgatusBacteroides_vulgatusSPC00005
Bacteroides_vulgatusCollinsella_aerofaciensSPC00005
Bacteroides_vulgatusEscherichia_coliSPC00005
Bacteroides_vulgatusRuminococcus_obeumSPC00005
Bacteroides_vulgatusBacteroides_caccaeSPC00005
Bacteroides_vulgatusBacteroides_eggerthiiSPC00005
Bacteroides_vulgatusRuminococcus_torquesSPC00005
Bacteroides_vulgatusClostridium_hathewayiSPC00005
Bacteroides_vulgatusBifidobacterium_pseudocatenulatumSPC00005
Bacteroides_vulgatusBifidobacterium_adolescentisSPC00005
Bacteroides_vulgatusCoprococcus_comesSPC00005
Bacteroides_vulgatusClostridium_symbiosumSPC00005
Bacteroides_vulgatusEubacterium_rectaleSPC00005
Bacteroides_vulgatusFaecalibacterium_prausnitziiSPC00005
Bacteroides_vulgatusOdoribacter_splanchnicusSPC00005
Bacteroides_vulgatusLachnospiraceae_bacterium_5_1_57FAASPC00005
Bacteroides_vulgatusBlautia_schinkiiSPC00005
Bacteroides_vulgatusAlistipes_shahiiSPC00005
Bacteroides_vulgatusBlautia_productaSPC00005
Bacteroides_sp_1_1_6Bacteroides_sp_1_1_6SPC00006
Bacteroides_sp_1_1_6Bacteroides_sp_3_1_23SPC00006
Bacteroides_sp_1_1_6Enterococcus_faecalisSPC00006
Bacteroides_sp_1_1_6Coprobacillus_sp_D7SPC00006
Bacteroides_sp_1_1_6Streptococcus_thermophilusSPC00006
Bacteroides_sp_1_1_6Dorea_formicigeneransSPC00006
Bacteroides_sp_1_1_6Blautia_productaSPC00006
Bacteroides_sp_1_1_6Eubacterium_eligensSPC00006
Bacteroides_sp_1_1_6Clostridium_nexileSPC00006
Bacteroides_sp_1_1_6Clostridium_sp_HGF2SPC00006
Bacteroides_sp_1_1_6Faecalibacterium_prausnitziiSPC00006
Bacteroides_sp_1_1_6Odoribacter_splanchnicusSPC00006
Bacteroides_sp_1_1_6Dorea_longicatenaSPC00006
Bacteroides_sp_1_1_6Roseburia_intestinalisSPC00006
Bacteroides_sp_1_1_6Coprococcus_catusSPC00006
Bacteroides_sp_1_1_6Erysipelotrichaceae_bacterium_3_1_53SPC00006
Bacteroides_sp_1_1_6Bacteroides_sp_D20SPC00006
Bacteroides_sp_1_1_6Bacteroides_ovatusSPC00006
Bacteroides_sp_1_1_6Parabacteroides_merdaeSPC00006
Bacteroides_sp_1_1_6Bacteroides_vulgatusSPC00006
Bacteroides_sp_1_1_6Collinsella_aerofaciensSPC00006
Bacteroides_sp_1_1_6Escherichia_coliSPC00006
Bacteroides_sp_1_1_6Ruminococcus_obeumSPC00006
Bacteroides_sp_1_1_6Bacteroides_caccaeSPC00006
Bacteroides_sp_1_1_6Bacteroides_eggerthiiSPC00006
Bacteroides_sp_1_1_6Ruminococcus_torquesSPC00006
Bacteroides_sp_1_1_6Clostridium_hathewayiSPC00006
Bacteroides_sp_1_1_6Bifidobacterium_pseudocatenulatumSPC00006
Bacteroides_sp_1_1_6Bifidobacterium_adolescentisSPC00006
Bacteroides_sp_1_1_6Coprococcus_comesSPC00006
Bacteroides_sp_1_1_6Clostridium_symbiosumSPC00006
Bacteroides_sp_1_1_6Eubacterium_rectaleSPC00006
Bacteroides_sp_1_1_6Faecalibacterium_prausnitziiSPC00006
Bacteroides_sp_1_1_6Odoribacter_splanchnicusSPC00006
Bacteroides_sp_1_1_6Lachnospiraceae_bacterium_5_1_57FAASPC00006
Bacteroides_sp_1_1_6Blautia_schinkiiSPC00006
Bacteroides_sp_1_1_6Alistipes_shahiiSPC00006
Bacteroides_sp_1_1_6Blautia_productaSPC00006
Bacteroides_sp_3_1_23Bacteroides_sp_3_1_23SPC00007
Bacteroides_sp_3_1_23Enterococcus_faecalisSPC00007
Bacteroides_sp_3_1_23Coprobacillus_sp_D7SPC00007
Bacteroides_sp_3_1_23Streptococcus_thermophilusSPC00007
Bacteroides_sp_3_1_23Dorea_formicigeneransSPC00007
Bacteroides_sp_3_1_23Blautia_productaSPC00007
Bacteroides_sp_3_1_23Eubacterium_eligensSPC00007
Bacteroides_sp_3_1_23Clostridium_nexileSPC00007
Bacteroides_sp_3_1_23Clostridium_sp_HGF2SPC00007
Bacteroides_sp_3_1_23Faecalibacterium_prausnitziiSPC00007
Bacteroides_sp_3_1_23Odoribacter_splanchnicusSPC00007
Bacteroides_sp_3_1_23Dorea_longicatenaSPC00007
Bacteroides_sp_3_1_23Roseburia_intestinalisSPC00007
Bacteroides_sp_3_1_23Coprococcus_catusSPC00007
Bacteroides_sp_3_1_23Erysipelotrichaceae_bacterium_3_1_53SPC00007
Bacteroides_sp_3_1_23Bacteroides_sp_D20SPC00007
Bacteroides_sp_3_1_23Bacteroides_ovatusSPC00007
Bacteroides_sp_3_1_23Parabacteroides_merdaeSPC00007
Bacteroides_sp_3_1_23Bacteroides_vulgatusSPC00007
Bacteroides_sp_3_1_23Collinsella_aerofaciensSPC00007
Bacteroides_sp_3_1_23Escherichia_coliSPC00007
Bacteroides_sp_3_1_23Ruminococcus_obeumSPC00007
Bacteroides_sp_3_1_23Bacteroides_caccaeSPC00007
Bacteroides_sp_3_1_23Bacteroides_eggerthiiSPC00007
Bacteroides_sp_3_1_23Ruminococcus_torquesSPC00007
Bacteroides_sp_3_1_23Clostridium_hathewayiSPC00007
Bacteroides_sp_3_1_23Bifidobacterium_pseudocatenulatumSPC00007
Bacteroides_sp_3_1_23Bifidobacterium_adolescentisSPC00007
Bacteroides_sp_3_1_23Coprococcus_comesSPC00007
Bacteroides_sp_3_1_23Clostridium_symbiosumSPC00007
Bacteroides_sp_3_1_23Eubacterium_rectaleSPC00007
Bacteroides_sp_3_1_23Faecalibacterium_prausnitziiSPC00007
Bacteroides_sp_3_1_23Odoribacter_splanchnicusSPC00007
Bacteroides_sp_3_1_23Lachnospiraceae_bacterium_5_1_57FAASPC00007
Bacteroides_sp_3_1_23Blautia_schinkiiSPC00007
Bacteroides_sp_3_1_23Alistipes_shahiiSPC00007
Bacteroides_sp_3_1_23Blautia_productaSPC00007
Enterococcus_faecalisEnterococcus_faecalisSPC00008
Enterococcus_faecalisCoprobacillus_sp_D7SPC00008
Enterococcus_faecalisStreptococcus_thermophilusSPC00008
Enterococcus_faecalisDorea_formicigeneransSPC00008
Enterococcus_faecalisBlautia_productaSPC00008
Enterococcus_faecalisEubacterium_eligensSPC00008
Enterococcus_faecalisClostridium_nexileSPC00008
Enterococcus_faecalisClostridium_sp_HGF2SPC00008
Enterococcus_faecalisFaecalibacterium_prausnitziiSPC00008
Enterococcus_faecalisOdoribacter_splanchnicusSPC00008
Enterococcus_faecalisDorea_longicatenaSPC00008
Enterococcus_faecalisRoseburia_intestinalisSPC00008
Enterococcus_faecalisCoprococcus_catusSPC00008
Enterococcus_faecalisErysipelotrichaceae_bacterium_3_1_53SPC00008
Enterococcus_faecalisBacteroides_sp_D20SPC00008
Enterococcus_faecalisBacteroides_ovatusSPC00008
Enterococcus_faecalisParabacteroides_merdaeSPC00008
Enterococcus_faecalisBacteroides_vulgatusSPC00008
Enterococcus_faecalisCollinsella_aerofaciensSPC00008
Enterococcus_faecalisEscherichia_coliSPC00008
Enterococcus_faecalisRuminococcus_obeumSPC00008
Enterococcus_faecalisBacteroides_caccaeSPC00008
Enterococcus_faecalisBacteroides_eggerthiiSPC00008
Enterococcus_faecalisRuminococcus_torquesSPC00008
Enterococcus_faecalisClostridium_hathewayiSPC00008
Enterococcus_faecalisBifidobacterium_pseudocatenulatumSPC00008
Enterococcus_faecalisBifidobacterium_adolescentisSPC00008
Enterococcus_faecalisCoprococcus_comesSPC00008
Enterococcus_faecalisClostridium_symbiosumSPC00008
Enterococcus_faecalisEubacterium_rectaleSPC00008
Enterococcus_faecalisFaecalibacterium_prausnitziiSPC00008
Enterococcus_faecalisOdoribacter_splanchnicusSPC00008
Enterococcus_faecalisLachnospiraceae_bacterium_5_1_57FAASPC00008
Enterococcus_faecalisBlautia_schinkiiSPC00008
Enterococcus_faecalisAlistipes_shahiiSPC00008
Enterococcus_faecalisBlautia_productaSPC00008
Coprobacillus_sp_D7Coprobacillus_sp_D7SPC00009
Coprobacillus_sp_D7Streptococcus_thermophilusSPC00009
Coprobacillus_sp_D7Dorea_formicigeneransSPC00009
Coprobacillus_sp_D7Blautia_productaSPC00009
Coprobacillus_sp_D7Eubacterium_eligensSPC00009
Coprobacillus_sp_D7Clostridium_nexileSPC00009
Coprobacillus_sp_D7Clostridium_sp_HGF2SPC00009
Coprobacillus_sp_D7Faecalibacterium_prausnitziiSPC00009
Coprobacillus_sp_D7Odoribacter_splanchnicusSPC00009
Coprobacillus_sp_D7Dorea_longicatenaSPC00009
Coprobacillus_sp_D7Roseburia_intestinalisSPC00009
Coprobacillus_sp_D7Coprococcus_catusSPC00009
Coprobacillus_sp_D7Erysipelotrichaceae_bacterium_3_1_53SPC00009
Coprobacillus_sp_D7Bacteroides_sp_D20SPC00009
Coprobacillus_sp_D7Bacteroides_ovatusSPC00009
Coprobacillus_sp_D7Parabacteroides_merdaeSPC00009
Coprobacillus_sp_D7Bacteroides_vulgatusSPC00009
Coprobacillus_sp_D7Collinsella_aerofaciensSPC00009
Coprobacillus_sp_D7Escherichia_coliSPC00009
Coprobacillus_sp_D7Ruminococcus_obeumSPC00009
Coprobacillus_sp_D7Bacteroides_caccaeSPC00009
Coprobacillus_sp_D7Bacteroides_eggerthiiSPC00009
Coprobacillus_sp_D7Ruminococcus_torquesSPC00009
Coprobacillus_sp_D7Clostridium_hathewayiSPC00009
Coprobacillus_sp_D7Bifidobacterium_pseudocatenulatumSPC00009
Coprobacillus_sp_D7Bifidobacterium_adolescentisSPC00009
Coprobacillus_sp_D7Coprococcus_comesSPC00009
Coprobacillus_sp_D7Clostridium_symbiosumSPC00009
Coprobacillus_sp_D7Eubacterium_rectaleSPC00009
Coprobacillus_sp_D7Faecalibacterium_prausnitziiSPC00009
Coprobacillus_sp_D7Odoribacter_splanchnicusSPC00009
Coprobacillus_sp_D7Lachnospiraceae_bacterium_5_1_57FAASPC00009
Coprobacillus_sp_D7Blautia_schinkiiSPC00009
Coprobacillus_sp_D7Alistipes_shahiiSPC00009
Coprobacillus_sp_D7Blautia_productaSPC00009
Streptococcus_thermophilusStreptococcus_thermophilusSPC00015
Streptococcus_thermophilusDorea_formicigeneransSPC00015
Streptococcus_thermophilusBlautia_productaSPC00015
Streptococcus_thermophilusEubacterium_eligensSPC00015
Streptococcus_thermophilusClostridium_nexileSPC00015
Streptococcus_thermophilusClostridium_sp_HGF2SPC00015
Streptococcus_thermophilusFaecalibacterium_prausnitziiSPC00015
Streptococcus_thermophilusOdoribacter_splanchnicusSPC00015
Streptococcus_thermophilusDorea_longicatenaSPC00015
Streptococcus_thermophilusRoseburia_intestinalisSPC00015
Streptococcus_thermophilusCoprococcus_catusSPC00015
Streptococcus_thermophilusErysipelotrichaceae_bacterium_3_1_53SPC00015
Streptococcus_thermophilusBacteroides_sp_D20SPC00015
Streptococcus_thermophilusBacteroides_ovatusSPC00015
Streptococcus_thermophilusParabacteroides_merdaeSPC00015
Streptococcus_thermophilusBacteroides_vulgatusSPC00015
Streptococcus_thermophilusCollinsella_aerofaciensSPC00015
Streptococcus_thermophilusEscherichia_coliSPC00015
Streptococcus_thermophilusRuminococcus_obeumSPC00015
Streptococcus_thermophilusBacteroides_caccaeSPC00015
Streptococcus_thermophilusBacteroides_eggerthiiSPC00015
Streptococcus_thermophilusRuminococcus_torquesSPC00015
Streptococcus_thermophilusClostridium_hathewayiSPC00015
Streptococcus_thermophilusBifidobacterium_pseudocatenulatumSPC00015
Streptococcus_thermophilusBifidobacterium_adolescentisSPC00015
Streptococcus_thermophilusCoprococcus_comesSPC00015
Streptococcus_thermophilusClostridium_symbiosumSPC00015
Streptococcus_thermophilusEubacterium_rectaleSPC00015
Streptococcus_thermophilusFaecalibacterium_prausnitziiSPC00015
Streptococcus_thermophilusOdoribacter_splanchnicusSPC00015
Streptococcus_thermophilusLachnospiraceae_bacterium_5_1_57FAASPC00015
Streptococcus_thermophilusBlautia_schinkiiSPC00015
Streptococcus_thermophilusAlistipes_shahiiSPC00015
Streptococcus_thermophilusBlautia_productaSPC00015
Dorea_formicigeneransDorea_formicigeneransSPC00018
Dorea_formicigeneransBlautia_productaSPC00018
Dorea_formicigeneransEubacterium_eligensSPC00018
Dorea_formicigeneransClostridium_nexileSPC00018
Dorea_formicigeneransClostridium_sp_HGF2SPC00018
Dorea_formicigeneransFaecalibacterium_prausnitziiSPC00018
Dorea_formicigeneransOdoribacter_splanchnicusSPC00018
Dorea_formicigeneransDorea_longicatenaSPC00018
Dorea_formicigeneransRoseburia_intestinalisSPC00018
Dorea_formicigeneransCoprococcus_catusSPC00018
Dorea_formicigeneransErysipelotrichaceae_bacterium_3_1_53SPC00018
Dorea_formicigeneransBacteroides_sp_D20SPC00018
Dorea_formicigeneransBacteroides_ovatusSPC00018
Dorea_formicigeneransParabacteroides_merdaeSPC00018
Dorea_formicigeneransBacteroides_vulgatusSPC00018
Dorea_formicigeneransCollinsella_aerofaciensSPC00018
Dorea_formicigeneransEscherichia_coliSPC00018
Dorea_formicigeneransRuminococcus_obeumSPC00018
Dorea_formicigeneransBacteroides_caccaeSPC00018
Dorea_formicigeneransBacteroides_eggerthiiSPC00018
Dorea_formicigeneransRuminococcus_torquesSPC00018
Dorea_formicigeneransClostridium_hathewayiSPC00018
Dorea_formicigeneransBifidobacterium_pseudocatenulatumSPC00018
Dorea_formicigeneransBifidobacterium_adolescentisSPC00018
Dorea_formicigeneransCoprococcus_comesSPC00018
Dorea_formicigeneransClostridium_symbiosumSPC00018
Dorea_formicigeneransEubacterium_rectaleSPC00018
Dorea_formicigeneransFaecalibacterium_prausnitziiSPC00018
Dorea_formicigeneransOdoribacter_splanchnicusSPC00018
Dorea_formicigeneransLachnospiraceae_bacterium_5_1_57FAASPC00018
Dorea_formicigeneransBlautia_schinkiiSPC00018
Dorea_formicigeneransAlistipes_shahiiSPC00018
Dorea_formicigeneransBlautia_productaSPC00018
Blautia_productaBlautia_productaSPC00021
Blautia_productaEubacterium_eligensSPC00021
Blautia_productaClostridium_nexileSPC00021
Blautia_productaClostridium_sp_HGF2SPC00021
Blautia_productaFaecalibacterium_prausnitziiSPC00021
Blautia_productaOdoribacter_splanchnicusSPC00021
Blautia_productaDorea_longicatenaSPC00021
Blautia_productaRoseburia_intestinalisSPC00021
Blautia_productaCoprococcus_catusSPC00021
Blautia_productaErysipelotrichaceae_bacterium_3_1_53SPC00021
Blautia_productaBacteroides_sp_D20SPC00021
Blautia_productaBacteroides_ovatusSPC00021
Blautia_productaParabacteroides_merdaeSPC00021
Blautia_productaBacteroides_vulgatusSPC00021
Blautia_productaCollinsella_aerofaciensSPC00021
Blautia_productaEscherichia_coliSPC00021
Blautia_productaRuminococcus_obeumSPC00021
Blautia_productaBacteroides_caccaeSPC00021
Blautia_productaBacteroides_eggerthiiSPC00021
Blautia_productaRuminococcus_torquesSPC00021
Blautia_productaClostridium_hathewayiSPC00021
Blautia_productaBifidobacterium_pseudocatenulatumSPC00021
Blautia_productaBifidobacterium_adolescentisSPC00021
Blautia_productaCoprococcus_comesSPC00021
Blautia_productaClostridium_symbiosumSPC00021
Blautia_productaEubacterium_rectaleSPC00021
Blautia_productaFaecalibacterium_prausnitziiSPC00021
Blautia_productaOdoribacter_splanchnicusSPC00021
Blautia_productaLachnospiraceae_bacterium_5_1_57FAASPC00021
Blautia_productaBlautia_schinkiiSPC00021
Blautia_productaAlistipes_shahiiSPC00021
Blautia_productaBlautia_productaSPC00021
Eubacterium_eligensEubacterium_eligensSPC00022
Eubacterium_eligensClostridium_nexileSPC00022
Eubacterium_eligensClostridium_sp_HGF2SPC00022
Eubacterium_eligensFaecalibacterium_prausnitziiSPC00022
Eubacterium_eligensOdoribacter_splanchnicusSPC00022
Eubacterium_eligensDorea_longicatenaSPC00022
Eubacterium_eligensRoseburia_intestinalisSPC00022
Eubacterium_eligensCoprococcus_catusSPC00022
Eubacterium_eligensErysipelotrichaceae_bacterium_3_1_53SPC00022
Eubacterium_eligensBacteroides_sp_D20SPC00022
Eubacterium_eligensBacteroides_ovatusSPC00022
Eubacterium_eligensParabacteroides_merdaeSPC00022
Eubacterium_eligensBacteroides_vulgatusSPC00022
Eubacterium_eligensCollinsella_aerofaciensSPC00022
Eubacterium_eligensEscherichia_coliSPC00022
Eubacterium_eligensRuminococcus_obeumSPC00022
Eubacterium_eligensBacteroides_caccaeSPC00022
Eubacterium_eligensBacteroides_eggerthiiSPC00022
Eubacterium_eligensRuminococcus_torquesSPC00022
Eubacterium_eligensClostridium_hathewayiSPC00022
Eubacterium_eligensBifidobacterium_pseudocatenulatumSPC00022
Eubacterium_eligensBifidobacterium_adolescentisSPC00022
Eubacterium_eligensCoprococcus_comesSPC00022
Eubacterium_eligensClostridium_symbiosumSPC00022
Eubacterium_eligensEubacterium_rectaleSPC00022
Eubacterium_eligensFaecalibacterium_prausnitziiSPC00022
Eubacterium_eligensOdoribacter_splanchnicusSPC00022
Eubacterium_eligensLachnospiraceae_bacterium_5_1_57FAASPC00022
Eubacterium_eligensBlautia_schinkiiSPC00022
Eubacterium_eligensAlistipes_shahiiSPC00022
Eubacterium_eligensBlautia_productaSPC00022
Clostridium_nexileClostridium_nexileSPC00026
Clostridium_nexileClostridium_sp_HGF2SPC00026
Clostridium_nexileFaecalibacterium_prausnitziiSPC00026
Clostridium_nexileOdoribacter_splanchnicusSPC00026
Clostridium_nexileDorea_longicatenaSPC00026
Clostridium_nexileRoseburia_intestinalisSPC00026
Clostridium_nexileCoprococcus_catusSPC00026
Clostridium_nexileErysipelotrichaceae_bacterium_3_1_53SPC00026
Clostridium_nexileBacteroides_sp_D20SPC00026
Clostridium_nexileBacteroides_ovatusSPC00026
Clostridium_nexileParabacteroides_merdaeSPC00026
Clostridium_nexileBacteroides_vulgatusSPC00026
Clostridium_nexileCollinsella_aerofaciensSPC00026
Clostridium_nexileEscherichia_coliSPC00026
Clostridium_nexileRuminococcus_obeumSPC00026
Clostridium_nexileBacteroides_caccaeSPC00026
Clostridium_nexileBacteroides_eggerthiiSPC00026
Clostridium_nexileRuminococcus_torquesSPC00026
Clostridium_nexileClostridium_hathewayiSPC00026
Clostridium_nexileBifidobacterium_pseudocatenulatumSPC00026
Clostridium_nexileBifidobacterium_adolescentisSPC00026
Clostridium_nexileCoprococcus_comesSPC00026
Clostridium_nexileClostridium_symbiosumSPC00026
Clostridium_nexileEubacterium_rectaleSPC00026
Clostridium_nexileFaecalibacterium_prausnitziiSPC00026
Clostridium_nexileOdoribacter_splanchnicusSPC00026
Clostridium_nexileLachnospiraceae_bacterium_5_1_57FAASPC00026
Clostridium_nexileBlautia_schinkiiSPC00026
Clostridium_nexileAlistipes_shahiiSPC00026
Clostridium_nexileBlautia_productaSPC00026
Clostridium_sp_HGF2Clostridium_sp_HGF2SPC00027
Clostridium_sp_HGF2Faecalibacterium_prausnitziiSPC00027
Clostridium_sp_HGF2Odoribacter_splanchnicusSPC00027
Clostridium_sp_HGF2Dorea_longicatenaSPC00027
Clostridium_sp_HGF2Roseburia_intestinalisSPC00027
Clostridium_sp_HGF2Coprococcus_catusSPC00027
Clostridium_sp_HGF2Erysipelotrichaceae_bacterium_3_1_53SPC00027
Clostridium_sp_HGF2Bacteroides_sp_D20SPC00027
Clostridium_sp_HGF2Bacteroides_ovatusSPC00027
Clostridium_sp_HGF2Parabacteroides_merdaeSPC00027
Clostridium_sp_HGF2Bacteroides_vulgatusSPC00027
Clostridium_sp_HGF2Collinsella_aerofaciensSPC00027
Clostridium_sp_HGF2Escherichia_coliSPC00027
Clostridium_sp_HGF2Ruminococcus_obeumSPC00027
Clostridium_sp_HGF2Bacteroides_caccaeSPC00027
Clostridium_sp_HGF2Bacteroides_eggerthiiSPC00027
Clostridium_sp_HGF2Ruminococcus_torquesSPC00027
Clostridium_sp_HGF2Clostridium_hathewayiSPC00027
Clostridium_sp_HGF2Bifidobacterium_pseudocatenulatumSPC00027
Clostridium_sp_HGF2Bifidobacterium_adolescentisSPC00027
Clostridium_sp_HGF2Coprococcus_comesSPC00027
Clostridium_sp_HGF2Clostridium_symbiosumSPC00027
Clostridium_sp_HGF2Eubacterium_rectaleSPC00027
Clostridium_sp_HGF2Faecalibacterium_prausnitziiSPC00027
Clostridium_sp_HGF2Odoribacter_splanchnicusSPC00027
Clostridium_sp_HGF2Lachnospiraceae_bacterium_5_1_57FAASPC00027
Clostridium_sp_HGF2Blautia_schinkiiSPC00027
Clostridium_sp_HGF2Alistipes_shahiiSPC00027
Clostridium_sp_HGF2Blautia_productaSPC00027
Faecalibacterium_prausnitziiFaecalibacterium_prausnitziiSPC00054
Faecalibacterium_prausnitziiOdoribacter_splanchnicusSPC00054
Faecalibacterium_prausnitziiDorea_longicatenaSPC00054
Faecalibacterium_prausnitziiRoseburia_intestinalisSPC00054
Faecalibacterium_prausnitziiCoprococcus_catusSPC00054
Faecalibacterium_prausnitziiErysipelotrichaceae_bacterium_3_1_53SPC00054
Faecalibacterium_prausnitziiBacteroides_sp_D20SPC00054
Faecalibacterium_prausnitziiBacteroides_ovatusSPC00054
Faecalibacterium_prausnitziiParabacteroides_merdaeSPC00054
Faecalibacterium_prausnitziiBacteroides_vulgatusSPC00054
Faecalibacterium_prausnitziiCollinsella_aerofaciensSPC00054
Faecalibacterium_prausnitziiEscherichia_coliSPC00054
Faecalibacterium_prausnitziiRuminococcus_obeumSPC00054
Faecalibacterium_prausnitziiBacteroides_caccaeSPC00054
Faecalibacterium_prausnitziiBacteroides_eggerthiiSPC00054
Faecalibacterium_prausnitziiRuminococcus_torquesSPC00054
Faecalibacterium_prausnitziiClostridium_hathewayiSPC00054
Faecalibacterium_prausnitziiBifidobacterium_pseudocatenulatumSPC00054
Faecalibacterium_prausnitziiBifidobacterium_adolescentisSPC00054
Faecalibacterium_prausnitziiCoprococcus_comesSPC00054
Faecalibacterium_prausnitziiClostridium_symbiosumSPC00054
Faecalibacterium_prausnitziiEubacterium_rectaleSPC00054
Faecalibacterium_prausnitziiFaecalibacterium_prausnitziiSPC00054
Faecalibacterium_prausnitziiOdoribacter_splanchnicusSPC00054
Faecalibacterium_prausnitziiLachnospiraceae_bacterium_5_1_57FAASPC00054
Faecalibacterium_prausnitziiBlautia_schinkiiSPC00054
Faecalibacterium_prausnitziiAlistipes_shahiiSPC00054
Faecalibacterium_prausnitziiBlautia_productaSPC00054
Odoribacter_splanchnicusOdoribacter_splanchnicusSPC00056
Odoribacter_splanchnicusDorea_longicatenaSPC00056
Odoribacter_splanchnicusRoseburia_intestinalisSPC00056
Odoribacter_splanchnicusCoprococcus_catusSPC00056
Odoribacter_splanchnicusErysipelotrichaceae_bacterium_3_1_53SPC00056
Odoribacter_splanchnicusBacteroides_sp_D20SPC00056
Odoribacter_splanchnicusBacteroides_ovatusSPC00056
Odoribacter_splanchnicusParabacteroides_merdaeSPC00056
Odoribacter_splanchnicusBacteroides_vulgatusSPC00056
Odoribacter_splanchnicusCollinsella_aerofaciensSPC00056
Odoribacter_splanchnicusEscherichia_coliSPC00056
Odoribacter_splanchnicusRuminococcus_obeumSPC00056
Odoribacter_splanchnicusBacteroides_caccaeSPC00056
Odoribacter_splanchnicusBacteroides_eggerthiiSPC00056
Odoribacter_splanchnicusRuminococcus_torquesSPC00056
Odoribacter_splanchnicusClostridium_hathewayiSPC00056
Odoribacter_splanchnicusBifidobacterium_pseudocatenulatumSPC00056
Odoribacter_splanchnicusBifidobacterium_adolescentisSPC00056
Odoribacter_splanchnicusCoprococcus_comesSPC00056
Odoribacter_splanchnicusClostridium_symbiosumSPC00056
Odoribacter_splanchnicusEubacterium_rectaleSPC00056
Odoribacter_splanchnicusFaecalibacterium_prausnitziiSPC00056
Odoribacter_splanchnicusOdoribacter_splanchnicusSPC00056
Odoribacter_splanchnicusLachnospiraceae_bacterium_5_1_57FAASPC00056
Odoribacter_splanchnicusBlautia_schinkiiSPC00056
Odoribacter_splanchnicusAlistipes_shahiiSPC00056
Odoribacter_splanchnicusBlautia_productaSPC00056
Dorea_longicatenaDorea_longicatenaSPC00057
Dorea_longicatenaRoseburia_intestinalisSPC00057
Dorea_longicatenaCoprococcus_catusSPC00057
Dorea_longicatenaErysipelotrichaceae_bacterium_3_1_53SPC00057
Dorea_longicatenaBacteroides_sp_D20SPC00057
Dorea_longicatenaBacteroides_ovatusSPC00057
Dorea_longicatenaParabacteroides_merdaeSPC00057
Dorea_longicatenaBacteroides_vulgatusSPC00057
Dorea_longicatenaCollinsella_aerofaciensSPC00057
Dorea_longicatenaEscherichia_coliSPC00057
Dorea_longicatenaRuminococcus_obeumSPC00057
Dorea_longicatenaBacteroides_caccaeSPC00057
Dorea_longicatenaBacteroides_eggerthiiSPC00057
Dorea_longicatenaRuminococcus_torquesSPC00057
Dorea_longicatenaClostridium_hathewayiSPC00057
Dorea_longicatenaBifidobacterium_pseudocatenulatumSPC00057
Dorea_longicatenaBifidobacterium_adolescentisSPC00057
Dorea_longicatenaCoprococcus_comesSPC00057
Dorea_longicatenaClostridium_symbiosumSPC00057
Dorea_longicatenaEubacterium_rectaleSPC00057
Dorea_longicatenaFaecalibacterium_prausnitziiSPC00057
Dorea_longicatenaOdoribacter_splanchnicusSPC00057
Dorea_longicatenaLachnospiraceae_bacterium_5_1_57FAASPC00057
Dorea_longicatenaBlautia_schinkiiSPC00057
Dorea_longicatenaAlistipes_shahiiSPC00057
Dorea_longicatenaBlautia_productaSPC00057
Roseburia_intestinalisRoseburia_intestinalisSPC00061
Roseburia_intestinalisCoprococcus_catusSPC00061
Roseburia_intestinalisErysipelotrichaceae_bacterium_3_1_53SPC00061
Roseburia_intestinalisBacteroides_sp_D20SPC00061
Roseburia_intestinalisBacteroides_ovatusSPC00061
Roseburia_intestinalisParabacteroides_merdaeSPC00061
Roseburia_intestinalisBacteroides_vulgatusSPC00061
Roseburia_intestinalisCollinsella_aerofaciensSPC00061
Roseburia_intestinalisEscherichia_coliSPC00061
Roseburia_intestinalisRuminococcus_obeumSPC00061
Roseburia_intestinalisBacteroides_caccaeSPC00061
Roseburia_intestinalisBacteroides_eggerthiiSPC00061
Roseburia_intestinalisRuminococcus_torquesSPC00061
Roseburia_intestinalisClostridium_hathewayiSPC00061
Roseburia_intestinalisBifidobacterium_pseudocatenulatumSPC00061
Roseburia_intestinalisBifidobacterium_adolescentisSPC00061
Roseburia_intestinalisCoprococcus_comesSPC00061
Roseburia_intestinalisClostridium_symbiosumSPC00061
Roseburia_intestinalisEubacterium_rectaleSPC00061
Roseburia_intestinalisFaecalibacterium_prausnitziiSPC00061
Roseburia_intestinalisOdoribacter_splanchnicusSPC00061
Roseburia_intestinalisLachnospiraceae_bacterium_5_1_57FAASPC00061
Roseburia_intestinalisBlautia_schinkiiSPC00061
Roseburia_intestinalisAlistipes_shahiiSPC00061
Roseburia_intestinalisBlautia_productaSPC00061
Coprococcus_catusCoprococcus_catusSPC00080
Coprococcus_catusErysipelotricliaceae_bacterium_3_1_53SPC00080
Coprococcus_catusBacteroides_sp_D20SPC00080
Coprococcus_catusBacteroides_ovatusSPC00080
Coprococcus_catusParabacteroides_merdaeSPC00080
Coprococcus_catusBacteroides_vulgatusSPC00080
Coprococcus_catusCollinsella_aerofaciensSPC00080
Coprococcus_catusEscherichia_coliSPC00080
Coprococcus_catusRuminococcus_obeumSPC00080
Coprococcus_catusBacteroides_caccaeSPC00080
Coprococcus_catusBacteroides_eggerthiiSPC00080
Coprococcus_catusRuminococcus_torquesSPC00080
Coprococcus_catusClostridium_hathewayiSPC00080
Coprococcus_catusBifidobacterium_pseudocatenulatumSPC00080
Coprococcus_catusBifidobacterium_adolescentisSPC00080
Coprococcus_catusCoprococcus_comesSPC00080
Coprococcus_catusClostridium_symbiosumSPC00080
Coprococcus_catusEubacterium_rectaleSPC00080
Coprococcus_catusFaecalibacterium_prausnitziiSPC00080
Coprococcus_catusOdoribacter_splanchnicusSPC00080
Coprococcus_catusLachnospiraceae_bacterium_5_1_57FAASPC00080
Coprococcus_catusBlautia_schinkiiSPC00080
Coprococcus_catusAlistipes_shahiiSPC00080
Coprococcus_catusBlautia_productaSPC00080
Erysipelotrichaceae_bacterium_3_1_53Erysipelotrichaceae_bacterium_3_1_53SPC10001
Erysipelotrichaceae_bacterium_3_1_53Bacteroides_sp_D20SPC10001
Erysipelotrichaceae_bacterium_3_1_53Bacteroides_ovatusSPC10001
Erysipelotrichaceae_bacterium_3_1_53Parabacteroides_merdaeSPC10001
Erysipelotrichaceae_bacterium_3_1_53Bacteroides_vulgatusSPC10001
Erysipelotrichaceae_bacterium_3_1_53Collinsella_aerofaciensSPC10001
Erysipelotrichaceae_bacterium_3_1_53Escherichia_coliSPC10001
Erysipelotrichaceae_bacterium_3_1_53Ruminococcus_obeumSPC10001
Erysipelotrichaceae_bacterium_3_1_53Bacteroides_caccaeSPC10001
Erysipelotrichaceae_bacterium_3_1_53Bacteroides_eggerthiiSPC10001
Erysipelotrichaceae_bacterium_3_1_53Ruminococcus_torquesSPC10001
Erysipelotrichaceae_bacterium_3_1_53Clostridium_hathewayiSPC10001
Erysipelotrichaceae_bacterium_3_1_53Bifidobacterium_pseudocatenulatumSPC10001
Erysipelotrichaceae_bacterium_3_1_53Bifidobacterium_adolescentisSPC10001
Erysipelotrichaceae_bacterium_3_1_53Coprococcus_comesSPC10001
Erysipelotrichaceae_bacterium_3_1_53Clostridium_symbiosumSPC10001
Erysipelotrichaceae_bacterium_3_1_53Eubacterium_rectaleSPC10001
Erysipelotrichaceae_bacterium_3_1_53Faecalibacterium_prausnitziiSPC10001
Erysipelotrichaceae_bacterium_3_1_53Odoribacter_splanchnicusSPC10001
Erysipelotrichaceae_bacterium_3_1_53Lachnospiraceae_bacterium_5_1_57FAASPC10001
Erysipelotrichaceae_bacterium_3_1_53Blautia_schinkiiSPC10001
Erysipelotrichaceae_bacterium_3_1_53Alistipes_shahiiSPC10001
Erysipelotrichaceae_bacterium_3_1_53Blautia_productaSPC10001
Bacteroides_sp_D20Bacteroides_sp_D20SPC10019
Bacteroides_sp_D20Bacteroides_ovatusSPC10019
Bacteroides_sp_D20Parabacteroides_merdaeSPC10019
Bacteroides_sp_D20Bacteroides_vulgatusSPC10019
Bacteroides_sp_D20Collinsella_aerofaciensSPC10019
Bacteroides_sp_D20Escherichia_coliSPC10019
Bacteroides_sp_D20Ruminococcus_obeumSPC10019
Bacteroides_sp_D20Bacteroides_caccaeSPC10019
Bacteroides_sp_D20Bacteroides_eggerthiiSPC10019
Bacteroides_sp_D20Ruminococcus_torquesSPC10019
Bacteroides_sp_D20Clostridium_hathewayiSPC10019
Bacteroides_sp_D20Bifidobacterium_pseudocatenulatumSPC10019
Bacteroides_sp_D20Bifidobacterium_adolescentisSPC10019
Bacteroides_sp_D20Coprococcus_comesSPC10019
Bacteroides_sp_D20Clostridium_symbiosumSPC10019
Bacteroides_sp_D20Eubacterium_rectaleSPC10019
Bacteroides_sp_D20Faecalibacterium_prausnitziiSPC10019
Bacteroides_sp_D20Odoribacter_splanchnicusSPC10019
Bacteroides_sp_D20Lachnospiraceae_bacterium_5_1_57FAASPC10019
Bacteroides_sp_D20Blautia_schinkiiSPC10019
Bacteroides_sp_D20Alistipes_shahiiSPC10019
Bacteroides_sp_D20Blautia_productaSPC10019
Bacteroides_ovatusBacteroides_ovatusSPC10030
Bacteroides_ovatusParabacteroides_merdaeSPC10030
Bacteroides_ovatusBacteroides_vulgatusSPC10030
Bacteroides_ovatusCollinsella_aerofaciensSPC10030
Bacteroides_ovatusEscherichia_coliSPC10030
Bacteroides_ovatusRuminococcus_obeumSPC10030
Bacteroides_ovatusBacteroides_caccaeSPC10030
Bacteroides_ovatusBacteroides_eggerthiiSPC10030
Bacteroides_ovatusRuminococcus_torquesSPC10030
Bacteroides_ovatusClostridium_hathewayiSPC10030
Bacteroides_ovatusBifidobacterium_pseudocatenulatumSPC10030
Bacteroides_ovatusBifidobacterium_adolescentisSPC10030
Bacteroides_ovatusCoprococcus_comesSPC10030
Bacteroides_ovatusClostridium_symbiosumSPC10030
Bacteroides_ovatusEubacterium_rectaleSPC10030
Bacteroides_ovatusFaecalibacterium_prausnitziiSPC10030
Bacteroides_ovatusOdoribacter_splanchnicusSPC10030
Bacteroides_ovatusLachnospiraceae_bacterium_5_1_57FAASPC10030
Bacteroides_ovatusBlautia_schinkiiSPC10030
Bacteroides_ovatusAlistipes_shahiiSPC10030
Bacteroides_ovatusBlautia_productaSPC10030
Parabacteroides_merdaeParabacteroides_merdaeSPC10048
Parabacteroides_merdaeBacteroides_vulgatusSPC10048
Parabacteroides_merdaeCollinsella_aerofaciensSPC10048
Parabacteroides_merdaeEscherichia_coliSPC10048
Parabacteroides_merdaeRuminococcus_obeumSPC10048
Parabacteroides_merdaeBacteroides_caccaeSPC10048
Parabacteroides_merdaeBacteroides_eggerthiiSPC10048
Parabacteroides_merdaeRuminococcus_torquesSPC10048
Parabacteroides_merdaeClostridium_hathewayiSPC10048
Parabacteroides_merdaeBifidobacterium_pseudocatenulatumSPC10048
Parabacteroides_merdaeBifidobacterium_adolescentisSPC10048
Parabacteroides_merdaeCoprococcus_comesSPC10048
Parabacteroides_merdaeClostridium_symbiosumSPC10048
Parabacteroides_merdaeEubacterium_rectaleSPC10048
Parabacteroides_merdaeFaecalibacterium_prausnitziiSPC10048
Parabacteroides_merdaeOdoribacter_splanchnicusSPC10048
Parabacteroides_merdaeLachnospiraceae_bacterium_5_1_57FAASPC10048
Parabacteroides_merdaeBlautia_schinkiiSPC10048
Parabacteroides_merdaeAlistipes_shahiiSPC10048
Parabacteroides_merdaeBlautia_productaSPC10048
Bacteroides_vulgatusBacteroides_vulgatusSPC10081
Bacteroides_vulgatusCollinsella_aerofaciensSPC10081
Bacteroides_vulgatusEscherichia_coliSPC10081
Bacteroides_vulgatusRuminococcus_obeumSPC10081
Bacteroides_vulgatusBacteroides_caccaeSPC10081
Bacteroides_vulgatusBacteroides_eggerthiiSPC10081
Bacteroides_vulgatusRuminococcus_torquesSPC10081
Bacteroides_vulgatusClostridium_hathewayiSPC10081
Bacteroides_vulgatusBifidobacterium_pseudocatenulatumSPC10081
Bacteroides_vulgatusBifidobacterium_adolescentisSPC10081
Bacteroides_vulgatusCoprococcus_comesSPC10081
Bacteroides_vulgatusClostridium_symbiosumSPC10081
Bacteroides_vulgatusEubacterium_rectaleSPC10081
Bacteroides_vulgatusFaecalibacterium_prausnitziiSPC10081
Bacteroides_vulgatusOdoribacter_splanchnicusSPC10081
Bacteroides_vulgatusLachnospiraceae_bacterium_5_1_57FAASPC10081
Bacteroides_vulgatusBlautia_schinkiiSPC10081
Bacteroides_vulgatusAlistipes_shahiiSPC10081
Bacteroides_vulgatusBlautia_productaSPC10081
Collinsella_aerofaciensCollinsella_aerofaciensSPC10097
Collinsella_aerofaciensEscherichia_coliSPC10097
Collinsella_aerofaciensRuminococcus_obeumSPC10097
Collinsella_aerofaciensBacteroides_caccaeSPC10097
Collinsella_aerofaciensBacteroides_eggerthiiSPC10097
Collinsella_aerofaciensRuminococcus_torquesSPC10097
Collinsella_aerofaciensClostridium_hathewayiSPC10097
Collinsella_aerofaciensBifidobacterium_pseudocatenulatumSPC10097
Collinsella_aerofaciensBifidobacterium_adolescentisSPC10097
Collinsella_aerofaciensCoprococcus_comesSPC10097
Collinsella_aerofaciensClostridium_symbiosumSPC10097
Collinsella_aerofaciensEubacterium_rectaleSPC10097
Collinsella_aerofaciensFaecalibacterium_prausnitziiSPC10097
Collinsella_aerofaciensOdoribacter_splanchnicusSPC10097
Collinsella_aerofaciensLachnospiraceae_bacterium_5_1_57FAASPC10097
Collinsella_aerofaciensBlautia_schinkiiSPC10097
Collinsella_aerofaciensAlistipes_shahiiSPC10097
Collinsella_aerofaciensBlautia_productaSPC10097
Escherichia_coliEscherichia_coliSPC10110
Escherichia_coliRuminococcus_obeumSPC10110
Escherichia_coliBacteroides_caccaeSPC10110
Escherichia_coliBacteroides_eggerthiiSPC10110
Escherichia_coliRuminococcus_torquesSPC10110
Escherichia_coliClostridium_hathewayiSPC10110
Escherichia_coliBifidobacterium_pseudocatenulatumSPC10110
Escherichia_coliBifidobacterium_adolescentisSPC10110
Escherichia_coliCoprococcus_comesSPC10110
Escherichia_coliClostridium_symbiosumSPC10110
Escherichia_coliEubacterium_rectaleSPC10110
Escherichia_coliFaecalibacterium_prausnitziiSPC10110
Escherichia_coliOdoribacter_splanchnicusSPC10110
Escherichia_coliLachnospiraceae_bacterium_5_1_57FAASPC10110
Escherichia_coliBlautia_schinkiiSPC10110
Escherichia_coliAlistipes_shahiiSPC10110
Escherichia_coliBlautia_productaSPC10110
Ruminococcus_obeumRuminococcus_obeumSPC10197
Ruminococcus_obeumBacteroides_caccaeSPC10197
Ruminococcus_obeumBacteroides_eggerthiiSPC10197
Ruminococcus_obeumRuminococcus_torquesSPC10197
Ruminococcus_obeumClostridium_hathewayiSPC10197
Ruminococcus_obeumBifidobacterium_pseudocatenulatumSPC10197
Ruminococcus_obeumBifidobacterium_adolescentisSPC10197
Ruminococcus_obeumCoprococcus_comesSPC10197
Ruminococcus_obeumClostridium_symbiosumSPC10197
Ruminococcus_obeumEubacterium_rectaleSPC10197
Ruminococcus_obeumFaecalibacterium_prausnitziiSPC10197
Ruminococcus_obeumOdoribacter_splanchnicusSPC10197
Ruminococcus_obeumLachnospiraceae_bacterium_5_1_57FAASPC10197
Ruminococcus_obeumBlautia_schinkiiSPC10197
Ruminococcus_obeumAlistipes_shahiiSPC10197
Ruminococcus_obeumBlautia_productaSPC10197
Bacteroides_caccaeBacteroides_caccaeSPC10211
Bacteroides_caccaeBacteroides_eggerthiiSPC10211
Bacteroides_caccaeRuminococcus_torquesSPC10211
Bacteroides_caccaeClostridium_hathewayiSPC10211
Bacteroides_caccaeBifidobacterium_pseudocatenulatumSPC10211
Bacteroides_caccaeBifidobacterium_adolescentisSPC10211
Bacteroides_caccaeCoprococcus_comesSPC10211
Bacteroides_caccaeClostridium_symbiosumSPC10211
Bacteroides_caccaeEubacterium_rectaleSPC10211
Bacteroides_caccaeFaecalibacterium_prausnitziiSPC10211
Bacteroides_caccaeOdoribacter_splanchnicusSPC10211
Bacteroides_caccaeLachnospiraceae_bacterium_5_1_57FAASPC10211
Bacteroides_caccaeBlautia_schinkiiSPC10211
Bacteroides_caccaeAlistipes_shahiiSPC10211
Bacteroides_caccaeBlautia_productaSPC10211
Bacteroides_eggerthiiBacteroides_eggerthiiSPC10213
Bacteroides_eggerthiiRuminococcus_torquesSPC10213
Bacteroides_eggerthiiClostridium_hathewayiSPC10213
Bacteroides_eggerthiiBifidobacterium_pseudocatenulatumSPC10213
Bacteroides_eggerthiiBifidobacterium_adolescentisSPC10213
Bacteroides_eggerthiiCoprococcus_comesSPC10213
Bacteroides_eggerthiiClostridium_symbiosumSPC10213
Bacteroides_eggerthiiEubacterium_rectaleSPC10213
Bacteroides_eggerthiiFaecalibacterium_prausnitziiSPC10213
Bacteroides_eggerthiiOdoribacter_splanchnicusSPC10213
Bacteroides_eggerthiiLachnospiraceae_bacterium_5_1_57FAASPC10213
Bacteroides_eggerthiiBlautia_schinkiiSPC10213
Bacteroides_eggerthiiAlistipes_shahiiSPC10213
Bacteroides_eggerthiiBlautia_productaSPC10213
Ruminococcus_torquesRuminococcus_torquesSPC10233
Ruminococcus_torquesClostridium_hathewayiSPC10233
Ruminococcus_torquesBifidobacterium_pseudocatenulatumSPC10233
Ruminococcus_torquesBifidobacterium_adolescentisSPC10233
Ruminococcus_torquesCoprococcus_comesSPC10233
Ruminococcus_torquesClostridium_symbiosumSPC10233
Ruminococcus_torquesEubacterium_rectaleSPC10233
Ruminococcus_torquesFaecalibacterium_prausnitziiSPC10233
Ruminococcus_torquesOdoribacter_splanchnicusSPC10233
Ruminococcus_torquesLachnospiraceae_bacterium_5_1_57FAASPC10233
Ruminococcus_torquesBlautia_schinkiiSPC10233
Ruminococcus_torquesAlistipes_shahiiSPC10233
Ruminococcus_torquesBlautia_productaSPC10233
Clostridium_hathewayiClostridium_hathewayiSPC10243
Clostridium_hathewayiBifidobacterium_pseudocatenulatumSPC10243
Clostridium_hathewayiBifidobacterium_adolescentisSPC10243
Clostridium_hathewayiCoprococcus_comesSPC10243
Clostridium_hathewayiClostridium_symbiosumSPC10243
Clostridium_hathewayiEubacterium_rectaleSPC10243
Clostridium_hathewayiFaecalibacterium_prausnitziiSPC10243
Clostridium_hathewayiOdoribacter_splanchnicusSPC10243
Clostridium_hathewayiLachospiraceae_bacterium_5_1_57FAASPC10243
Clostridium_hathewayiBlautia_schinkiiSPC10243
Clostridium_hathewayiAlistipes_shahiiSPC10243
Clostridium_hathewayiBlautia_productaSPC10243
Bifidobacterium_pseudocatenulatumBifidobacterium_pseudocatenulatumSPC10298
Bifidobacterium_pseudocatenulatumBifidobacterium_adolescentisSPC10298
Bifidobacterium_pseudocatenulatumCoprococcus_comesSPC10298
Bifidobacterium_pseudocatenulatumClostridium_symbiosumSPC10298
Bifidobacterium_pseudocatenulatumEubacterium_rectaleSPC10298
Bifidobacterium_pseudocatenulatumFaecalibacterium_prausnitziiSPC10298
Bifidobacterium_pseudocatenulatumOdoribacter_splanchnicusSPC10298
Bifidobacterium_pseudocatenulatumLachnospiraceae_bacterium_5_1_57FAASPC10298
Bifidobacterium_pseudocatenulatumBlautia_schinkiiSPC10298
Bifidobacterium_pseudocatenulatumAlistipes_shahiiSPC10298
Bifidobacterium_pseudocatenulatumBlautia_productaSPC10298
Bifidobacterium_adolescentisBifidobacterium_adolescentisSPC10301
Bifidobacterium_adolescentisCoprococcus_comesSPC10301
Bifidobacterium_adolescentisClostridium_symbiosumSPC10301
Bifidobacterium_adolescentisEubacterium_rectaleSPC10301
Bifidobacterium_adolescentisFaecalibacterium_prausnitziiSPC10301
Bifidobacterium_adolescentisOdoribacter_splanchnicusSPC10301
Bifidobacterium_adolescentisLachnospiraceae_bacterium_5_1_57FAASPC10301
Bifidobacterium_adolescentisBlautia_schinkiiSPC10301
Bifidobacterium_adolescentisAlistipes_shahiiSPC10301
Bifidobacterium_adolescentisBlautia_productaSPC10301
Coprococcus_comesCoprococcus_comesSPC10304
Coprococcus_comesClostridium_symbiosumSPC10304
Coprococcus_comesEubacterium_rectaleSPC10304
Coprococcus_comesFaecalibacterium_prausnitziiSPC10304
Coprococcus_comesOdoribacter_splanchnicusSPC10304
Coprococcus_comesLachnospiraceae_bacterium_5_1_57FAASPC10304
Coprococcus_comesBlautia_schinkiiSPC10304
Coprococcus_comesAlistipes_shahiiSPC10304
Coprococcus_comesBlautia_productaSPC10304
Clostridium_symbiosumClostridium_symbiosumSPC10355
Clostridium_symbiosumEubacterium_rectaleSPC10355
Clostridium_symbiosumFaecalibacterium_prausnitziiSPC10355
Clostridium_symbiosumOdoribacter_splanchnicusSPC10355
Clostridium_symbiosumLachnospiraceae_bacterium_5_1_57FAASPC10355
Clostridium_symbiosumBlautia_schinkiiSPC10355
Clostridium_symbiosumAlistipes_shahiiSPC10355
Clostridium_symbiosumBlautia_productaSPC10355
Eubacterium_rectaleEubacterium_rectaleSPC10363
Eubacterium_rectaleFaecalibacterium_prausnitziiSPC10363
Eubacterium_rectaleOdoribacter_splanchnicusSPC10363
Eubacterium_rectaleLachnospiraceae_bacterium_5_1_57FAASPC10363
Eubacterium_rectaleBlautia_schinkiiSPC10363
Eubacterium_rectaleAlistipes_shahiiSPC10363
Eubacterium_rectaleBlautia_productaSPC10363
Faecalibacterium_prausnitziiFaecalibacterium_prausnitziiSPC10386
Faecalibacterium_prausnitziiOdoribacter_splanchnicusSPC10386
Faecalibacterium_prausnitziiLachnospiraceae_bacterium_5_1_57FAASPC10386
Faecalibacterium_prausnitziiBlautia_schinkiiSPC10386
Faecalibacterium_prausnitziiAlistipes_shahiiSPC10386
Faecalibacterium_prausnitziiBlautia_productaSPC10386
Odoribacter_splanchnicusOdoribacter_splanchnicusSPC10388
Odoribacter_splanchnicusLachnospiraceae_bacterium_5_1_57FAASPC10388
Odoribacter_splanchnicusBlautia_schinkiiSPC10388
Odoribacter_splanchnicusAlistipes_shahiiSPC10388
Odoribacter_splanchnicusBlautia_productaSPC10388
Lachnospiraceae_bacterium_5_1_57FAALachnospiraceae_bacterium_5_1_57FAASPC10390
Lachnospiraceae_bacterium_5_1_57FAABlautia_schinkiiSPC10390
Lachnospiraceae_bacterium_5_1_57FAAAlistipes_shahiiSPC10390
Lachnospiraceae_bacterium_5_1_57FAABlautia_productaSPC10390
Blautia_schinkiiBlautia_schinkiiSPC10403
Blautia_schinkiiAlistipes_shahiiSPC10403
Blautia_schinkiiBlautia_productaSPC10403
Alistipes_shahiiAlistipes_shahiiSPC10414
Alistipes_shahiiBlautia_productaSPC10414
Blautia_productaBlautia_productaSPC10415
Collinsella_aerofaciensClostridium_tertiumSPC10097
Collinsella_aerofaciensClostridium_disporicumSPC10097
Collinsella_aerofaciensClostridium_innocuumSPC10097
Collinsella_aerofaciensClostridium_mayombeiSPC10097
Collinsella_aerofaciensClostridium_butyricumSPC10097
Collinsella_aerofaciensClostridium_hylemonaeSPC10097
Collinsella_aerofaciensClostridium_bolteaeSPC10097
Collinsella_aerofaciensClostridium_orbiscindensSPC10097
Collinsella_aerofaciensRuminococcus_gnavusSPC10097
Collinsella_aerofaciensRuminococcus_bromiiSPC10097
Collinsella_aerofaciensEubacterium_rectaleSPC10097
Clostridium_tertiumCollinsella_aerofaciensSPC10155
Clostridium_tertiumClostridium_tertiumSPC10155
Clostridium_tertiumClostridium_disporicumSPC10155
Clostridium_tertiumClostridium_innocuumSPC10155
Clostridium_tertiumClostridium_mayombeiSPC10155
Clostridium_tertiumClostridium_butyricumSPC10155
Clostridium_tertiumCoprococcus_comesSPC10155
Clostridium_tertiumClostridium_hylemonaeSPC10155
Clostridium_tertiumClostridium_bolteaeSPC10155
Clostridium_tertiumClostridium_symbiosumSPC10155
Clostridium_tertiumClostridium_orbiscindensSPC10155
Clostridium_tertiumFaecalibacterium_prausnitziiSPC10155
Clostridium_tertiumLachnospiraceae_bacterium_5_1_57FAASPC10155
Clostridium_tertiumBlautia_productaSPC10155
Clostridium_tertiumRuminococcus_gnavusSPC10155
Clostridium_tertiumRuminococcus_bromiiSPC10155
Clostridium_tertiumEubacterium_rectaleSPC10155
Clostridium_disporicumClostridium_tertiumSPC10167
Clostridium_disporicumClostridium_disporicumSPC10167
Clostridium_disporicumClostridium_innocuumSPC10167
Clostridium_disporicumClostridium_mayombeiSPC10167
Clostridium_disporicumClostridium_butyricumSPC10167
Clostridium_disporicumCoprococcus_comesSPC10167
Clostridium_disporicumClostridium_hylemonaeSPC10167
Clostridium_disporicumClostridium_bolteaeSPC10167
Clostridium_disporicumClostridium_symbiosumSPC10167
Clostridium_disporicumClostridium_orbiscindensSPC10167
Clostridium_disporicumFaecalibacterium_prausnitziiSPC10167
Clostridium_disporicumLachnospiraceae_bacterium_5_1_57FAASPC10167
Clostridium_disporicumBlautia_productaSPC10167
Clostridium_disporicumRuminococcus_gnavusSPC10167
Clostridium_disporicumRuminococcus_bromiiSPC10167
Clostridium_disporicumEubacterium_rectaleSPC10167
Clostridium_innocuumClostridium_disporicumSPC10202
Clostridium_innocuumClostridium_innocuumSPC10202
Clostridium_innocuumClostridium_mayombeiSPC10202
Clostridium_innocuumClostridium_butyricumSPC10202
Clostridium_innocuumCoprococcus_comesSPC10202
Clostridium_innocuumClostridium_hylemonaeSPC10202
Clostridium_innocuumClostridium_bolteaeSPC10202
Clostridium_innocuumClostridium_symbiosumSPC10202
Clostridium_innocuumClostridium_orbiscindensSPC10202
Clostridium_innocuumFaecalibacterium_prausnitziiSPC10202
Clostridium_innocuumLachnospiraceae_bacterium_5_1_57FAASPC10202
Clostridium_innocuumBlautia_productaSPC10202
Clostridium_innocuumRuminococcus_gnavusSPC10202
Clostridium_innocuumRuminococcus_bromiiSPC10202
Clostridium_innocuumEubacterium_rectaleSPC10202
Clostridium_mayombeiClostridium_innocuumSPC10238
Clostridium_mayombeiClostridium_mayombeiSPC10238
Clostridium_mayombeiClostridium_butyricumSPC10238
Clostridium_mayombeiCoprococcus_comesSPC10238
Clostridium_mayombeiClostridium_hylemonaeSPC10238
Clostridium_mayombeiClostridium_bolteaeSPC10238
Clostridium_mayombeiClostridium_symbiosumSPC10238
Clostridium_mayombeiClostridium_orbiscindensSPC10238
Clostridium_mayombeiFaecalibacterium_prausnitziiSPC10238
Clostridium_mayombeiLachnospiraceae_bacterium_5_1_57FAASPC10238
Clostridium_mayombeiBlautia_productaSPC10238
Clostridium_mayombeiRuminococcus_gnavusSPC10238
Clostridium_mayombeiRuminococcus_bromiiSPC10238
Clostridium_mayombeiEubacterium_rectaleSPC10238
Clostridium_butyricumClostridium_mayombeiSPC10256
Clostridium_butyricumClostridium_butyricumSPC10256
Clostridium_butyricumCoprococcus_comesSPC10256
Clostridium_butyricumClostridium_hylemonaeSPC10256
Clostridium_butyricumClostridium_bolteaeSPC10256
Clostridium_butyricumClostridium_symbiosumSPC10256
Clostridium_butyricumClostridium_orbiscindensSPC10256
Clostridium_butyricumFaecalibacterium_prausnitziiSPC10256
Clostridium_butyricumLachnospiraceae_bacterium_5_1_57FAASPC10256
Clostridium_butyricumBlautia_productaSPC10256
Clostridium_butyricumRuminococcus_gnavusSPC10256
Clostridium_butyricumRuminococcus_bromiiSPC10256
Clostridium_butyricumEubacterium_rectaleSPC10256
Coprococcus_comesClostridium_butyricumSPC10304
Coprococcus_comesClostridium_hylemonaeSPC10304
Coprococcus_comesClostridium_bolteaeSPC10304
Coprococcus_comesClostridium_orbiscindensSPC10304
Coprococcus_comesRuminococcus_gnavusSPC10304
Coprococcus_comesRuminococcus_bromiiSPC10304
Coprococcus_comesEubacterium_rectaleSPC10304
Clostridium_hylemonaeCoprococcus_comesSPC10313
Clostridium_hylemonaeClostridium_hylemonaeSPC10313
Clostridium_hylemonaeClostridium_bolteaeSPC10313
Clostridium_hylemonaeClostridium_symbiosumSPC10313
Clostridium_hylemonaeClostridium_orbiscindensSPC10313
Clostridium_hylemonaeFaecalibacterium_prausnitziiSPC10313
Clostridium_hylemonaeLachnospiraceae_bacterium_5_1_57FAASPC10313
Clostridium_hylemonaeBlautia_productaSPC10313
Clostridium_hylemonaeRuminococcus_gnavusSPC10313
Clostridium_hylemonaeRuminococcus_bromiiSPC10313
Clostridium_hylemonaeEubacterium_rectaleSPC10313
Clostridium_bolteaeClostridium_hylemonaeSPC10325
Clostridium_bolteaeClostridium_bolteaeSPC10325
Clostridium_bolteaeClostridium_symbiosumSPC10325
Clostridium_bolteaeClostridium_orbiscindensSPC10325
Clostridium_bolteaeFaecalibacterium_prausnitziiSPC10325
Clostridium_bolteaeLachnospiraceae_bacterium_5_1_57FAASPC10325
Clostridium_bolteaeBlautia_productaSPC10325
Clostridium_bolteaeRuminococcus_gnavusSPC10325
Clostridium_bolteaeRuminococcus_bromiiSPC10325
Clostridium_bolteaeEubacterium_rectaleSPC10325
Clostridium_symbiosumClostridium_bolteaeSPC10355
Clostridium_symbiosumClostridium_orbiscindensSPC10355
Clostridium_symbiosumRuminococcus_gnavusSPC10355
Clostridium_symbiosumRuminococcus_bromiiSPC10355
Clostridium_symbiosumEubacterium_rectaleSPC10355
Clostridium_orbiscindensClostridium_symbiosumSPC10358
Clostridium_orbiscindensClostridium_orbiscindensSPC10358
Clostridium_orbiscindensFaecalibacterium_prausnitziiSPC10358
Clostridium_orbiscindensLachnospiraceae_bacterium_5_1_57FAASPC10358
Clostridium_orbiscindensBlautia_productaSPC10358
Clostridium_orbiscindensRuminococcus_gnavusSPC10358
Clostridium_orbiscindensRuminococcus_bromiiSPC10358
Clostridium_orbiscindensEubacterium_rectaleSPC10358
Faecalibacterium_prausnitziiClostridium_orbiscindensSPC10386
Faecalibacterium_prausnitziiRuminococcus_gnavusSPC10386
Faecalibacterium_prausnitziiRuminococcus_bromiiSPC10386
Faecalibacterium_prausnitziiEubacterium_rectaleSPC10386
Lachnospiraceae_bacterium_5_1_57FAARuminococcus_gnavusSPC10390
Lachnospiraceae_bacterium_5_1_57FAARuminococcus_bromiiSPC10390
Lachnospiraceae_bacterium_5_1_57FAAEubacterium_rectaleSPC10390
Blautia_productaRuminococcus_gnavusSPC10415
Blautia_productaRuminococcus_bromiiSPC10415
Blautia_productaEubacterium_rectaleSPC10415
Ruminococcus_gnavusBlautia_productaSPC10468
Ruminococcus_gnavusRuminococcus_gnavusSPC10468
Ruminococcus_gnavusRuminococcus_bromiiSPC10468
Ruminococcus_gnavusEubacterium_rectaleSPC10468
Ruminococcus_bromiiRuminococcus_gnavusSPC10470
Ruminococcus_bromiiRuminococcus_bromiiSPC10470
Ruminococcus_bromiiEubacterium_rectaleSPC10470
Eubacterium_rectaleRuminococcus_bromiiSPC10567
Eubacterium_rectaleEubacterium_rectaleSPC10567
Collinsella_aerofaciensCollinsella_aerofaciensCollinsella_aerofaciensSPC10097
Collinsella_aerofaciensCollinsella_aerofaciensCoprococcus_comesSPC10097
Collinsella_aerofaciensCollinsella_aerofaciensClostridium_bolteaeSPC10097
Collinsella_aerofaciensCollinsella_aerofaciensClostridium_symbiosumSPC10097
Collinsella_aerofaciensCollinsella_aerofaciensFaecalibacterium_prausnitziiSPC10097
Collinsella_aerofaciensCollinsella_aerofaciensLachnospiraceae_bacterium_5_1_57FAASPC10097
Collinsella_aerofaciensCollinsella_aerofaciensBlautia_productaSPC10097
Collinsella_aerofaciensCollinsella_aerofaciensEubacterium_rectaleSPC10097
Collinsella_aerofaciensCoprococcus_comesCoprococcus_comesSPC10097
Collinsella_aerofaciensCoprococcus_comesClostridium_bolteaeSPC10097
Collinsella_aerofaciensCoprococcus_comesClostridium_symbiosumSPC10097
Collinsella_aerofaciensCoprococcus_comesFaecalibacterium_prausnitziiSPC10097
Collinsella_aerofaciensCoprococcus_comesLachnospiraceae_bacterium_5_1_57FAASPC10097
Collinsella_aerofaciensCoprococcus_comesBlautia_productaSPC10097
Collinsella_aerofaciensCoprococcus_comesEubacterium_rectaleSPC10097
Collinsella_aerofaciensClostridium_bolteaeClostridium_bolteaeSPC10097
Collinsella_aerofaciensClostridium_bolteaeClostridium_symbiosumSPC10097
Collinsella_aerofaciensClostridium_bolteaeFaecalibacterium_prausnitziiSPC10097
Collinsella_aerofaciensClostridium_bolteaeLachnospiraceae_bacterium_5_1_57FAASPC10097
Collinsella_aerofaciensClostridium_bolteaeBlautia_productaSPC10097
Collinsella_aerofaciensClostridium_bolteaeEubacterium_rectaleSPC10097
Collinsella_aerofaciensClostridium_symbiosumClostridium_symbiosumSPC10097
Collinsella_aerofaciensClostridium_symbiosumFaecalibacterium_prausnitziiSPC10097
Collinsella_aerofaciensClostridium_symbiosumLachnospiraceae_bacterium_5_1_57FAASPC10097
Collinsella_aerofaciensClostridium_symbiosumBlautia_productaSPC10097
Collinsella_aerofaciensClostridium_symbiosumEubacterium_rectaleSPC10097
Collinsella_aerofaciensFaecalibacterium_prausnitziiFaecalibacterium_prausnitziiSPC10097
Collinsella_aerofaciensFaecalibacterium_prausnitziiLachnospiraceae_bacterium_5_1_57FAASPC10097
Collinsella_aerofaciensFaecalibacterium_prausnitziiBlautia_productaSPC10097
Collinsella_aerofaciensFaecalibacterium_prausnitziiEubacterium_rectaleSPC10097
Collinsella_aerofaciensLachnospiraceae_bacterium_5_1_57FAALachnospiraceae_bacterium_5_1_57FAASPC10097
Collinsella_aerofaciensLachnospiraceae_bacterium_5_1_57FAABlautia_productaSPC10097
Collinsella_aerofaciensLachnospiraceae_bacterium_5_1_57FAAEubacterium_rectaleSPC10097
Collinsella_aerofaciensBlautia_productaBlautia_productaSPC10097
Collinsella_aerofaciensBlautia_productaEubacterium_rectaleSPC10097
Collinsella_aerofaciensEubacterium_rectaleEubacterium_rectaleSPC10097
Coprococcus_comesCoprococcus_comesCoprococcus_comesSPC10304
Coprococcus_comesCoprococcus_comesClostridium_bolteaeSPC10304
Coprococcus_comesCoprococcus_comesClostridium_symbiosumSPC10304
Coprococcus_comesCoprococcus_comesFaecalibacterium_prausnitziiSPC10304
Coprococcus_comesCoprococcus_comesLachnospiraceae_bacterium_5_1_57FAASPC10304
Coprococcus_comesCoprococcus_comesBlautia_productaSPC10304
Coprococcus_comesCoprococcus_comesEubacterium_rectaleSPC10304
Coprococcus_comesClostridium_bolteaeClostridium_bolteaeSPC10304
Coprococcus_comesClostridium_bolteaeClostridium_symbiosumSPC10304
Coprococcus_comesClostridium_bolteaeFaecalibacterium_prausnitziiSPC10304
Coprococcus_comesClostridium_bolteaeLachnospiraceae_bacterium_5_1_57FAASPC10304
Coprococcus_comesClostridium_bolteaeBlautia_productaSPC10304
Coprococcus_comesClostridium_bolteaeEubacterium_rectaleSPC10304
Coprococcus_comesClostridium_symbiosumClostridium_symbiosumSPC10304
Coprococcus_comesClostridium_symbiosumFaecalibacterium_prausnitziiSPC10304
Coprococcus_comesClostridium_symbiosumLachnospiraceae_bacterium_5_1_57FAASPC10304
Coprococcus_comesClostridium_symbiosumBlautia_productaSPC10304
Coprococcus_comesClostridium_symbiosumEubacterium_rectaleSPC10304
Coprococcus_comesFaecalibacterium_prausnitziiFaecalibacterium_prausnitziiSPC10304
Coprococcus_comesFaecalibacterium_prausnitziiLachnospiraceae_bacterium_5_1_57FAASPC10304
Coprococcus_comesFaecalibacterium_prausnitziiBlautia_productaSPC10304
Coprococcus_comesFaecalibacterium_prausnitziiEubacterium_rectaleSPC10304
Coprococcus_comesLachnospiraceae_bacterium_5_1_57FAALachnospiraceae_bacterium_5_1_57FAASPC10304
Coprococcus_comesLachnospiraceae_bacterium_5_1_57FAABlautia_productaSPC10304
Coprococcus_comesLachnospiraceae_bacterium_5_1_57FAAEubacterium_rectaleSPC10304
Coprococcus_comesBlautia_productaBlautia_productaSPC10304
Coprococcus_comesBlautia_productaEubacterium_rectaleSPC10304
Coprococcus_comesEubacterium_rectaleEubacterium_rectaleSPC10304
Clostridium_bolteaeClostridium_bolteaeClostridium_bolteaeSPC10325
Clostridium_bolteaeClostridium_bolteaeClostridium_symbiosumSPC10325
Clostridium_bolteaeClostridium_bolteaeFaecalibacterium_prausnitziiSPC10325
Clostridium_bolteaeClostridium_bolteaeLachnospiraceae_bacterium_5_1_57FAASPC10325
Clostridium_bolteaeClostridium_bolteaeBlautia_productaSPC10325
Clostridium_bolteaeClostridium_bolteaeEubacterium_rectaleSPC10325
Clostridium_bolteaeClostridium_symbiosumClostridium_symbiosumSPC10325
Clostridium_bolteaeClostridium_symbiosumFaecalibacterium_prausnitziiSPC10325
Clostridium_bolteaeClostridium_symbiosumLachnospiraceae_bacterium_5_1_57FAASPC10325
Clostridium_bolteaeClostridium_symbiosumBlautia_productaSPC10325
Clostridium_bolteaeClostridium_symbiosumEubacterium_rectaleSPC10325
Clostridium_bolteaeFaecalibacterium_prausnitziiFaecalibacterium_prausnitziiSPC10325
Clostridium_bolteaeFaecalibacterium_prausnitziiLachnospiraceae_bacterium_5_1_57FAASPC10325
Clostridium_bolteaeFaecalibacterium_prausnitziiBlautia_productaSPC10325
Clostridium_bolteaeFaecalibacterium_prausnitziiEubacterium_rectaleSPC10325
Clostridium_bolteaeLachnospiraceae_bacterium_5_1_57FAALachnospiraceae_bacterium_5_1_57FAASPC10325
Clostridium_bolteaeLachnospiraceae_bacterium_5_1_57FAABlautia_productaSPC10325
Clostridium_bolteaeLachnospiraceae_bacterium_5_1_57FAAEubacterium_rectaleSPC10325
Clostridium_bolteaeBlautia_productaBlautia_productaSPC10325
Clostridium_bolteaeBlautia_productaEubacterium_rectaleSPC10325
Clostridium_bolteaeEubacterium_rectaleEubacterium_rectaleSPC10325
Clostridium_symbiosumClostridium_symbiosumClostridium_symbiosumSPC10355
Clostridium_symbiosumClostridium_symbiosumFaecalibacterium_prausnitziiSPC10355
Clostridium_symbiosumClostridium_symbiosumLachnospiraceae_bacterium_5_1_57FAASPC10355
Clostridium_symbiosumClostridium_symbiosumBlautia_productaSPC10355
Clostridium_symbiosumClostridium_symbiosumEubacterium_rectaleSPC10355
Clostridium_symbiosumFaecalibacterium_prausnitziiFaecalibacterium_prausnitziiSPC10355
Clostridium_symbiosumFaecalibacterium_prausnitziiLachnospiraceae_bacterium_5_1_57FAASPC10355
Clostridium_symbiosumFaecalibacterium_prausnitziiBlautia_productaSPC10355
Clostridium_symbiosumFaecalibacterium_prausnitziiEubacterium_rectaleSPC10355
Clostridium_symbiosumLachnospiraceae_bacterium_5_1_57FAALachnospiraceae_bacterium_5_1_57FAASPC10355
Clostridium_symbiosumLachnospiraceae_bacterium_5_1_57FAABlautia_productaSPC10355
Clostridium_symbiosumLachnospiraceae_bacterium_5_1_57FAAEubacterium_rectaleSPC10355
Clostridium_symbiosumBlautia_productaBlautia_productaSPC10355
Clostridium_symbiosumBlautia_productaEubacterium_rectaleSPC10355
Clostridium_symbiosumEubacterium_rectaleEubacterium_rectaleSPC10355
Faecalibacterium_prausnitziiFaecalibacterium_prausnitziiFaecalibacterium_prausnitziiSPC10386
Faecalibacterium_prausnitziiFaecalibacterium_prausnitziiLachnospiraceae_bacterium_5_1_57FAASPC10386
Faecalibacterium_prausnitziiFaecalibacterium_prausnitziiBlautia_productaSPC10386
Faecalibacterium_prausnitziiFaecalibacterium_prausnitziiEubacterium_rectaleSPC10386
Faecalibacterium_prausnitziiLachnospiraceae_bacterium_5_1_57FAALachnospiraceae_bacterium_5_1_57FAASPC10386
Faecalibacterium_prausnitziiLachnospiraceae_bacterium_5_1_57FAABlautia_productaSPC10386
Faecalibacterium_prausnitziiLachnospiraceae_bacterium_5_1_57FAAEubacterium_rectaleSPC10386
Faecalibacterium_prausnitziiBlautia_productaBlautia_productaSPC10386
Faecalibacterium_prausnitziiBlautia_productaEubacterium_rectaleSPC10386
Faecalibacterium_prausnitziiEubacterium_rectaleEubacterium_rectaleSPC10386
Lachnospiraceae_bacterium_5_1_57FAALachnospiraceae_bacterium_5_1_57FAALachnospiraceae_bacterium_5_1_57FAASPC10390
Lachnospiraceae_bacterium_5_1_57FAALachnospiraceae_bacterium_5_1_57FAABlautia_productaSPC10390
Lachnospiraceae_bacterium_5_1_57FAALachnospiraceae_bacterium_5_1_57FAAEubacterium_rectaleSPC10390
Lachnospiraceae_bacterium_5_1_57FAABlautia_productaBlautia_productaSPC10390
Lachnospiraceae_bacterium_5_1_57FAABlautia_productaEubacterium_rectaleSPC10390
Lachnospiraceae_bacterium_5_1_57FAAEubacterium_rectaleEubacterium_rectaleSPC10390
Blautia_productaBlautia_productaBlautia_productaSPC10415
Blautia_productaBlautia_productaEubacterium_rectaleSPC10415
Blautia_productaEubacterium_rectaleEubacterium_rectaleSPC10415
Eubacterium_rectaleEubacterium_rectaleEubacterium_rectaleSPC10567
Collinsella_aerofaciensClostridium_tertiumClostridium_tertiumSPC10097
Collinsella_aerofaciensClostridium_tertiumClostridium_disporicumSPC10097
Collinsella_aerofaciensClostridium_tertiumClostridium_innocuumSPC10097
Collinsella_aerofaciensClostridium_tertiumClostridium_mayombeiSPC10097
Collinsella_aerofaciensClostridium_tertiumClostridium_butyricumSPC10097
Collinsella_aerofaciensClostridium_tertiumClostridium_hylemonaeSPC10097
Collinsella_aerofaciensClostridium_tertiumClostridium_orbiscindensSPC10097
Collinsella_aerofaciensClostridium_tertiumRuminococcus_gnavusSPC10097
Collinsella_aerofaciensClostridium_tertiumRuminococcus_bromiiSPC10097
Collinsella_aerofaciensClostridium_tertiumBlautia_sp_M25SPC10097
Collinsella_aerofaciensClostridium_disporicumClostridium_disporicumSPC10097
Collinsella_aerofaciensClostridium_disporicumClostridium_innocuumSPC10097
Collinsella_aerofaciensClostridium_disporicumClostridium_mayombeiSPC10097
Collinsella_aerofaciensClostridium_disporicumClostridium_butyricumSPC10097
Collinsella_aerofaciensClostridium_disporicumClostridium_hylemonaeSPC10097
Collinsella_aerofaciensClostridium_disporicumClostridium_orbiscindensSPC10097
Collinsella_aerofaciensClostridium_disporicumRuminococcus_gnavusSPC10097
Collinsella_aerofaciensClostridium_disporicumRuminococcus_bromiiSPC10097
Collinsella_aerofaciensClostridium_disporicumBlautia_sp_M25SPC10097
Collinsella_aerofaciensClostridium_innocuumClostridium_innocuumSPC10097
Collinsella_aerofaciensClostridium_innocuumClostridium_mayombeiSPC10097
Collinsella_aerofaciensClostridium_innocuumClostridium_butyricumSPC10097
Collinsella_aerofaciensClostridium_innocuumClostridium_hylemonaeSPC10097
Collinsella_aerofaciensClostridium_innocuumClostridium_orbiscindensSPC10097
Collinsella_aerofaciensClostridium_innocuumRuminococcus_gnavusSPC10097
Collinsella_aerofaciensClostridium_innocuumRuminococcus_bromiiSPC10097
Collinsella_aerofaciensClostridium_innocuumBlautia_sp_M25SPC10097
Collinsella_aerofaciensClostridium_mayombeiClostridium_mayombeiSPC10097
Collinsella_aerofaciensClostridium_mayombeiClostridium_butyricumSPC10097
Collinsella_aerofaciensClostridium_mayombeiClostridium_hylemonaeSPC10097
Collinsella_aerofaciensClostridium_mayombeiClostridium_orbiscindensSPC10097
Collinsella_aerofaciensClostridium_mayombeiRuminococcus_gnavusSPC10097
Collinsella_aerofaciensClostridium_mayombeiRuminococcus_bromiiSPC10097
Collinsella_aerofaciensClostridium_mayombeiBlautia_sp_M25SPC10097
Collinsella_aerofaciensClostridium_butyricumClostridium_butyricumSPC10097
Collinsella_aerofaciensClostridium_butyricumClostridium_hylemonaeSPC10097
Collinsella_aerofaciensClostridium_butyricumClostridium_orbiscindensSPC10097
Collinsella_aerofaciensClostridium_butyricumRuminococcus_gnavusSPC10097
Collinsella_aerofaciensClostridium_butyricumRuminococcus_bromiiSPC10097
Collinsella_aerofaciensClostridium_butyricumBlautia_sp_M25SPC10097
Collinsella_aerofaciensClostridium_hylemonaeClostridium_hylemonaeSPC10097
Collinsella_aerofaciensClostridium_hylemonaeClostridium_orbiscindensSPC10097
Collinsella_aerofaciensClostridium_hylemonaeRuminococcus_gnavusSPC10097
Collinsella_aerofaciensClostridium_hylemonaeRuminococcus_bromiiSPC10097
Collinsella_aerofaciensClostridium_hylemonaeBlautia_sp_M25SPC10097
Collinsella_aerofaciensClostridium_orbiscindensClostridium_orbiscindensSPC10097
Collinsella_aerofaciensClostridium_orbiscindensRuminococcus_gnavusSPC10097
Collinsella_aerofaciensClostridium_orbiscindensRuminococcus_bromiiSPC10097
Collinsella_aerofaciensClostridium_orbiscindensBlautia_sp_M25SPC10097
Collinsella_aerofaciensRuminococcus_gnavusRuminococcus_gnavusSPC10097
Collinsella_aerofaciensRuminococcus_gnavusRuminococcus_bromiiSPC10097
Collinsella_aerofaciensRuminococcus_gnavusBlautia_sp_M25SPC10097
Coprococcus_comesClostridium_tertiumClostridium_tertiumSPC10304
Coprococcus_comesClostridium_tertiumClostridium_disporicumSPC10304
Coprococcus_comesClostridium_tertiumClostridium_innocuumSPC10304
Coprococcus_comesClostridium_tertiumClostridium_mayombeiSPC10304
Coprococcus_comesClostridium_tertiumClostridium_butyricumSPC10304
Coprococcus_comesClostridium_tertiumClostridium_hylemonaeSPC10304
Coprococcus_comesClostridium_tertiumClostridium_orbiscindensSPC10304
Coprococcus_comesClostridium_tertiumRuminococcus_gnavusSPC10304
Coprococcus_comesClostridium_tertiumRuminococcus_bromiiSPC10304
Coprococcus_comesClostridium_tertiumBlautia_sp_M25SPC10304
Coprococcus_comesClostridium_disporicumClostridium_disporicumSPC10304
Coprococcus_comesClostridium_disporicumClostridium_innocuumSPC10304
Coprococcus_comesClostridium_disporicumClostridium_mayombeiSPC10304
Coprococcus_comesClostridium_disporicumClostridium_butyricumSPC10304
Coprococcus_comesClostridium_disporicumClostridium_hylemonaeSPC10304
Coprococcus_comesClostridium_disporicumClostridium_orbiscindensSPC10304
Coprococcus_comesClostridium_disporicumRuminococcus_gnavusSPC10304
Coprococcus_comesClostridium_disporicumRuminococcus_bromiiSPC10304
Coprococcus_comesClostridium_disporicumBlautia_sp_M25SPC10304
Coprococcus_comesClostridium_innocuumClostridium_innocuumSPC10304
Coprococcus_comesClostridium_innocuumClostridium_mayombeiSPC10304
Coprococcus_comesClostridium_innocuumClostridium_butyricumSPC10304
Coprococcus_comesClostridium_innocuumClostridium_hylemonaeSPC10304
Coprococcus_comesClostridium_innocuumClostridium_orbiscindensSPC10304
Coprococcus_comesClostridium_innocuumRuminococcus_gnavusSPC10304
Coprococcus_comesClostridium_innocuumRuminococcus_bromiiSPC10304
Coprococcus_comesClostridium_innocuumBlautia_sp_M25SPC10304
Coprococcus_comesClostridium_mayombeiClostridium_mayombeiSPC10304
Coprococcus_comesClostridium_mayombeiClostridium_butyricumSPC10304
Coprococcus_comesClostridium_mayombeiClostridium_hylemonaeSPC10304
Coprococcus_comesClostridium_mayombeiClostridium_orbiscindensSPC10304
Coprococcus_comesClostridium_mayombeiRuminococcus_gnavusSPC10304
Coprococcus_comesClostridium_mayombeiRuminococcus_bromiiSPC10304
Coprococcus_comesClostridium_mayombeiBlautia_sp_M25SPC10304
Coprococcus_comesClostridium_butyricumClostridium_butyricumSPC10304
Coprococcus_comesClostridium_butyricumClostridium_hylemonaeSPC10304
Coprococcus_comesClostridium_butyricumClostridium_orbiscindensSPC10304
Coprococcus_comesClostridium_butyricumRuminococcus_gnavusSPC10304
Coprococcus_comesClostridium_butyricumRuminococcus_bromiiSPC10304
Coprococcus_comesClostridium_butyricumBlautia_sp_M25SPC10304
Coprococcus_comesClostridium_hylemonaeClostridium_hylemonaeSPC10304
Coprococcus_comesClostridium_hylemonaeClostridium_orbiscindensSPC10304
Coprococcus_comesClostridium_hylemonaeRuminococcus_gnavusSPC10304
Coprococcus_comesClostridium_hylemonaeRuminococcus_bromiiSPC10304
Coprococcus_comesClostridium_hylemonaeBlautia_sp_M25SPC10304
Coprococcus_comesClostridium_orbiscindensClostridium_orbiscindensSPC10304
Coprococcus_comesClostridium_orbiscindensRuminococcus_gnavusSPC10304
Coprococcus_comesClostridium_orbiscindensRuminococcus_bromiiSPC10304
Coprococcus_comesClostridium_orbiscindensBlautia_sp_M25SPC10304
Coprococcus_comesRuminococcus_gnavusRuminococcus_gnavusSPC10304
Coprococcus_comesRuminococcus_gnavusRuminococcus_bromiiSPC10304
Coprococcus_comesRuminococcus_gnavusBlautia_sp_M25SPC10304
Clostridium_bolteaeClostridium_tertiumClostridium_tertiumSPC10325
Clostridium_bolteaeClostridium_tertiumClostridium_disporicumSPC10325
Clostridium_bolteaeClostridium_tertiumClostridium_innocuumSPC10325
Clostridium_bolteaeClostridium_tertiumClostridium_mayombeiSPC10325
Clostridium_bolteaeClostridium_tertiumClostridium_butyricumSPC10325
Clostridium_bolteaeClostridium_tertiumClostridium_hylemonaeSPC10325
Clostridium_bolteaeClostridium_tertiumClostridium_orbiscindensSPC10325
Clostridium_bolteaeClostridium_tertiumRuminococcus_gnavusSPC10325
Clostridium_bolteaeClostridium_tertiumRuminococcus_bromiiSPC10325
Clostridium_bolteaeClostridium_tertiumBlautia_sp_M25SPC10325
Clostridium_bolteaeClostridium_disporicumClostridium_disporicumSPC10325
Clostridium_bolteaeClostridium_disporicumClostridium_innocuumSPC10325
Clostridium_bolteaeClostridium_disporicumClostridium_mayombeiSPC10325
Clostridium_bolteaeClostridium_disporicumClostridium_butyricumSPC10325
Clostridium_bolteaeClostridium_disporicumClostridium_hylemonaeSPC10325
Clostridium_bolteaeClostridium_disporicumClostridium_orbiscindensSPC10325
Clostridium_bolteaeClostridium_disporicumRuminococcus_gnavusSPC10325
Clostridium_bolteaeClostridium_disporicumRuminococcus_bromiiSPC10325
Clostridium_bolteaeClostridium_disporicumBlautia_sp_M25SPC10325
Clostridium_bolteaeClostridium_innocuumClostridium_innocuumSPC10325
Clostridium_bolteaeClostridium_innocuumClostridium_mayombeiSPC10325
Clostridium_bolteaeClostridium_innocuumClostridium_butyricumSPC10325
Clostridium_bolteaeClostridium_innocuumClostridium_hylemonaeSPC10325
Clostridium_bolteaeClostridium_innocuumClostridium_orbiscindensSPC10325
Clostridium_bolteaeClostridium_innocuumRuminococcus_gnavusSPC10325
Clostridium_bolteaeClostridium_innocuumRuminococcus_bromiiSPC10325
Clostridium_bolteaeClostridium_innocuumBlautia_sp_M25SPC10325
Clostridium_bolteaeClostridium_mayombeiClostridium_mayombeiSPC10325
Clostridium_bolteaeClostridium_mayombeiClostridium_butyricumSPC10325
Clostridium_bolteaeClostridium_mayombeiClostridium_hylemonaeSPC10325
Clostridium_bolteaeClostridium_mayombeiClostridium_orbiscindensSPC10325
Clostridium_bolteaeClostridium_mayombeiRuminococcus_gnavusSPC10325
Clostridium_bolteaeClostridium_mayombeiRuminococcus_bromiiSPC10325
Clostridium_bolteaeClostridium_mayombeiBlautia_sp_M25SPC10325
Clostridium_bolteaeClostridium_butyricumClostridium_butyricumSPC10325
Clostridium_bolteaeClostridium_butyricumClostridium_hylemonaeSPC10325
Clostridium_bolteaeClostridium_butyricumClostridium_orbiscindensSPC10325
Clostridium_bolteaeClostridium_butyricumRuminococcus_gnavusSPC10325
Clostridium_bolteaeClostridium_butyricumRuminococcus_bromiiSPC10325
Clostridium_bolteaeClostridium_butyricumBlautia_sp_M25SPC10325
Clostridium_bolteaeClostridium_hylemonaeClostridium_hylemonaeSPC10325
Clostridium_bolteaeClostridium_hylemonaeClostridium_orbiscindensSPC10325
Clostridium_bolteaeClostridium_hylemonaeRuminococcus_gnavusSPC10325
Clostridium_bolteaeClostridium_hylemonaeRuminococcus_bromiiSPC10325
Clostridium_bolteaeClostridium_hylemonaeBlautia_sp_M25SPC10325
Clostridium_bolteaeClostridium_orbiscindensClostridium_orbiscindensSPC10325
Clostridium_bolteaeClostridium_orbiscindensRuminococcus_gnavusSPC10325
Clostridium_bolteaeClostridium_orbiscindensRuminococcus_bromiiSPC10325
Clostridium_bolteaeClostridium_orbiscindensBlautia_sp_M25SPC10325
Clostridium_bolteaeRuminococcus_gnavusRuminococcus_gnavusSPC10325
Clostridium_bolteaeRuminococcus_gnavusRuminococcus_bromiiSPC10325
Clostridium_bolteaeRuminococcus_gnavusBlautia_sp_M25SPC10325
Clostridium_symbiosumClostridium_tertiumClostridium_tertiumSPC10355
Clostridium_symbiosumClostridium_tertiumClostridium_disporicumSPC10355
Clostridium_symbiosumClostridium_tertiumClostridium_innocuumSPC10355
Clostridium_symbiosumClostridium_tertiumClostridium_mayombeiSPC10355
Clostridium_symbiosumClostridium_tertiumClostridium_butyricumSPC10355
Clostridium_symbiosumClostridium_tertiumClostridium_hylemonaeSPC10355
Clostridium_symbiosumClostridium_tertiumClostridium_orbiscindensSPC10355
Clostridium_symbiosumClostridium_tertiumRuminococcus_gnavusSPC10355
Clostridium_symbiosumClostridium_tertiumRuminococcus_bromiiSPC10355
Clostridium_symbiosumClostridium_tertiumBlautia_sp_M25SPC10355
Clostridium_symbiosumClostridium_disporicumClostridium_disporicumSPC10355
Clostridium_symbiosumClostridium_disporicumClostridium_innocuumSPC10355
Clostridium_symbiosumClostridium_disporicumClostridium_mayombeiSPC10355
Clostridium_symbiosumClostridium_disporicumClostridium_butyricumSPC10355
Clostridium_symbiosumClostridium_disporicumClostridium_hylemonaeSPC10355
Clostridium_symbiosumClostridium_disporicumClostridium_orbiscindensSPC10355
Clostridium_symbiosumClostridium_disporicumRuminococcus_gnavusSPC10355
Clostridium_symbiosumClostridium_disporicumRuminococcus_bromiiSPC10355
Clostridium_symbiosumClostridium_disporicumBlautia_sp_M25SPC10355
Clostridium_symbiosumClostridium_innocuumClostridium_innocuumSPC10355
Clostridium_symbiosumClostridium_innocuumClostridium_mayombeiSPC10355
Clostridium_symbiosumClostridium_innocuumClostridium_butyricumSPC10355
Clostridium_symbiosumClostridium_innocuumClostridium_hylemonaeSPC10355
Clostridium_symbiosumClostridium_innocuumClostridium_orbiscindensSPC10355
Clostridium_symbiosumClostridium_innocuumRuminococcus_gnavusSPC10355
Clostridium_symbiosumClostridium_innocuumRuminococcus_bromiiSPC10355
Clostridium_symbiosumClostridium_innocuumBlautia_sp_M25SPC10355
Clostridium_symbiosumClostridium_mayombeiClostridium_mayombeiSPC10355
Clostridium_symbiosumClostridium_mayombeiClostridium_butyricumSPC10355
Clostridium_symbiosumClostridium_mayombeiClostridium_hylemonaeSPC10355
Clostridium_symbiosumClostridium_mayombeiClostridium_orbiscindensSPC10355
Clostridium_symbiosumClostridium_mayombeiRuminococcus_gnavusSPC10355
Clostridium_symbiosumClostridium_mayombeiRuminococcus_bromiiSPC10355
Clostridium_symbiosumClostridium_mayombeiBlautia_sp_M25SPC10355
Clostridium_symbiosumClostridium_butyricumClostridium_butyricumSPC10355
Clostridium_symbiosumClostridium_butyricumClostridium_hylemonaeSPC10355
Clostridium_symbiosumClostridium_butyricumClostridium_orbiscindensSPC10355
Clostridium_symbiosumClostridium_butyricumRuminococcus_gnavusSPC10355
Clostridium_symbiosumClostridium_butyricumRuminococcus_bromiiSPC10355
Clostridium_symbiosumClostridium_butyricumBlautia_sp_M25SPC10355
Clostridium_symbiosumClostridium_hylemonaeClostridium_hylemonaeSPC10355
Clostridium_symbiosumClostridium_hylemonaeClostridium_orbiscindensSPC10355
Clostridium_symbiosumClostridium_hylemonaeRuminococcus_gnavusSPC10355
Clostridium_symbiosumClostridium_hylemonaeRuminococcus_bromiiSPC10355
Clostridium_symbiosumClostridium_hylemonaeBlautia_sp_M25SPC10355
Clostridium_symbiosumClostridium_orbiscindensClostridium_orbiscindensSPC10355
Clostridium_symbiosumClostridium_orbiscindensRuminococcus_gnavusSPC10355
Clostridium_symbiosumClostridium_orbiscindensRuminococcus_bromiiSPC10355
Clostridium_symbiosumClostridium_orbiscindensBlautia_sp_M25SPC10355
Clostridium_symbiosumRuminococcus_gnavusRuminococcus_gnavusSPC10355
Clostridium_symbiosumRuminococcus_gnavusRuminococcus_bromiiSPC10355
Clostridium_symbiosumRuminococcus_gnavusBlautia_sp_M25SPC10355
Faecalibacterium_prausnitziiClostridium_tertiumClostridium_tertiumSPC10386
Faecalibacterium_prausnitziiClostridium_tertiumClostridium_disporicumSPC10386
Faecalibacterium_prausnitziiClostridium_tertiumClostridium_innocuumSPC10386
Faecalibacterium_prausnitziiClostridium_tertiumClostridium_mayombeiSPC10386
Faecalibacterium_prausnitziiClostridium_tertiumClostridium_butyricumSPC10386
Faecalibacterium_prausnitziiClostridium_tertiumClostridium_hylemonaeSPC10386
Faecalibacterium_prausnitziiClostridium_tertiumClostridium_orbiscindensSPC10386
Faecalibacterium_prausnitziiClostridium_tertiumRuminococcus_gnavusSPC10386
Faecalibacterium_prausnitziiClostridium_tertiumRuminococcus_bromiiSPC10386
Faecalibacterium_prausnitziiClostridium_tertiumBlautia_sp_M25SPC10386
Faecalibacterium_prausnitziiClostridium_disporicumClostridium_disporicumSPC10386
Faecalibacterium_prausnitziiClostridium_disporicumClostridium_innocuumSPC10386
Faecalibacterium_prausnitziiClostridium_disporicumClostridium_mayombeiSPC10386
Faecalibacterium_prausnitziiClostridium_disporicumClostridium_butyricumSPC10386
Faecalibacterium_prausnitziiClostridium_disporicumClostridium_hylemonaeSPC10386
Faecalibacterium_prausnitziiClostridium_disporicumClostridium_orbiscindensSPC10386
Faecalibacterium_prausnitziiClostridium_disporicumRuminococcus_gnavusSPC10386
Faecalibacterium_prausnitziiClostridium_disporicumRuminococcus_bromiiSPC10386
Faecalibacterium_prausnitziiClostridium_disporicumBlautia_sp_M25SPC10386
Faecalibacterium_prausnitziiClostridium_innocuumClostridium_innocuumSPC10386
Faecalibacterium_prausnitziiClostridium_innocuumClostridium_mayombeiSPC10386
Faecalibacterium_prausnitziiClostridium_innocuumClostridium_butyricumSPC10386
Faecalibacterium_prausnitziiClostridium_innocuumClostridium_hylemonaeSPC10386
Faecalibacterium_prausnitziiClostridium_innocuumClostridium_orbiscindensSPC10386
Faecalibacterium_prausnitziiClostridium_innocuumRuminococcus_gnavusSPC10386
Faecalibacterium_prausnitziiClostridium_innocuumRuminococcus_bromiiSPC10386
Faecalibacterium_prausnitziiClostridium_innocuumBlautia_sp_M25SPC10386
Faecalibacterium_prausnitziiClostridium_mayombeiClostridium_mayombeiSPC10386
Faecalibacterium_prausnitziiClostridium_mayombeiClostridium_butyricumSPC10386
Faecalibacterium_prausnitziiClostridium_mayombeiClostridium_hylemonaeSPC10386
Faecalibacterium_prausnitziiClostridium_mayombeiClostridium_orbiscindensSPC10386
Faecalibacterium_prausnitziiClostridium_mayombeiRuminococcus_gnavusSPC10386
Faecalibacterium_prausnitziiClostridium_mayombeiRuminococcus_bromiiSPC10386
Faecalibacterium_prausnitziiClostridium_mayombeiBlautia_sp_M25SPC10386
Faecalibacterium_prausnitziiClostridium_butyricumClostridium_butyricumSPC10386
Faecalibacterium_prausnitziiClostridium_butyricumClostridium_hylemonaeSPC10386
Faecalibacterium_prausnitziiClostridium_butyricumClostridium_orbiscindensSPC10386
Faecalibacterium_prausnitziiClostridium_butyricumRuminococcus_gnavusSPC10386
Faecalibacterium_prausnitziiClostridium_butyricumRuminococcus_bromiiSPC10386
Faecalibacterium_prausnitziiClostridium_butyricumBlautia_sp_M25SPC10386
Faecalibacterium_prausnitziiClostridium_hylemonaeClostridium_hylemonaeSPC10386
Faecalibacterium_prausnitziiClostridium_hylemonaeClostridium_orbiscindensSPC10386
Faecalibacterium_prausnitziiClostridium_hylemonaeRuminococcus_gnavusSPC10386
Faecalibacterium_prausnitziiClostridium_hylemonaeRuminococcus_bromiiSPC10386
Faecalibacterium_prausnitziiClostridium_hylemonaeBlautia_sp_M25SPC10386
Faecalibacterium_prausnitziiClostridium_orbiscindensClostridium_orbiscindensSPC10386
Faecalibacterium_prausnitziiClostridium_orbiscindensRuminococcus_gnavusSPC10386
Faecalibacterium_prausnitziiClostridium_orbiscindensRuminococcus_bromiiSPC10386
Faecalibacterium_prausnitziiClostridium_orbiscindensBlautia_sp_M25SPC10386
Faecalibacterium_prausnitziiRuminococcus_gnavusRuminococcus_gnavusSPC10386
Faecalibacterium_prausnitziiRuminococcus_gnavusRuminococcus_bromiiSPC10386
Faecalibacterium_prausnitziiRuminococcus_gnavusBlautia_sp_M25SPC10386
Lachnospiraceae_bacterium_5_1_57FAAClostridium_tertiumClostridium_tertiumSPC10390
Lachnospiraceae_bacterium_5_1_57FAAClostridium_tertiumClostridium_disporicumSPC10390
Lachnospiraceae_bacterium_5_1_57FAAClostridium_tertiumClostridium_innocuumSPC10390
Lachnospiraceae_bacterium_5_1_57FAAClostridium_tertiumClostridium_mayombeiSPC10390
Lachnospiraceae_bacterium_5_1_57FAAClostridium_tertiumClostridium_butyricumSPC10390
Lachnospiraceae_bacterium_5_1_57FAAClostridium_tertiumClostridium_hylemonaeSPC10390
Lachnospiraceae_bacterium_5_1_57FAAClostridium_tertiumClostridium_orbiscindensSPC10390
Lachnospiraceae_bacterium_5_1_57FAAClostridium_tertiumRuminococcus_gnavusSPC10390
Lachnospiraceae_bacterium_5_1_57FAAClostridium_tertiumRuminococcus_bromiiSPC10390
Lachnospiraceae_bacterium_5_1_57FAAClostridium_tertiumBlautia_sp_M25SPC10390
Lachnospiraceae_bacterium_5_1_57FAAClostridium_disporicumClostridium_disporicumSPC10390
Lachnospiraceae_bacterium_5_1_57FAAClostridium_disporicumClostridium_innocuumSPC10390
Lachnospiraceae_bacterium_5_1_57FAAClostridium_disporicumClostridium_mayombeiSPC10390
Lachnospiraceae_bacterium_5_1_57FAAClostridium_disporicumClostridium_butyricumSPC10390
Lachnospiraceae_bacterium_5_1_57FAAClostridium_disporicumClostridium_hylemonaeSPC10390
Lachnospiraceae_bacterium_5_1_57FAAClostridium_disporicumClostridium_orbiscindensSPC10390
Lachnospiraceae_bacterium_5_1_57FAAClostridium_disporicumRuminococcus_gnavusSPC10390
Lachnospiraceae_bacterium_5_1_57FAAClostridium_disporicumRuminococcus_bromiiSPC10390
Lachnospiraceae_bacterium_5_1_57FAAClostridium_disporicumBlautia_sp_M25SPC10390
Lachnospiraceae_bacterium_5_1_57FAAClostridium_innocuumClostridium_innocuumSPC10390
Lachnospiraceae_bacterium_5_1_57FAAClostridium_innocuumClostridium_mayombeiSPC10390
Lachnospiraceae_bacterium_5_1_57FAAClostridium_innocuumClostridium_butyricumSPC10390
Lachnospiraceae_bacterium_5_1_57FAAClostridium_innocuumClostridium_hylemonaeSPC10390
Lachnospiraceae_bacterium_5_1_57FAAClostridium_innocuumClostridium_orbiscindensSPC10390
Lachnospiraceae_bacterium_5_1_57FAAClostridium_innocuumRuminococcus_gnavusSPC10390
Lachnospiraceae_bacterium_5_1_57FAAClostridium_innocuumRuminococcus_bromiiSPC10390
Lachnospiraceae_bacterium_5_1_57FAAClostridium_innocuumBlautia_sp_M25SPC10390
Lachnospiraceae_bacterium_5_1_57FAAClostridium_mayombeiClostridium_mayombeiSPC10390
Lachnospiraceae_bacterium_5_1_57FAAClostridium_mayombeiClostridium_butyricumSPC10390
Lachnospiraceae_bacterium_5_1_57FAAClostridium_mayombeiClostridium_hylemonaeSPC10390
Lachnospiraceae_bacterium_5_1_57FAAClostridium_mayombeiClostridium_orbiscindensSPC10390
Lachnospiraceae_bacterium_5_1_57FAAClostridium_mayombeiRuminococcus_gnavusSPC10390
Lachnospiraceae_bacterium_5_1_57FAAClostridium_mayombeiRuminococcus_bromiiSPC10390
Lachnospiraceae_bacterium_5_1_57FAAClostridium_mayombeiBlautia_sp_M25SPC10390
Lachnospiraceae_bacterium_5_1_57FAAClostridium_butyricumClostridium_butyricumSPC10390
Lachnospiraceae_bacterium_5_1_57FAAClostridium_butyricumClostridium_hylemonaeSPC10390
Lachnospiraceae_bacterium_5_1_57FAAClostridium_butyricumClostridium_orbiscindensSPC10390
Lachnospiraceae_bacterium_5_1_57FAAClostridium_butyricumRuminococcus_gnavusSPC10390
Lachnospiraceae_bacterium_5_1_57FAAClostridium_butyricumRuminococcus_bromiiSPC10390
Lachnospiraceae_bacterium_5_1_57FAAClostridium_butyricumBlautia_sp_M25SPC10390
Lachnospiraceae_bacterium_5_1_57FAAClostridium_hylemonaeClostridium_hylemonaeSPC10390
Lachnospiraceae_bacterium_5_1_57FAAClostridium_hylemonaeClostridium_orbiscindensSPC10390
Lachnospiraceae_bacterium_5_1_57FAAClostridium_hylemonaeRuminococcus_gnavusSPC10390
Lachnospiraceae_bacterium_5_1_57FAAClostridium_hylemonaeRuminococcus_bromiiSPC10390
Lachnospiraceae_bacterium_5_1_57FAAClostridium_hylemonaeBlautia_sp_M25SPC10390
Lachnospiraceae_bacterium_5_1_57FAAClostridium_orbiscindensClostridium_orbiscindensSPC10390
Lachnospiraceae_bacterium_5_1_57FAAClostridium_orbiscindensRuminococcus_gnavusSPC10390
Lachnospiraceae_bacterium_5_1_57FAAClostridium_orbiscindensRuminococcus_bromiiSPC10390
Lachnospiraceae_bacterium_5_1_57FAAClostridium_orbiscindensBlautia_sp_M25SPC10390
Lachnospiraceae_bacterium_5_1_57FAARuminococcus_gnavusRuminococcus_gnavusSPC10390
Lachnospiraceae_bacterium_5_1_57FAARuminococcus_gnavusRuminococcus_bromiiSPC10390
Lachnospiraceae_bacterium_5_1_57FAARuminococcus_gnavusBlautia_sp_M25SPC10390
Blautia_productaClostridium_tertiumClostridium_tertiumSPC10415
Blautia_productaClostridium_tertiumClostridium_disporicumSPC10415
Blautia_productaClostridium_tertiumClostridium_innocuumSPC10415
Blautia_productaClostridium_tertiumClostridium_mayombeiSPC10415
Blautia_productaClostridium_tertiumClostridium_butyricumSPC10415
Blautia_productaClostridium_tertiumClostridium_hylemonaeSPC10415
Blautia_productaClostridium_tertiumClostridium_orbiscindensSPC10415
Blautia_productaClostridium_tertiumRuminococcus_gnavusSPC10415
Blautia_productaClostridium_tertiumRuminococcus_bromiiSPC10415
Blautia_productaClostridium_tertiumBlautia_sp_M25SPC10415
Blautia_productaClostridium_disporicumClostridium_disporicumSPC10415
Blautia_productaClostridium_disporicumClostridium_innocuumSPC10415
Blautia_productaClostridium_disporicumClostridium_mayombeiSPC10415
Blautia_productaClostridium_disporicumClostridium_butyricumSPC10415
Blautia_productaClostridium_disporicumClostridium_hylemonaeSPC10415
Blautia_productaClostridium_disporicumClostridium_orbiscindensSPC10415
Blautia_productaClostridium_disporicumRuminococcus_gnavusSPC10415
Blautia_productaClostridium_disporicumRuminococcus_bromiiSPC10415
Blautia_productaClostridium_disporicumBlautia_sp_M25SPC10415
Blautia_productaClostridium_innocuumClostridium_innocuumSPC10415
Blautia_productaClostridium_innocuumClostridium_mayombeiSPC10415
Blautia_productaClostridium_innocuumClostridium_butyricumSPC10415
Blautia_productaClostridium_innocuumClostridium_hylemonaeSPC10415
Blautia_productaClostridium_innocuumClostridium_orbiscindensSPC10415
Blautia_productaClostridium_innocuumRuminococcus_gnavusSPC10415
Blautia_productaClostridium_innocuumRuminococcus_bromiiSPC10415
Blautia_productaClostridium_innocuumBlautia_sp_M25SPC10415
Blautia_productaClostridium_mayombeiClostridium_mayombeiSPC10415
Blautia_productaClostridium_mayombeiClostridium_butyricumSPC10415
Blautia_productaClostridium_mayombeiClostridium_hylemonaeSPC10415
Blautia_productaClostridium_mayombeiClostridium_orbiscindensSPC10415
Blautia_productaClostridium_mayombeiRuminococcus_gnavusSPC10415
Blautia_productaClostridium_mayombeiRuminococcus_bromiiSPC10415
Blautia_productaClostridium_mayombeiBlautia_sp_M25SPC10415
Blautia_productaClostridium_butyricumClostridium_butyricumSPC10415
Blautia_productaClostridium_butyricumClostridium_hylemonaeSPC10415
Blautia_productaClostridium_butyricumClostridium_orbiscindensSPC10415
Blautia_productaClostridium_butyricumRuminococcus_gnavusSPC10415
Blautia_productaClostridium_butyricumRuminococcus_bromiiSPC10415
Blautia_productaClostridium_butyricumBlautia_sp_M25SPC10415
Blautia_productaClostridium_hylemonaeClostridium_hylemonaeSPC10415
Blautia_productaClostridium_hylemonaeClostridium_orbiscindensSPC10415
Blautia_productaClostridium_hylemonaeRuminococcus_gnavusSPC10415
Blautia_productaClostridium_hylemonaeRuminococcus_bromiiSPC10415
Blautia_productaClostridium_hylemonaeBlautia_sp_M25SPC10415
Blautia_productaClostridium_orbiscindensClostridium_orbiscindensSPC10415
Blautia_productaClostridium_orbiscindensRuminococcus_gnavusSPC10415
Blautia_productaClostridium_orbiscindensRuminococcus_bromiiSPC10415
Blautia_productaClostridium_orbiscindensBlautia_sp_M25SPC10415
Blautia_productaRuminococcus_gnavusRuminococcus_gnavusSPC10415
Blautia_productaRuminococcus_gnavusRuminococcus_bromiiSPC10415
Blautia_productaRuminococcus_gnavusBlautia_sp_M25SPC10415
Eubacterium_rectaleClostridium_tertiumClostridium_tertiumSPC10567
Eubacterium_rectaleClostridium_tertiumClostridium_disporicumSPC10567
Eubacterium_rectaleClostridium_tertiumClostridium_innocuumSPC10567
Eubacterium_rectaleClostridium_tertiumClostridium_mayombeiSPC10567
Eubacterium_rectaleClostridium_tertiumClostridium_butyricumSPC10567
Eubacterium_rectaleClostridium_tertiumClostridium_hylemonaeSPC10567
Eubacterium_rectaleClostridium_tertiumClostridium_orbiscindensSPC10567
Eubacterium_rectaleClostridium_tertiumRuminococcus_gnavusSPC10567
Eubacterium_rectaleClostridium_tertiumRuminococcus_bromiiSPC10567
Eubacterium_rectaleClostridium_tertiumBlautia_sp_M25SPC10567
Eubacterium_rectaleClostridium_disporicumClostridium_disporicumSPC10567
Eubacterium_rectaleClostridium_disporicumClostridium_innocuumSPC10567
Eubacterium_rectaleClostridium_disporicumClostridium_mayombeiSPC10567
Eubacterium_rectaleClostridium_disporicumClostridium_butyricumSPC10567
Eubacterium_rectaleClostridium_disporicumClostridium_hylemonaeSPC10567
Eubacterium_rectaleClostridium_disporicumClostridium_orbiscindensSPC10567
Eubacterium_rectaleClostridium_disporicumRuminococcus_gnavusSPC10567
Eubacterium_rectaleClostridium_disporicumRuminococcus_bromiiSPC10567
Eubacterium_rectaleClostridium_disporicumBlautia_sp_M25SPC10567
Eubacterium_rectaleClostridium_innocuumClostridium_innocuumSPC10567
Eubacterium_rectaleClostridium_innocuumClostridium_mayombeiSPC10567
Eubacterium_rectaleClostridium_innocuumClostridium_butyricumSPC10567
Eubacterium_rectaleClostridium_innocuumClostridium_hylemonaeSPC10567
Eubacterium_rectaleClostridium_innocuumClostridium_orbiscindensSPC10567
Eubacterium_rectaleClostridium_innocuumRuminococcus_gnavusSPC10567
Eubacterium_rectaleClostridium_innocuumRuminococcus_bromiiSPC10567
Eubacterium_rectaleClostridium_innocuumBlautia_sp_M25SPC10567
Eubacterium_rectaleClostridium_mayombeiClostridium_mayombeiSPC10567
Eubacterium_rectaleClostridium_mayombeiClostridium_butyricumSPC10567
Eubacterium_rectaleClostridium_mayombeiClostridium_hylemonaeSPC10567
Eubacterium_rectaleClostridium_mayombeiClostridium_orbiscindensSPC10567
Eubacterium_rectaleClostridium_mayombeiRuminococcus_gnavusSPC10567
Eubacterium_rectaleClostridium_mayombeiRuminococcus_bromiiSPC10567
Eubacterium_rectaleClostridium_mayombeiBlautia_sp_M25SPC10567
Eubacterium_rectaleClostridium_butyricumClostridium_butyricumSPC10567
Eubacterium_rectaleClostridium_butyricumClostridium_hylemonaeSPC10567
Eubacterium_rectaleClostridium_butyricumClostridium_orbiscindensSPC10567
Eubacterium_rectaleClostridium_butyricumRuminococcus_gnavusSPC10567
Eubacterium_rectaleClostridium_butyricumRuminococcus_bromiiSPC10567
Eubacterium_rectaleClostridium_butyricumBlautia_sp_M25SPC10567
Eubacterium_rectaleClostridium_hylemonaeClostridium_hylemonaeSPC10567
Eubacterium_rectaleClostridium_hylemonaeClostridium_orbiscindensSPC10567
Eubacterium_rectaleClostridium_hylemonaeRuminococcus_gnavusSPC10567
Eubacterium_rectaleClostridium_hylemonaeRuminococcus_bromiiSPC10567
Eubacterium_rectaleClostridium_hylemonaeBlautia_sp_M25SPC10567
Eubacterium_rectaleClostridium_orbiscindensClostridium_orbiscindensSPC10567
Eubacterium_rectaleClostridium_orbiscindensRuminococcus_gnavusSPC10567
Eubacterium_rectaleClostridium_orbiscindensRuminococcus_bromiiSPC10567
Eubacterium_rectaleClostridium_orbiscindensBlautia_sp_M25SPC10567
Eubacterium_rectaleRuminococcus_gnavusRuminococcus_gnavusSPC10567
Eubacterium_rectaleRuminococcus_gnavusRuminococcus_bromiiSPC10567
Eubacterium_rectaleRuminococcus_gnavusBlautia_sp_M25SPC10567
Clostridium_tertiumCollinsella_aerofaciensCollinsella_aerofaciensSPC10155
Clostridium_tertiumCollinsella_aerofaciensCoprococcus_comesSPC10155
Clostridium_tertiumCollinsella_aerofaciensClostridium_bolteaeSPC10155
Clostridium_tertiumCollinsella_aerofaciensClostridium_symbiosumSPC10155
Clostridium_tertiumCollinsella_aerofaciensFaecalibacterium_prausnitziiSPC10155
Clostridium_tertiumCollinsella_aerofaciensLachnospiraceae_bacterium_5_1_57FAASPC10155
Clostridium_tertiumCollinsella_aerofaciensBlautia_productaSPC10155
Clostridium_tertiumCollinsella_aerofaciensEubacterium_rectaleSPC10155
Clostridium_tertiumCoprococcus_comesCoprococcus_comesSPC10155
Clostridium_tertiumCoprococcus_comesClostridium_bolteaeSPC10155
Clostridium_tertiumCoprococcus_comesClostridium_symbiosumSPC10155
Clostridium_tertiumCoprococcus_comesFaecalibacterium_prausnitziiSPC10155
Clostridium_tertiumCoprococcus_comesLachnospiraceae_bacterium_5_1_57FAASPC10155
Clostridium_tertiumCoprococcus_comesBlautia_productaSPC10155
Clostridium_tertiumCoprococcus_comesEubacterium_rectaleSPC10155
Clostridium_tertiumClostridium_bolteaeClostridium_bolteaeSPC10155
Clostridium_tertiumClostridium_bolteaeClostridium_symbiosumSPC10155
Clostridium_tertiumClostridium_bolteaeFaecalibacterium_prausnitziiSPC10155
Clostridium_tertiumClostridium_bolteaeLachnospiraceae_bacterium_5_1_57FAASPC10155
Clostridium_tertiumClostridium_bolteaeBlautia_productaSPC10155
Clostridium_tertiumClostridium_bolteaeEubacterium_rectaleSPC10155
Clostridium_tertiumClostridium_symbiosumClostridium_symbiosumSPC10155
Clostridium_tertiumClostridium_symbiosumFaecalibacterium_prausnitziiSPC10155
Clostridium_tertiumClostridium_symbiosumLachnospiraceae_bacterium_5_1_57FAASPC10155
Clostridium_tertiumClostridium_symbiosumBlautia_productaSPC10155
Clostridium_tertiumClostridium_symbiosumEubacterium_rectaleSPC10155
Clostridium_tertiumFaecalibacterium_prausnitziiFaecalibacterium_prausnitziiSPC10155
Clostridium_tertiumFaecalibacterium_prausnitziiLachnospiraceae_bacterium_5_1_57FAASPC10155
Clostridium_tertiumFaecalibacterium_prausnitziiBlautia_productaSPC10155
Clostridium_tertiumFaecalibacterium_prausnitziiEubacterium_rectaleSPC10155
Clostridium_tertiumLachnospiraceae_bacterium_5_1_57FAALachnospiraceae_bacterium_5_1_57FAASPC10155
Clostridium_tertiumLachnospiraceae_bacterium_5_1_57FAABlautia_productaSPC10155
Clostridium_tertiumLachnospiraceae_bacterium_5_1_57FAAEubacterium_rectaleSPC10155
Clostridium_tertiumBlautia_productaBlautia_productaSPC10155
Clostridium_tertiumBlautia_productaEubacterium_rectaleSPC10155
Clostridium_tertiumEubacterium_rectaleEubacterium_rectaleSPC10155
Clostridium_disporicumCollinsella_aerofaciensCollinsella_aerofaciensSPC10167
Clostridium_disporicumCollinsella_aerofaciensCoprococcus_comesSPC10167
Clostridium_disporicumCollinsella_aerofaciensClostridium_bolteaeSPC10167
Clostridium_disporicumCollinsella_aerofaciensClostridium_symbiosumSPC10167
Clostridium_disporicumCollinsella_aerofaciensFaecalibacterium_prausnitziiSPC10167
Clostridium_disporicumCollinsella_aerofaciensLachnospiraceae_bacterium_5_1_57FAASPC10167
Clostridium_disporicumCollinsella_aerofaciensBlautia_productaSPC10167
Clostridium_disporicumCollinsella_aerofaciensEubacterium_rectaleSPC10167
Clostridium_disporicumCoprococcus_comesCoprococcus_comesSPC10167
Clostridium_disporicumCoprococcus_comesClostridium_bolteaeSPC10167
Clostridium_disporicumCoprococcus_comesClostridium_symbiosumSPC10167
Clostridium_disporicumCoprococcus_comesFaecalibacterium_prausnitziiSPC10167
Clostridium_disporicumCoprococcus_comesLachnospiraceae_bacterium_5_1_57FAASPC10167
Clostridium_disporicumCoprococcus_comesBlautia_productaSPC10167
Clostridium_disporicumCoprococcus_comesEubacterium_rectaleSPC10167
Clostridium_disporicumClostridium_bolteaeClostridium_bolteaeSPC10167
Clostridium_disporicumClostridium_bolteaeClostridium_symbiosumSPC10167
Clostridium_disporicumClostridium_bolteaeFaecalibacterium_prausnitziiSPC10167
Clostridium_disporicumClostridium_bolteaeLachnospiraceae_bacterium_5_1_57FAASPC10167
Clostridium_disporicumClostridium_bolteaeBlautia_productaSPC10167
Clostridium_disporicumClostridium_bolteaeEubacterium_rectaleSPC10167
Clostridium_disporicumClostridium_symbiosumClostridium_symbiosumSPC10167
Clostridium_disporicumClostridium_symbiosumFaecalibacterium_prausnitziiSPC10167
Clostridium_disporicumClostridium_symbiosumLachnospiraceae_bacterium_5_1_57FAASPC10167
Clostridium_disporicumClostridium_symbiosumBlautia_productaSPC10167
Clostridium_disporicumClostridium_symbiosumEubacterium_rectaleSPC10167
Clostridium_disporicumFaecalibacterium_prausnitziiFaecalibacterium_prausnitziiSPC10167
Clostridium_disporicumFaecalibacterium_prausnitziiLachnospiraceae_bacterium_5_1_57FAASPC10167
Clostridium_disporicumFaecalibacterium_prausnitziiBlautia_productaSPC10167
Clostridium_disporicumFaecalibacterium_prausnitziiEubacterium_rectaleSPC10167
Clostridium_disporicumLachnospiraceae_bacterium_5_1_57FAALachnospiraceae_bacterium_5_1_57FAASPC10167
Clostridium_disporicumLachnospiraceae_bacterium_5_1_57FAABlautia_productaSPC10167
Clostridium_disporicumLachnospiraceae_bacterium_5_1_57FAAEubacterium_rectaleSPC10167
Clostridium_disporicumBlautia_productaBlautia_productaSPC10167
Clostridium_disporicumBlautia_productaEubacterium_rectaleSPC10167
Clostridium_disporicumEubacterium_rectaleEubacterium_rectaleSPC10167
Clostridium_innocuumCollinsella_aerofaciensCollinsella_aerofaciensSPC10202
Clostridium_innocuumCollinsella_aerofaciensCoprococcus_comesSPC10202
Clostridium_innocuumCollinsella_aerofaciensClostridium_bolteaeSPC10202
Clostridium_innocuumCollinsella_aerofaciensClostridium_symbiosumSPC10202
Clostridium_innocuumCollinsella_aerofaciensFaecalibacterium_prausnitziiSPC10202
Clostridium_innocuumCollinsella_aerofaciensLachnospiraceae_bacterium_5_1_57FAASPC10202
Clostridium_innocuumCollinsella_aerofaciensBlautia_productaSPC10202
Clostridium_innocuumCollinsella_aerofaciensEubacterium_rectaleSPC10202
Clostridium_innocuumCoprococcus_comesCoprococcus_comesSPC10202
Clostridium_innocuumCoprococcus_comesClostridium_bolteaeSPC10202
Clostridium_innocuumCoprococcus_comesClostridium_symbiosumSPC10202
Clostridium_innocuumCoprococcus_comesFaecalibacterium_prausnitziiSPC10202
Clostridium_innocuumCoprococcus_comesLachnospiraceae_bacterium_5_1_57FAASPC10202
Clostridium_innocuumCoprococcus_comesBlautia_productaSPC10202
Clostridium_innocuumCoprococcus_comesEubacterium_rectaleSPC10202
Clostridium_innocuumClostridium_bolteaeClostridium_bolteaeSPC10202
Clostridium_innocuumClostridium_bolteaeClostridium_symbiosumSPC10202
Clostridium_innocuumClostridium_bolteaeFaecalibacterium_prausnitziiSPC10202
Clostridium_innocuumClostridium_bolteaeLachnospiraceae_bacterium_5_1_57FAASPC10202
Clostridium_innocuumClostridium_bolteaeBlautia_productaSPC10202
Clostridium_innocuumClostridium_bolteaeEubacterium_rectaleSPC10202
Clostridium_innocuumClostridium_symbiosumClostridium_symbiosumSPC10202
Clostridium_innocuumClostridium_symbiosumFaecalibacterium_prausnitziiSPC10202
Clostridium_innocuumClostridium_symbiosumLachnospiraceae_bacterium_5_1_57FAASPC10202
Clostridium_innocuumClostridium_symbiosumBlautia_productaSPC10202
Clostridium_innocuumClostridium_symbiosumEubacterium_rectaleSPC10202
Clostridium_innocuumFaecalibacterium_prausnitziiFaecalibacterium_prausnitziiSPC10202
Clostridium_innocuumFaecalibacterium_prausnitziiLachnospiraceae_bacterium_5_1_57FAASPC10202
Clostridium_innocuumFaecalibacterium_prausnitziiBlautia_productaSPC10202
Clostridium_innocuumFaecalibacterium_prausnitziiEubacterium_rectaleSPC10202
Clostridium_innocuumLachnospiraceae_bacterium_5_1_57FAALachnospiraceae_bacterium_5_1_57FAASPC10202
Clostridium_innocuumLachnospiraceae_bacterium_5_1_57FAABlautia_productaSPC10202
Clostridium_innocuumLachnospiraceae_bacterium_5_1_57FAAEubacterium_rectaleSPC10202
Clostridium_innocuumBlautia_productaBlautia_productaSPC10202
Clostridium_innocuumBlautia_productaEubacterium_rectaleSPC10202
Clostridium_innocuumEubacterium_rectaleEubacterium_rectaleSPC10202
Clostridium_mayombeiCollinsella_aerofaciensCollinsella_aerofaciensSPC10238
Clostridium_mayombeiCollinsella_aerofaciensCoprococcus_comesSPC10238
Clostridium_mayombeiCollinsella_aerofaciensClostridium_bolteaeSPC10238
Clostridium_mayombeiCollinsella_aerofaciensClostridium_symbiosumSPC10238
Clostridium_mayombeiCollinsella_aerofaciensFaecalibacterium_prausnitziiSPC10238
Clostridium_mayombeiCollinsella_aerofaciensLachnospiraceae_bacterium_5_1_57FAASPC10238
Clostridium_mayombeiCollinsella_aerofaciensBlautia_productaSPC10238
Clostridium_mayombeiCollinsella_aerofaciensEubacterium_rectaleSPC10238
Clostridium_mayombeiCoprococcus_comesCoprococcus_comesSPC10238
Clostridium_mayombeiCoprococcus_comesClostridium_bolteaeSPC10238
Clostridium_mayombeiCoprococcus_comesClostridium_symbiosumSPC10238
Clostridium_mayombeiCoprococcus_comesFaecalibacterium_prausnitziiSPC10238
Clostridium_mayombeiCoprococcus_comesLachnospiraceae_bacterium_5_1_57FAASPC10238
Clostridium_mayombeiCoprococcus_comesBlautia_productaSPC10238
Clostridium_mayombeiCoprococcus_comesEubacterium_rectaleSPC10238
Clostridium_mayombeiClostridium_bolteaeClostridium_bolteaeSPC10238
Clostridium_mayombeiClostridium_bolteaeClostridium_symbiosumSPC10238
Clostridium_mayombeiClostridium_bolteaeFaecalibacterium_prausnitziiSPC10238
Clostridium_mayombeiClostridium_bolteaeLachnospiraceae_bacterium_5_1_57FAASPC10238
Clostridium_mayombeiClostridium_bolteaeBlautia_productaSPC10238
Clostridium_mayombeiClostridium_bolteaeEubacterium_rectaleSPC10238
Clostridium_mayombeiClostridium_symbiosumClostridium_symbiosumSPC10238
Clostridium_mayombeiClostridium_symbiosumFaecalibacterium_prausnitziiSPC10238
Clostridium_mayombeiClostridium_symbiosumLachnospiraceae_bacterium_5_1_57FAASPC10238
Clostridium_mayombeiClostridium_symbiosumBlautia_productaSPC10238
Clostridium_mayombeiClostridium_symbiosumEubacterium_rectaleSPC10238
Clostridium_mayombeiFaecalibacterium_prausnitziiFaecalibacterium_prausnitziiSPC10238
Clostridium_mayombeiFaecalibacterium_prausnitziiLachnospiraceae_bacterium_5_1_57FAASPC10238
Clostridium_mayombeiFaecalibacterium_prausnitziiBlautia_productaSPC10238
Clostridium_mayombeiFaecalibacterium_prausnitziiEubacterium_rectaleSPC10238
Clostridium_mayombeiLachnospiraceae_bacterium_5_1_57FAALachnospiraceae_bacterium_5_1_57FAASPC10238
Clostridium_mayombeiLachnospiraceae_bacterium_5_1_57FAABlautia_productaSPC10238
Clostridium_mayombeiLachnospiraceae_bacterium_5_1_57FAAEubacterium_rectaleSPC10238
Clostridium_mayombeiBlautia_productaBlautia_productaSPC10238
Clostridium_mayombeiBlautia_productaEubacterium_rectaleSPC10238
Clostridium_mayombeiEubacterium_rectaleEubacterium_rectaleSPC10238
Clostridium_butyricumCollinsella_aerofaciensCollinsella_aerofaciensSPC10256
Clostridium_butyricumCollinsella_aerofaciensCoprococcus_comesSPC10256
Clostridium_butyricumCollinsella_aerofaciensClostridium_bolteaeSPC10256
Clostridium_butyricumCollinsella_aerofaciensClostridium_symbiosumSPC10256
Clostridium_butyricumCollinsella_aerofaciensFaecalibacterium_prausnitziiSPC10256
Clostridium_butyricumCollinsella_aerofaciensLachnospiraceae_bacterium_5_1_57FAASPC10256
Clostridium_butyricumCollinsella_aerofaciensBlautia_productaSPC10256
Clostridium_butyricumCollinsella_aerofaciensEubacterium_rectaleSPC10256
Clostridium_butyricumCoprococcus_comesCoprococcus_comesSPC10256
Clostridium_butyricumCoprococcus_comesClostridium_bolteaeSPC10256
Clostridium_butyricumCoprococcus_comesClostridium_symbiosumSPC10256
Clostridium_butyricumCoprococcus_comesFaecalibacterium_prausnitziiSPC10256
Clostridium_butyricumCoprococcus_comesLachnospiraceae_bacterium_5_1_57FAASPC10256
Clostridium_butyricumCoprococcus_comesBlautia_productaSPC10256
Clostridium_butyricumCoprococcus_comesEubacterium_rectaleSPC10256
Clostridium_butyricumClostridium_bolteaeClostridium_bolteaeSPC10256
Clostridium_butyricumClostridium_bolteaeClostridium_symbiosumSPC10256
Clostridium_butyricumClostridium_bolteaeFaecalibacterium_prausnitziiSPC10256
Clostridium_butyricumClostridium_bolteaeLachnospiraceae_bacterium_5_1_57FAASPC10256
Clostridium_butyricumClostridium_bolteaeBlautia_productaSPC10256
Clostridium_butyricumClostridium_bolteaeEubacterium_rectaleSPC10256
Clostridium_butyricumClostridium_symbiosumClostridium_symbiosumSPC10256
Clostridium_butyricumClostridium_symbiosumFaecalibacterium_prausnitziiSPC10256
Clostridium_butyricumClostridium_symbiosumLachnospiraceae_bacterium_5_1_57FAASPC10256
Clostridium_butyricumClostridium_symbiosumBlautia_productaSPC10256
Clostridium_butyricumClostridium_symbiosumEubacterium_rectaleSPC10256
Clostridium_butyricumFaecalibacterium_prausnitziiFaecalibacterium_prausnitziiSPC10256
Clostridium_butyricumFaecalibacterium_prausnitziiLachnospiraceae_bacterium_5_1_57FAASPC10256
Clostridium_butyricumFaecalibacterium_prausnitziiBlautia_productaSPC10256
Clostridium_butyricumFaecalibacterium_prausnitziiEubacterium_rectaleSPC10256
Clostridium_butyricumLachnospiraceae_bacterium_5_1_57FAALachnospiraceae_bacterium_5_1_57FAASPC10256
Clostridium_butyricumLachnospiraceae_bacterium_5_1_57FAABlautia_productaSPC10256
Clostridium_butyricumLachnospiraceae_bacterium_5_1_57FAAEubacterium_rectaleSPC10256
Clostridium_butyricumBlautia_productaBlautia_productaSPC10256
Clostridium_butyricumBlautia_productaEubacterium_rectaleSPC10256
Clostridium_butyricumEubacterium_rectaleEubacterium_rectaleSPC10256
Clostridium_hylemonaeCollinsella_aerofaciensCollinsella_aerofaciensSPC10313
Clostridium_hylemonaeCollinsella_aerofaciensCoprococcus_comesSPC10313
Clostridium_hylemonaeCollinsella_aerofaciensClostridium_bolteaeSPC10313
Clostridium_hylemonaeCollinsella_aerofaciensClostridium_symbiosumSPC10313
Clostridium_hylemonaeCollinsella_aerofaciensFaecalibacterium_prausnitziiSPC10313
Clostridium_hylemonaeCollinsella_aerofaciensLachnospiraceae_bacterium_5_1_57FAASPC10313
Clostridium_hylemonaeCollinsella_aerofaciensBlautia_productaSPC10313
Clostridium_hylemonaeCollinsella_aerofaciensEubacterium_rectaleSPC10313
Clostridium_hylemonaeCoprococcus_comesCoprococcus_comesSPC10313
Clostridium_hylemonaeCoprococcus_comesClostridium_bolteaeSPC10313
Clostridium_hylemonaeCoprococcus_comesClostridium_symbiosumSPC10313
Clostridium_hylemonaeCoprococcus_comesFaecalibacterium_prausnitziiSPC10313
Clostridium_hylemonaeCoprococcus_comesLachnospiraceae_bacterium_5_1_57FAASPC10313
Clostridium_hylemonaeCoprococcus_comesBlautia_productaSPC10313
Clostridium_hylemonaeCoprococcus_comesEubacterium_rectaleSPC10313
Clostridium_hylemonaeClostridium_bolteaeClostridium_bolteaeSPC10313
Clostridium_hylemonaeClostridium_bolteaeClostridium_symbiosumSPC10313
Clostridium_hylemonaeClostridium_bolteaeFaecalibacterium_prausnitziiSPC10313
Clostridium_hylemonaeClostridium_bolteaeLachnospiraceae_bacterium_5_1_57FAASPC10313
Clostridium_hylemonaeClostridium_bolteaeBlautia_productaSPC10313
Clostridium_hylemonaeClostridium_bolteaeEubacterium_rectaleSPC10313
Clostridium_hylemonaeClostridium_symbiosumClostridium_symbiosumSPC10313
Clostridium_hylemonaeClostridium_symbiosumFaecalibacterium_prausnitziiSPC10313
Clostridium_hylemonaeClostridium_symbiosumLachnospiraceae_bacterium_5_1_57FAASPC10313
Clostridium_hylemonaeClostridium_symbiosumBlautia_productaSPC10313
Clostridium_hylemonaeClostridium_symbiosumEubacterium_rectaleSPC10313
Clostridium_hylemonaeFaecalibacterium_prausnitziiFaecalibacterium_prausnitziiSPC10313
Clostridium_hylemonaeFaecalibacterium_prausnitziiLachnospiraceae_bacterium_5_1_57FAASPC10313
Clostridium_hylemonaeFaecalibacterium_prausnitziiBlautia_productaSPC10313
Clostridium_hylemonaeFaecalibacterium_prausnitziiEubacterium_rectaleSPC10313
Clostridium_hylemonaeLachnospiraceae_bacterium_5_1_57FAALachnospiraceae_bacterium_5_1_57FAASPC10313
Clostridium_hylemonaeLachnospiraceae_bacterium_5_1_57FAABlautia_productaSPC10313
Clostridium_hylemonaeLachnospiraceae_bacterium_5_1_57FAAEubacterium_rectaleSPC10313
Clostridium_hylemonaeBlautia_productaBlautia_productaSPC10313
Clostridium_hylemonaeBlautia_productaEubacterium_rectaleSPC10313
Clostridium_hylemonaeEubacterium_rectaleEubacterium_rectaleSPC10313
Clostridium_orbiscindensCollinsella_aerofaciensCollinsella_aerofaciensSPC10358
Clostridium_orbiscindensCollinsella_aerofaciensCoprococcus_comesSPC10358
Clostridium_orbiscindensCollinsella_aerofaciensClostridium_bolteaeSPC10358
Clostridium_orbiscindensCollinsella_aerofaciensClostridium_symbiosumSPC10358
Clostridium_orbiscindensCollinsella_aerofaciensFaecalibacterium_prausnitziiSPC10358
Clostridium_orbiscindensCollinsella_aerofaciensLachnospiraceae_bacterium_5_1_57FAASPC10358
Clostridium_orbiscindensCollinsella_aerofaciensBlautia_productaSPC10358
Clostridium_orbiscindensCollinsella_aerofaciensEubacterium_rectaleSPC10358
Clostridium_orbiscindensCoprococcus_comesCoprococcus_comesSPC10358
Clostridium_orbiscindensCoprococcus_comesClostridium_bolteaeSPC10358
Clostridium_orbiscindensCoprococcus_comesClostridium_symbiosumSPC10358
Clostridium_orbiscindensCoprococcus_comesFaecalibacterium_prausnitziiSPC10358
Clostridium_orbiscindensCoprococcus_comesLachnospiraceae_bacterium_5_1_57FAASPC10358
Clostridium_orbiscindensCoprococcus_comesBlautia_productaSPC10358
Clostridium_orbiscindensCoprococcus_comesEubacterium_rectaleSPC10358
Clostridium_orbiscindensClostridium_bolteaeClostridium_bolteaeSPC10358
Clostridium_orbiscindensClostridium_bolteaeClostridium_symbiosumSPC10358
Clostridium_orbiscindensClostridium_bolteaeFaecalibacterium_prausnitziiSPC10358
Clostridium_orbiscindensClostridium_bolteaeLachnospiraceae_bacterium_5_1_57FAASPC10358
Clostridium_orbiscindensClostridium_bolteaeBlautia_productaSPC10358
Clostridium_orbiscindensClostridium_bolteaeEubacterium_rectaleSPC10358
Clostridium_orbiscindensClostridium_symbiosumClostridium_symbiosumSPC10358
Clostridium_orbiscindensClostridium_symbiosumFaecalibacterium_prausnitziiSPC10358
Clostridium_orbiscindensClostridium_symbiosumLachnospiraceae_bacterium_5_1_57FAASPC10358
Clostridium_orbiscindensClostridium_symbiosumBlautia_productaSPC10358
Clostridium_orbiscindensClostridium_symbiosumEubacterium_rectaleSPC10358
Clostridium_orbiscindensFaecalibacterium_prausnitziiFaecalibacterium_prausnitziiSPC10358
Clostridium_orbiscindensFaecalibacterium_prausnitziiLachnospiraceae_bacterium_5_1_57FAASPC10358
Clostridium_orbiscindensFaecalibacterium_prausnitziiBlautia_productaSPC10358
Clostridium_orbiscindensFaecalibacterium_prausnitziiEubacterium_rectaleSPC10358
Clostridium_orbiscindensLachnospiraceae_bacterium_5_1_57FAALachnospiraceae_bacterium_5_1_57FAASPC10358
Clostridium_orbiscindensLachnospiraceae_bacterium_5_1_57FAABlautia_productaSPC10358
Clostridium_orbiscindensLachnospiraceae_bacterium_5_1_57FAAEubacterium_rectaleSPC10358
Clostridium_orbiscindensBlautia_productaBlautia_productaSPC10358
Clostridium_orbiscindensBlautia_productaEubacterium_rectaleSPC10358
Clostridium_orbiscindensEubacterium_rectaleEubacterium_rectaleSPC10358
Ruminococcus_gnavusCollinsella_aerofaciensCollinsella_aerofaciensSPC10468
Ruminococcus_gnavusCollinsella_aerofaciensCoprococcus_comesSPC10468
Ruminococcus_gnavusCollinsella_aerofaciensClostridium_bolteaeSPC10468
Ruminococcus_gnavusCollinsella_aerofaciensClostridium_symbiosumSPC10468
Ruminococcus_gnavusCollinsella_aerofaciensFaecalibacterium_prausnitziiSPC10468
Ruminococcus_gnavusCollinsella_aerofaciensLachnospiraceae_bacterium_5_1_57FAASPC10468
Ruminococcus_gnavusCollinsella_aerofaciensBlautia_productaSPC10468
Ruminococcus_gnavusCollinsella_aerofaciensEubacterium_rectaleSPC10468
Ruminococcus_gnavusCoprococcus_comesCoprococcus_comesSPC10468
Ruminococcus_gnavusCoprococcus_comesClostridium_bolteaeSPC10468
Ruminococcus_gnavusCoprococcus_comesClostridium_symbiosumSPC10468
Ruminococcus_gnavusCoprococcus_comesFaecalibacterium_prausnitziiSPC10468
Ruminococcus_gnavusCoprococcus_comesLachnospiraceae_bacterium_5_1_57FAASPC10468
Ruminococcus_gnavusCoprococcus_comesBlautia_productaSPC10468
Ruminococcus_gnavusCoprococcus_comesEubacterium_rectaleSPC10468
Ruminococcus_gnavusClostridium_bolteaeClostridium_bolteaeSPC10468
Ruminococcus_gnavusClostridium_bolteaeClostridium_symbiosumSPC10468
Ruminococcus_gnavusClostridium_bolteaeFaecalibacterium_prausnitziiSPC10468
Ruminococcus_gnavusClostridium_bolteaeLachnospiraceae_bacterium_5_1_57FAASPC10468
Ruminococcus_gnavusClostridium_bolteaeBlautia_productaSPC10468
Ruminococcus_gnavusClostridium_bolteaeEubacterium_rectaleSPC10468
Ruminococcus_gnavusClostridium_symbiosumClostridium_symbiosumSPC10468
Ruminococcus_gnavusClostridium_symbiosumFaecalibacterium_prausnitziiSPC10468
Ruminococcus_gnavusClostridium_symbiosumLachnospiraceae_bacterium_5_1_57FAASPC10468
Ruminococcus_gnavusClostridium_symbiosumBlautia_productaSPC10468
Ruminococcus_gnavusClostridium_symbiosumEubacterium_rectaleSPC10468
Ruminococcus_gnavusFaecalibacterium_prausnitziiFaecalibacterium_prausnitziiSPC10468
Ruminococcus_gnavusFaecalibacterium_prausnitziiLachnospiraceae_bacterium_5_1_57FAASPC10468
Ruminococcus_gnavusFaecalibacterium_prausnitziiBlautia_productaSPC10468
Ruminococcus_gnavusFaecalibacterium_prausnitziiEubacterium_rectaleSPC10468
Ruminococcus_gnavusLachnospiraceae_bacterium_5_1_57FAALachnospiraceae_bacterium_5_1_57FAASPC10468
Ruminococcus_gnavusLachnospiraceae_bacterium_5_1_57FAABlautia_productaSPC10468
Ruminococcus_gnavusLachnospiraceae_bacterium_5_1_57FAAEubacterium_rectaleSPC10468
Ruminococcus_gnavusBlautia_productaBlautia_productaSPC10468
Ruminococcus_gnavusBlautia_productaEubacterium_rectaleSPC10468
Ruminococcus_gnavusEubacterium_rectaleEubacterium_rectaleSPC10468
75th75th
PercentilePercentile
Strain IDClade ofHetero/C. diffof C. diffC. diffVREof VRE
Strain IDOTU3 (ifClade ofClade ofOTU3 (ifSemi/InhibitionInhibitionInhibitionInhibitionInhibition
OTU2applicable)OTU1OTU2applicable)HomoScoreScoreSynergyScoreScore
SPC00001clade_92clade_92homo+++FALSE
SPC00005clade_92clade_378hetero++++FALSETRUE
SPC00006clade_92clade_65hetero++++TRUETRUE
SPC00007clade_92clade_38hetero++++TRUETRUE
SPC00008clade_92clade_497hetero++++TRUETRUE
SPC00009clade_92clade_481hetero+FALSETRUE
SPC00015clade_92clade_98hetero+FALSEFALSE
SPC00018clade_92clade_360hetero+FALSETRUE
SPC00021clade_92clade_309hetero++++FALSEFALSE
SPC00022clade_92clade_522hetero+FALSETRUE
SPC00026clade_92clade_262hetero++++TRUETRUE
SPC00027clade_92clade_351hetero++++FALSETRUE
SPC00054clade_92clade_478hetero++++TRUETRUE
SPC00056clade_92clade_466hetero++++TRUETRUE
SPC00057clade_92clade_360hetero++++TRUETRUE
SPC00061clade_92clade_444hetero++++FALSETRUE
SPC00080clade_92clade_393hetero++++FALSETRUE
SPC10001clade_92clade_479hetero+++FALSETRUE
SPC10019clade_92clade_110hetero++++TRUETRUE
SPC10030clade_92clade_38hetero++++TRUETRUE
SPC10048clade_92clade_286hetero+++FALSEFALSE
SPC10081clade_92clade_378hetero++++TRUETRUE
SPC10097clade_92clade_553hetero++++FALSETRUE
SPC10110clade_92clade_92hetero+++FALSEFALSE
SPC10197clade_92clade_309hetero+++FALSEFALSE
SPC10211clade_92clade_170hetero++++TRUETRUE
SPC10213clade_92clade_85hetero++++TRUETRUE
SPC10233clade_92clade_262hetero++++FALSEFALSE
SPC10243clade_92clade_408hetero++++FALSEFALSE
SPC10298clade_92clade_172hetero++++TRUETRUE
SPC10301clade_92clade_172hetero++++TRUETRUE
SPC10304clade_92clade_262hetero++++FALSETRUE
SPC10355clade_92clade_408hetero++++TRUETRUE
SPC10363clade_92clade_444hetero++++TRUETRUE
SPC10386clade_92clade_478hetero++++FALSETRUE
SPC10388clade_92clade_466hetero+++FALSETRUE
SPC10390clade_92clade_260hetero++++TRUETRUE
SPC10403clade_92clade_309hetero++++TRUETRUE
SPC10414clade_92clade_500hetero++++TRUETRUE
SPC10415clade_92clade_309hetero++++FALSEFALSE
SPC00005clade_378clade_378homoFALSE
SPC00006clade_378clade_65hetero+++FALSETRUE
SPC00007clade_378clade_38hetero+++FALSETRUE
SPC00008clade_378clade_497hetero++++TRUETRUE
SPC00009clade_378clade_481hetero+FALSETRUE
SPC00015clade_378clade_98hetero+FALSETRUE
SPC00018clade_378clade_360hetero+FALSETRUE
SPC00021clade_378clade_309hetero++++TRUETRUE
SPC00022clade_378clade_522hetero++FALSETRUE
SPC00026clade_378clade_262hetero+++FALSETRUE
SPC00027clade_378clade_351hetero+FALSEFALSE
SPC00054clade_378clade_478hetero+++FALSETRUE
SPC00056clade_378clade_466hetero++FALSETRUE
SPC00057clade_378clade_360hetero++++FALSETRUE
SPC00061clade_378clade_444hetero+FALSETRUE
SPC00080clade_378clade_393heteroFALSETRUE
SPC10001clade_378clade_479heteroFALSETRUE
SPC10019clade_378clade_110heteroFALSETRUE
SPC10030clade_378clade_38heteroFALSEFALSE
SPC10048clade_378clade_286hetero++++FALSETRUE
SPC10081clade_378clade_378hetero+FALSETRUE
SPC10097clade_378clade_553hetero++++TRUETRUE
SPC10110clade_378clade_92hetero+++FALSETRUE
SPC10197clade_378clade_309hetero++++FALSETRUE
SPC10211clade_378clade_170hetero++++TRUETRUE
SPC10213clade_378clade_85hetero++++FALSETRUE
SPC10233clade_378clade_262hetero++++TRUETRUE
SPC10243clade_378clade_408hetero++++TRUETRUE
SPC10298clade_378clade_172hetero++++TRUETRUE
SPC10301clade_378clade_172hetero++++TRUETRUE
SPC10304clade_378clade_262hetero++++TRUETRUE
SPC10355clade_378clade_408hetero++FALSETRUE
SPC10363clade_378clade_444hetero++++FALSETRUE
SPC10386clade_378clade_478hetero++FALSETRUE
SPC10388clade_378clade_466hetero++FALSETRUE
SPC10390clade_378clade_260hetero++FALSETRUE
SPC10403clade_378clade_309hetero+FALSETRUE
SPC10414clade_378clade_500hetero++FALSETRUE
SPC10415clade_378clade_309hetero++++FALSETRUE
SPC00006clade_65clade_65homo++++TRUE
SPC00007clade_65clade_38hetero+++FALSEFALSE
SPC00008clade_65clade_497hetero++++TRUETRUE
SPC00009clade_65clade_481hetero++FALSETRUE
SPC00015clade_65clade_98hetero++FALSEFALSE
SPC00018clade_65clade_360hetero++FALSETRUE
SPC00021clade_65clade_309hetero++++TRUETRUE
SPC00022clade_65clade_522hetero+++FALSETRUE
SPC00026clade_65clade_262hetero+++FALSEFALSE
SPC00027clade_65clade_351hetero++++TRUETRUE
SPC00054clade_65clade_478hetero++++TRUETRUE
SPC00056clade_65clade_466hetero++++FALSETRUE
SPC00057clade_65clade_360hetero++++TRUETRUE
SPC00061clade_65clade_444hetero++++FALSETRUE
SPC00080clade_65clade_393hetero+++FALSETRUE
SPC10001clade_65clade_479hetero++++FALSETRUE
SPC10019clade_65clade_110hetero++++FALSETRUE
SPC10030clade_65clade_38hetero+++FALSEFALSE
SPC10048clade_65clade_286hetero+++FALSEFALSE
SPC10081clade_65clade_378heteroFALSEFALSE
SPC10097clade_65clade_553hetero++++TRUETRUE
SPC10110clade_65clade_92hetero+++FALSEFALSE
SPC10197clade_65clade_309hetero++FALSEFALSE
SPC10211clade_65clade_170hetero+++FALSEFALSE
SPC10213clade_65clade_85hetero+++FALSEFALSE
SPC10233clade_65clade_262hetero++++TRUEFALSE
SPC10243clade_65clade_408hetero++++FALSEFALSE
SPC10298clade_65clade_172hetero++++TRUETRUE
SPC10301clade_65clade_172hetero++++TRUETRUE
SPC10304clade_65clade_262hetero++FALSEFALSE
SPC10355clade_65clade_408hetero++++TRUETRUE
SPC10363clade_65clade_444hetero++++FALSETRUE
SPC10386clade_65clade_478hetero+++FALSEFALSE
SPC10388clade_65clade_466hetero+FALSEFALSE
SPC10390clade_65clade_260hetero++FALSEFALSE
SPC10403clade_65clade_309hetero++FALSEFALSE
SPC10414clade_65clade_500hetero+++FALSETRUE
SPC10415clade_65clade_309hetero+++FALSEFALSE
SPC00007clade_38clade_38homoFALSE
SPC00008clade_38clade_497hetero++++TRUETRUE
SPC00009clade_38clade_481heteroFALSETRUE
SPC00015clade_38clade_98hetero++FALSETRUE
SPC00018clade_38clade_360heteroFALSETRUE
SPC00021clade_38clade_309hetero++++TRUETRUE
SPC00022clade_38clade_522heteroFALSETRUE
SPC00026clade_38clade_262hetero++++TRUETRUE
SPC00027clade_38clade_351hetero+++FALSETRUE
SPC00054clade_38clade_478hetero+FALSETRUE
SPC00056clade_38clade_466heteroFALSETRUE
SPC00057clade_38clade_360hetero++FALSETRUE
SPC00061clade_38clade_444heteroFALSETRUE
SPC00080clade_38clade_393heteroFALSEFALSE
SPC10001clade_38clade_479heteroFALSEFALSE
SPC10019clade_38clade_110hetero+++FALSETRUE
SPC10030clade_38clade_38heteroFALSEFALSE
SPC10048clade_38clade_286hetero++FALSETRUE
SPC10081clade_38clade_378heteroFALSEFALSE
SPC10097clade_38clade_553hetero++++TRUETRUE
SPC10110clade_38clade_92hetero++++TRUETRUE
SPC10197clade_38clade_309hetero++FALSEFALSE
SPC10211clade_38clade_170hetero++FALSEFALSE
SPC10213clade_38clade_85hetero+FALSEFALSE
SPC10233clade_38clade_262hetero+++FALSEFALSE
SPC10243clade_38clade_408hetero+++FALSEFALSE
SPC10298clade_38clade_172hetero++++TRUETRUE
SPC10301clade_38clade_172hetero++++TRUETRUE
SPC10304clade_38clade_262hetero+++FALSETRUE
SPC10355clade_38clade_408hetero++++TRUETRUE
SPC10363clade_38clade_444hetero++FALSETRUE
SPC10386clade_38clade_478heteroFALSEFALSE
SPC10388clade_38clade_466heteroFALSEFALSE
SPC10390clade_38clade_260heteroFALSEFALSE
SPC10403clade_38clade_309heteroFALSETRUE
SPC10414clade_38clade_500heteroFALSETRUE
SPC10415clade_38clade_309hetero+FALSEFALSE
SPC00008clade_497clade_497homo++++TRUE
SPC00009clade_497clade_481hetero++++TRUETRUE
SPC00015clade_497clade_98hetero++++TRUETRUE
SPC00018clade_497clade_360hetero++++TRUETRUE
SPC00021clade_497clade_309hetero++++TRUETRUE
SPC00022clade_497clade_522hetero++++TRUETRUE
SPC00026clade_497clade_262hetero++++TRUETRUE
SPC00027clade_497clade_351hetero++++TRUETRUE
SPC00054clade_497clade_478hetero++++TRUETRUE
SPC00056clade_497clade_466hetero++++TRUETRUE
SPC00057clade_497clade_360hetero++++TRUETRUE
SPC00061clade_497clade_444hetero++++TRUETRUE
SPC00080clade_497clade_393hetero++++TRUETRUE
SPC10001clade_497clade_479hetero++++TRUETRUE
SPC10019clade_497clade_110hetero++++TRUETRUE
SPC10030clade_497clade_38hetero++++TRUETRUE
SPC10048clade_497clade_286hetero++++TRUETRUE
SPC10081clade_497clade_378hetero++++TRUETRUE
SPC10097clade_497clade_553hetero++++TRUETRUE
SPC10110clade_497clade_92hetero+++FALSEFALSE
SPC10197clade_497clade_309hetero++++TRUETRUE
SPC10211clade_497clade_170hetero++++TRUETRUE
SPC10213clade_497clade_85hetero++++TRUETRUE
SPC10233clade_497clade_262hetero++++TRUETRUE
SPC10243clade_497clade_408hetero++++TRUETRUE
SPC10298clade_497clade_172hetero++++TRUETRUE
SPC10301clade_497clade_172hetero++++TRUETRUE
SPC10304clade_497clade_262hetero++++TRUETRUE
SPC10355clade_497clade_408hetero++++TRUETRUE
SPC10363clade_497clade_444hetero++++TRUETRUE
SPC10386clade_497clade_478hetero++++TRUETRUE
SPC10388clade_497clade_466hetero++++TRUETRUE
SPC10390clade_497clade_260hetero++++TRUETRUE
SPC10403clade_497clade_309hetero++++TRUETRUE
SPC10414clade_497clade_500hetero++++TRUETRUE
SPC10415clade_497clade_309hetero++++TRUETRUE
SPC00009clade_481clade_481homoFALSE
SPC00015clade_481clade_98heteroFALSETRUE
SPC00018clade_481clade_360heteroFALSETRUE
SPC00021clade_481clade_309hetero++++TRUETRUE
SPC00022clade_481clade_522heteroFALSETRUE
SPC00026clade_481clade_262heteroFALSEFALSE
SPC00027clade_481clade_351heteroFALSEFALSE
SPC00054clade_481clade_478hetero−−FALSEFALSE
SPC00056clade_481clade_466heteroFALSEFALSE
SPC00057clade_481clade_360heteroFALSETRUE
SPC00061clade_481clade_444heteroFALSEFALSE
SPC00080clade_481clade_393hetero−−FALSEFALSE
SPC10001clade_481clade_479heteroFALSETRUE
SPC10019clade_481clade_110heteroFALSETRUE
SPC10030clade_481clade_38heteroFALSEFALSE
SPC10048clade_481clade_286heteroFALSEFALSE
SPC10081clade_481clade_378heteroFALSEFALSE
SPC10097clade_481clade_553hetero++FALSETRUE
SPC10110clade_481clade_92hetero+FALSETRUE
SPC10197clade_481clade_309hetero+FALSEFALSE
SPC10211clade_481clade_170hetero++FALSEFALSE
SPC10213clade_481clade_85heteroFALSEFALSE
SPC10233clade_481clade_262hetero+++FALSEFALSE
SPC10243clade_481clade_408hetero+++FALSETRUE
SPC10298clade_481clade_172hetero+++FALSETRUE
SPC10301clade_481clade_172hetero++++TRUETRUE
SPC10304clade_481clade_262hetero++FALSETRUE
SPC10355clade_481clade_408heteroFALSETRUE
SPC10363clade_481clade_444hetero++FALSETRUE
SPC10386clade_481clade_478heteroFALSETRUE
SPC10388clade_481clade_466hetero++FALSETRUE
SPC10390clade_481clade_260hetero+++FALSETRUE
SPC10403clade_481clade_309hetero++++FALSETRUE
SPC10414clade_481clade_500hetero+++FALSETRUE
SPC10415clade_481clade_309hetero++++TRUETRUE
SPC00015clade_98clade_98homoFALSE
SPC00018clade_98clade_360heteroFALSETRUE
SPC00021clade_98clade_309hetero++++TRUETRUE
SPC00022clade_98clade_522heteroFALSETRUE
SPC00026clade_98clade_262hetero+FALSETRUE
SPC00027clade_98clade_351heteroFALSEFALSE
SPC00054clade_98clade_478heteroFALSEFALSE
SPC00056clade_98clade_466heteroFALSEFALSE
SPC00057clade_98clade_360heteroFALSETRUE
SPC00061clade_98clade_444heteroFALSEFALSE
SPC00080clade_98clade_393heteroFALSEFALSE
SPC10001clade_98clade_479heteroFALSEFALSE
SPC10019clade_98clade_110hetero+FALSETRUE
SPC10030clade_98clade_38hetero+FALSETRUE
SPC10048clade_98clade_286heteroFALSEFALSE
SPC10081clade_98clade_378heteroFALSEFALSE
SPC10097clade_98clade_553heteroFALSETRUE
SPC10110clade_98clade_92hetero++FALSEFALSE
SPC10197clade_98clade_309hetero++FALSEFALSE
SPC10211clade_98clade_170hetero+FALSEFALSE
SPC10213clade_98clade_85heteroFALSEFALSE
SPC10233clade_98clade_262heteroFALSEFALSE
SPC10243clade_98clade_408hetero+FALSEFALSE
SPC10298clade_98clade_172hetero++++TRUETRUE
SPC10301clade_98clade_172hetero++++FALSEFALSE
SPC10304clade_98clade_262hetero+FALSETRUE
SPC10355clade_98clade_408heteroFALSEFALSE
SPC10363clade_98clade_444heteroFALSEFALSE
SPC10386clade_98clade_478heteroFALSETRUE
SPC10388clade_98clade_466heteroFALSETRUE
SPC10390clade_98clade_260heteroFALSEFALSE
SPC10403clade_98clade_309heteroFALSETRUE
SPC10414clade_98clade_500heteroFALSEFALSE
SPC10415clade_98clade_309heteroFALSEFALSE
SPC00018clade_360clade_360homoFALSE
SPC00021clade_360clade_309hetero++++FALSETRUE
SPC00022clade_360clade_522heteroFALSEFALSE
SPC00026clade_360clade_262heteroFALSETRUE
SPC00027clade_360clade_351heteroFALSEFALSE
SPC00054clade_360clade_478heteroFALSETRUE
SPC00056clade_360clade_466heteroFALSETRUE
SPC00057clade_360clade_360hetero+FALSETRUE
SPC00061clade_360clade_444heteroFALSETRUE
SPC00080clade_360clade_393heteroFALSETRUE
SPC10001clade_360clade_479heteroFALSEFALSE
SPC10019clade_360clade_110heteroFALSETRUE
SPC10030clade_360clade_38heteroFALSEFALSE
SPC10048clade_360clade_286heteroFALSETRUE
SPC10081clade_360clade_378heteroFALSETRUE
SPC10097clade_360clade_553hetero+FALSETRUE
SPC10110clade_360clade_92hetero+++FALSETRUE
SPC10197clade_360clade_309hetero+++FALSETRUE
SPC10211clade_360clade_170hetero++FALSETRUE
SPC10213clade_360clade_85heteroFALSEFALSE
SPC10233clade_360clade_262hetero+++FALSEFALSE
SPC10243clade_360clade_408hetero+++FALSETRUE
SPC10298clade_360clade_172hetero++FALSETRUE
SPC10301clade_360clade_172hetero++++TRUETRUE
SPC10304clade_360clade_262heteroFALSETRUE
SPC10355clade_360clade_408heteroFALSEFALSE
SPC10363clade_360clade_444heteroFALSEFALSE
SPC10386clade_360clade_478hetero−−FALSEFALSE
SPC10388clade_360clade_466heteroFALSEFALSE
SPC10390clade_360clade_260heteroFALSEFALSE
SPC10403clade_360clade_309heteroFALSEFALSE
SPC10414clade_360clade_500hetero−−−FALSEFALSE
SPC10415clade_360clade_309heteroFALSEFALSE
SPC00021clade_309clade_309homo++++TRUE
SPC00022clade_309clade_522hetero++++TRUETRUE
SPC00026clade_309clade_262hetero++++TRUETRUE
SPC00027clade_309clade_351hetero++++TRUETRUE
SPC00054clade_309clade_478hetero++++TRUETRUE
SPC00056clade_309clade_466hetero++++TRUETRUE
SPC00057clade_309clade_360hetero++++TRUETRUE
SPC00061clade_309clade_444hetero++++TRUETRUE
SPC00080clade_309clade_393hetero++++FALSETRUE
SPC10001clade_309clade_479hetero++++FALSETRUE
SPC10019clade_309clade_110hetero++++FALSETRUE
SPC10030clade_309clade_38hetero+++FALSEFALSE
SPC10048clade_309clade_286hetero++++TRUETRUE
SPC10081clade_309clade_378hetero++++TRUETRUE
SPC10097clade_309clade_553hetero++++TRUETRUE
SPC10110clade_309clade_92hetero++++TRUETRUE
SPC10197clade_309clade_309hetero++++TRUEFALSE
SPC10211clade_309clade_170hetero++++TRUETRUE
SPC10213clade_309clade_85hetero++++FALSEFALSE
SPC10233clade_309clade_262hetero++++TRUEFALSE
SPC10243clade_309clade_408hetero++++TRUEFALSE
SPC10298clade_309clade_172heteroFALSEFALSE
SPC10301clade_309clade_172hetero++++TRUETRUE
SPC10304clade_309clade_262hetero++++TRUETRUE
SPC10355clade_309clade_408hetero++++TRUETRUE
SPC10363clade_309clade_444hetero++++TRUETRUE
SPC10386clade_309clade_478hetero++++TRUETRUE
SPC10388clade_309clade_466hetero++++TRUETRUE
SPC10390clade_309clade_260hetero++++TRUETRUE
SPC10403clade_309clade_309hetero++++TRUETRUE
SPC10414clade_309clade_500hetero++++TRUETRUE
SPC10415clade_309clade_309hetero++++TRUETRUE
SPC00022clade_522clade_522homoFALSE
SPC00026clade_522clade_262heteroFALSETRUE
SPC00027clade_522clade_351heteroFALSEFALSE
SPC00054clade_522clade_478heteroFALSEFALSE
SPC00056clade_522clade_466heteroFALSEFALSE
SPC00057clade_522clade_360hetero+FALSETRUE
SPC00061clade_522clade_444heteroFALSETRUE
SPC00080clade_522clade_393heteroFALSEFALSE
SPC10001clade_522clade_479heteroFALSEFALSE
SPC10019clade_522clade_110heteroFALSEFALSE
SPC10030clade_522clade_38heteroFALSEFALSE
SPC10048clade_522clade_286heteroFALSEFALSE
SPC10081clade_522clade_378heteroFALSEFALSE
SPC10097clade_522clade_553hetero++FALSETRUE
SPC10110clade_522clade_92hetero++++FALSETRUE
SPC10197clade_522clade_309heteroFALSEFALSE
SPC10211clade_522clade_170hetero+FALSEFALSE
SPC10213clade_522clade_85heteroFALSEFALSE
SPC10233clade_522clade_262hetero+FALSEFALSE
SPC10243clade_522clade_408hetero+FALSEFALSE
SPC10298clade_522clade_172hetero++++FALSETRUE
SPC10301clade_522clade_172hetero++++FALSETRUE
SPC10304clade_522clade_262hetero+FALSETRUE
SPC10355clade_522clade_408heteroFALSETRUE
SPC10363clade_522clade_444heteroFALSEFALSE
SPC10386clade_522clade_478heteroFALSETRUE
SPC10388clade_522clade_466heteroFALSEFALSE
SPC10390clade_522clade_260heteroFALSEFALSE
SPC10403clade_522clade_309heteroFALSEFALSE
SPC10414clade_522clade_500heteroFALSEFALSE
SPC10415clade_522clade_309hetero−−FALSEFALSE
SPC00026clade_262clade_262homo+FALSE
SPC00027clade_262clade_351hetero+++FALSETRUE
SPC00054clade_262clade_478heteroFALSEFALSE
SPC00056clade_262clade_466heteroFALSEFALSE
SPC00057clade_262clade_360heteroFALSETRUE
SPC00061clade_262clade_444heteroFALSEFALSE
SPC00080clade_262clade_393heteroFALSEFALSE
SPC10001clade_262clade_479heteroFALSEFALSE
SPC10019clade_262clade_110heteroFALSEFALSE
SPC10030clade_262clade_38heteroFALSEFALSE
SPC10048clade_262clade_286hetero+FALSEFALSE
SPC10081clade_262clade_378heteroFALSEFALSE
SPC10097clade_262clade_553heteroFALSEFALSE
SPC10110clade_262clade_92hetero+++FALSEFALSE
SPC10197clade_262clade_309heteroFALSEFALSE
SPC10211clade_262clade_170heteroFALSEFALSE
SPC10213clade_262clade_85heteroFALSEFALSE
SPC10233clade_262clade_262heteroFALSEFALSE
SPC10243clade_262clade_408heteroFALSEFALSE
SPC10298clade_262clade_172hetero++++TRUETRUE
SPC10301clade_262clade_172hetero++++TRUEFALSE
SPC10304clade_262clade_262heteroFALSEFALSE
SPC10355clade_262clade_408hetero+FALSEFALSE
SPC10363clade_262clade_444heteroFALSEFALSE
SPC10386clade_262clade_478heteroFALSEFALSE
SPC10388clade_262clade_466hetero−−FALSEFALSE
SPC10390clade_262clade_260heteroFALSEFALSE
SPC10403clade_262clade_309heteroFALSEFALSE
SPC10414clade_262clade_500heteroFALSEFALSE
SPC10415clade_262clade_309heteroFALSEFALSE
SPC00027clade_351clade_351homo++FALSE
SPC00054clade_351clade_478hetero+FALSEFALSE
SPC00056clade_351clade_466heteroFALSEFALSE
SPC00057clade_351clade_360heteroFALSEFALSE
SPC00061clade_351clade_444hetero−−FALSEFALSE
SPC00080clade_351clade_393hetero−−FALSEFALSE
SPC10001clade_351clade_479heteroFALSEFALSE
SPC10019clade_351clade_110heteroFALSEFALSE
SPC10030clade_351clade_38heteroFALSEFALSE
SPC10048clade_351clade_286hetero++FALSEFALSE
SPC10081clade_351clade_378hetero++FALSETRUE
SPC10097clade_351clade_553hetero+++FALSETRUE
SPC10110clade_351clade_92hetero+++FALSEFALSE
SPC10197clade_351clade_309heteroFALSEFALSE
SPC10211clade_351clade_170heteroFALSEFALSE
SPC10213clade_351clade_85heteroFALSEFALSE
SPC10233clade_351clade_262heteroFALSEFALSE
SPC10243clade_351clade_408heteroFALSEFALSE
SPC10298clade_351clade_172hetero++FALSEFALSE
SPC10301clade_351clade_172hetero++++FALSEFALSE
SPC10304clade_351clade_262heteroFALSEFALSE
SPC10355clade_351clade_408heteroFALSEFALSE
SPC10363clade_351clade_444heteroFALSEFALSE
SPC10386clade_351clade_478heteroFALSEFALSE
SPC10388clade_351clade_466hetero−−−FALSEFALSE
SPC10390clade_351clade_260heteroFALSEFALSE
SPC10403clade_351clade_309heteroFALSEFALSE
SPC10414clade_351clade_500heteroFALSEFALSE
SPC10415clade_351clade_309heteroFALSEFALSE
SPC00054clade_478clade_478homoFALSE
SPC00056clade_478clade_466heteroFALSEFALSE
SPC00057clade_478clade_360heteroFALSEFALSE
SPC00061clade_478clade_444heteroFALSEFALSE
SPC00080clade_478clade_393heteroFALSEFALSE
SPC10001clade_478clade_479heteroFALSEFALSE
SPC10019clade_478clade_110heteroFALSEFALSE
SPC10030clade_478clade_38heteroFALSEFALSE
SPC10048clade_478clade_286heteroFALSEFALSE
SPC10081clade_478clade_378heteroFALSEFALSE
SPC10097clade_478clade_553hetero++FALSETRUE
SPC10110clade_478clade_92hetero+++FALSEFALSE
SPC10197clade_478clade_309heteroFALSEFALSE
SPC10211clade_478clade_170heteroFALSEFALSE
SPC10213clade_478clade_85heteroFALSEFALSE
SPC10233clade_478clade_262heteroFALSEFALSE
SPC10243clade_478clade_408heteroFALSEFALSE
SPC10298clade_478clade_172hetero+FALSEFALSE
SPC10301clade_478clade_172heteroFALSEFALSE
SPC10304clade_478clade_262heteroFALSEFALSE
SPC10355clade_478clade_408heteroFALSEFALSE
SPC10363clade_478clade_444heteroFALSEFALSE
SPC10386clade_478clade_478heteroFALSEFALSE
SPC10388clade_478clade_466heteroFALSEFALSE
SPC10390clade_478clade_260heteroFALSEFALSE
SPC10403clade_478clade_309heteroFALSEFALSE
SPC10414clade_478clade_500heteroFALSEFALSE
SPC10415clade_478clade_309heteroFALSEFALSE
SPC00056clade_466clade_466homoFALSE
SPC00057clade_466clade_360heteroFALSETRUE
SPC00061clade_466clade_444heteroFALSEFALSE
SPC00080clade_466clade_393heteroFALSEFALSE
SPC10001clade_466clade_479heteroFALSEFALSE
SPC10019clade_466clade_110heteroFALSEFALSE
SPC10030clade_466clade_38heteroFALSEFALSE
SPC10048clade_466clade_286heteroFALSEFALSE
SPC10081clade_466clade_378heteroFALSEFALSE
SPC10097clade_466clade_553hetero++FALSETRUE
SPC10110clade_466clade_92hetero++FALSETRUE
SPC10197clade_466clade_309heteroFALSEFALSE
SPC10211clade_466clade_170heteroFALSEFALSE
SPC10213clade_466clade_85heteroFALSEFALSE
SPC10233clade_466clade_262heteroFALSEFALSE
SPC10243clade_466clade_408heteroFALSEFALSE
SPC10298clade_466clade_172heteroFALSEFALSE
SPC10301clade_466clade_172hetero+++FALSEFALSE
SPC10304clade_466clade_262heteroFALSEFALSE
SPC10355clade_466clade_408heteroFALSEFALSE
SPC10363clade_466clade_444heteroFALSEFALSE
SPC10386clade_466clade_478heteroFALSEFALSE
SPC10388clade_466clade_466hetero−−FALSEFALSE
SPC10390clade_466clade_260heteroFALSEFALSE
SPC10403clade_466clade_309heteroFALSEFALSE
SPC10414clade_466clade_500heteroFALSEFALSE
SPC10415clade_466clade_309heteroFALSEFALSE
SPC00057clade_360clade_360homoFALSE
SPC00061clade_360clade_444heteroFALSEFALSE
SPC00080clade_360clade_393heteroFALSETRUE
SPC10001clade_360clade_479heteroFALSETRUE
SPC10019clade_360clade_110heteroFALSETRUE
SPC10030clade_360clade_38heteroFALSEFALSE
SPC10048clade_360clade_286heteroFALSEFALSE
SPC10081clade_360clade_378heteroFALSEFALSE
SPC10097clade_360clade_553hetero+++FALSETRUE
SPC10110clade_360clade_92hetero++++TRUETRUE
SPC10197clade_360clade_309heteroFALSEFALSE
SPC10211clade_360clade_170heteroFALSEFALSE
SPC10213clade_360clade_85heteroFALSEFALSE
SPC10233clade_360clade_262heteroFALSEFALSE
SPC10243clade_360clade_408hetero+FALSEFALSE
SPC10298clade_360clade_172hetero++++FALSETRUE
SPC10301clade_360clade_172hetero+++FALSEFALSE
SPC10304clade_360clade_262heteroFALSEFALSE
SPC10355clade_360clade_408hetero++++TRUETRUE
SPC10363clade_360clade_444hetero++++FALSETRUE
SPC10386clade_360clade_478hetero++FALSETRUE
SPC10388clade_360clade_466hetero++++FALSETRUE
SPC10390clade_360clade_260hetero+++FALSETRUE
SPC10403clade_360clade_309hetero++FALSETRUE
SPC10414clade_360clade_500hetero+++FALSETRUE
SPC10415clade_360clade_309hetero++FALSETRUE
SPC00061clade_444clade_444homoFALSE
SPC00080clade_444clade_393heteroFALSETRUE
SPC10001clade_444clade_479heteroFALSEFALSE
SPC10019clade_444clade_110heteroFALSEFALSE
SPC10030clade_444clade_38heteroFALSEFALSE
SPC10048clade_444clade_286heteroFALSEFALSE
SPC10081clade_444clade_378heteroFALSEFALSE
SPC10097clade_444clade_553hetero+FALSETRUE
SPC10110clade_444clade_92hetero+FALSETRUE
SPC10197clade_444clade_309heteroFALSEFALSE
SPC10211clade_444clade_170heteroFALSEFALSE
SPC10213clade_444clade_85heteroFALSEFALSE
SPC10233clade_444clade_262hetero+FALSEFALSE
SPC10243clade_444clade_408hetero+FALSEFALSE
SPC10298clade_444clade_172hetero++FALSEFALSE
SPC10301clade_444clade_172hetero++FALSEFALSE
SPC10304clade_444clade_262heteroFALSEFALSE
SPC10355clade_444clade_408heteroFALSEFALSE
SPC10363clade_444clade_444hetero−−−FALSEFALSE
SPC10386clade_444clade_478heteroFALSEFALSE
SPC10388clade_444clade_466heteroFALSEFALSE
SPC10390clade_444clade_260heteroFALSEFALSE
SPC10403clade_444clade_309heteroFALSEFALSE
SPC10414clade_444clade_500heteroFALSEFALSE
SPC10415clade_444clade_309heteroFALSEFALSE
SPC00080clade_393clade_393homoFALSE
SPC10001clade_393clade_479heteroFALSETRUE
SPC10019clade_393clade_110heteroFALSETRUE
SPC10030clade_393clade_38heteroFALSEFALSE
SPC10048clade_393clade_286hetero++FALSETRUE
SPC10081clade_393clade_378hetero+FALSETRUE
SPC10097clade_393clade_553hetero+++FALSETRUE
SPC10110clade_393clade_92hetero++++FALSETRUE
SPC10197clade_393clade_309heteroFALSEFALSE
SPC10211clade_393clade_170hetero+++FALSETRUE
SPC10213clade_393clade_85heteroFALSEFALSE
SPC10233clade_393clade_262hetero+FALSEFALSE
SPC10243clade_393clade_408hetero++FALSEFALSE
SPC10298clade_393clade_172heteroFALSEFALSE
SPC10301clade_393clade_172heteroFALSEFALSE
SPC10304clade_393clade_262heteroFALSEFALSE
SPC10355clade_393clade_408heteroFALSEFALSE
SPC10363clade_393clade_444hetero−−FALSEFALSE
SPC10386clade_393clade_478hetero−−FALSEFALSE
SPC10388clade_393clade_466heteroFALSEFALSE
SPC10390clade_393clade_260heteroFALSEFALSE
SPC10403clade_393clade_309hetero−−FALSEFALSE
SPC10414clade_393clade_500heteroFALSEFALSE
SPC10415clade_393clade_309hetero−−−FALSEFALSE
SPC10001clade_479clade_479homoFALSE
SPC10019clade_479clade_110heteroFALSETRUE
SPC10030clade_479clade_38heteroFALSEFALSE
SPC10048clade_479clade_286heteroFALSEFALSE
SPC10081clade_479clade_378heteroFALSETRUE
SPC10097clade_479clade_553hetero+++FALSETRUE
SPC10110clade_479clade_92hetero++++FALSETRUE
SPC10197clade_479clade_309heteroFALSEFALSE
SPC10211clade_479clade_170hetero+FALSEFALSE
SPC10213clade_479clade_85heteroFALSEFALSE
SPC10233clade_479clade_262heteroFALSEFALSE
SPC10243clade_479clade_408hetero+++FALSEFALSE
SPC10298clade_479clade_172heteroFALSEFALSE
SPC10301clade_479clade_172hetero++++TRUETRUE
SPC10304clade_479clade_262heteroFALSEFALSE
SPC10355clade_479clade_408heteroFALSEFALSE
SPC10363clade_479clade_444heteroFALSEFALSE
SPC10386clade_479clade_478heteroFALSEFALSE
SPC10388clade_479clade_466heteroFALSEFALSE
SPC10390clade_479clade_260hetero−−FALSEFALSE
SPC10403clade_479clade_309hetero−−−FALSEFALSE
SPC10414clade_479clade_500hetero−−FALSEFALSE
SPC10415clade_479clade_309hetero−−FALSEFALSE
SPC10019clade_110clade_110homoFALSE
SPC10030clade_110clade_38heteroFALSEFALSE
SPC10048clade_110clade_286heteroFALSEFALSE
SPC10081clade_110clade_378heteroFALSETRUE
SPC10097clade_110clade_553hetero++++TRUETRUE
SPC10110clade_110clade_92hetero++++TRUETRUE
SPC10197clade_110clade_309heteroFALSEFALSE
SPC10211clade_110clade_170hetero++FALSEFALSE
SPC10213clade_110clade_85heteroFALSEFALSE
SPC10233clade_110clade_262hetero+FALSEFALSE
SPC10243clade_110clade_408hetero+++FALSETRUE
SPC10298clade_110clade_172heteroFALSEFALSE
SPC10301clade_110clade_172hetero++++TRUETRUE
SPC10304clade_110clade_262heteroFALSEFALSE
SPC10355clade_110clade_408heteroFALSEFALSE
SPC10363clade_110clade_444heteroFALSEFALSE
SPC10386clade_110clade_478heteroFALSEFALSE
SPC10388clade_110clade_466hetero−−FALSEFALSE
SPC10390clade_110clade_260hetero−−−FALSEFALSE
SPC10403clade_110clade_309heteroFALSEFALSE
SPC10414clade_110clade_500heteroFALSEFALSE
SPC10415clade_110clade_309heteroFALSEFALSE
SPC10030clade_38clade_38homo+FALSE
SPC10048clade_38clade_286heteroFALSEFALSE
SPC10081clade_38clade_378heteroFALSEFALSE
SPC10097clade_38clade_553hetero++++TRUETRUE
SPC10110clade_38clade_92hetero++++TRUETRUE
SPC10197clade_38clade_309heteroFALSEFALSE
SPC10211clade_38clade_170heteroFALSEFALSE
SPC10213clade_38clade_85heteroFALSEFALSE
SPC10233clade_38clade_262hetero++++TRUEFALSE
SPC10243clade_38clade_408hetero+++FALSEFALSE
SPC10298clade_38clade_172hetero++++TRUETRUE
SPC10301clade_38clade_172hetero++++TRUETRUE
SPC10304clade_38clade_262heteroFALSEFALSE
SPC10355clade_38clade_408heteroFALSEFALSE
SPC10363clade_38clade_444heteroFALSEFALSE
SPC10386clade_38clade_478heteroFALSEFALSE
SPC10388clade_38clade_466heteroFALSEFALSE
SPC10390clade_38clade_260heteroFALSEFALSE
SPC10403clade_38clade_309heteroFALSEFALSE
SPC10414clade_38clade_500heteroFALSEFALSE
SPC10415clade_38clade_309heteroFALSEFALSE
SPC10048clade_286clade_286homo+FALSE
SPC10081clade_286clade_378heteroFALSEFALSE
SPC10097clade_286clade_553hetero++++FALSETRUE
SPC10110clade_286clade_92hetero++++FALSETRUE
SPC10197clade_286clade_309heteroFALSEFALSE
SPC10211clade_286clade_170heteroFALSEFALSE
SPC10213clade_286clade_85heteroFALSEFALSE
SPC10233clade_286clade_262hetero+FALSEFALSE
SPC10243clade_286clade_408hetero+FALSEFALSE
SPC10298clade_286clade_172hetero++++TRUETRUE
SPC10301clade_286clade_172hetero++++TRUEFALSE
SPC10304clade_286clade_262heteroFALSEFALSE
SPC10355clade_386clade_408heteroFALSEFALSE
SPC10363clade_286clade_444heteroFALSEFALSE
SPC10386clade_286clade_478heteroFALSEFALSE
SPC10388clade_286clade_466heteroFALSEFALSE
SPC10390clade_386clade_380heteroFALSEFALSE
SPC10403clade_286clade_309heteroFALSEFALSE
SPC10414clade_386clade_500heteroFALSEFALSE
SPC10415clade_386clade_309hetero++FALSEFALSE
SPC10081clade_378clade_378homoFALSE
SPC10097clade_378clade_553hetero+++FALSETRUE
SPC10110clade_378clade_92hetero++++TRUETRUE
SPC10197clade_378clade_309heteroFALSEFALSE
SPC10211clade_378clade_170heteroFALSEFALSE
SPC10213clade_378clade_85heteroFALSEFALSE
SPC10233clade_378clade_262hetero+++FALSEFALSE
SPC10243clade_378clade_408hetero++++FALSETRUE
SPC10298clade_378clade_172hetero++++FALSETRUE
SPC10301clade_378clade_172hetero++++TRUETRUE
SPC10304clade_378clade_262heteroFALSEFALSE
SPC10355clade_378clade_408heteroFALSEFALSE
SPC10363clade_378clade_444heteroFALSEFALSE
SPC10386clade_378clade_478hetero−−FALSEFALSE
SPC10388clade_378clade_466heteroFALSEFALSE
SPC10390clade_378clade_260heteroFALSEFALSE
SPC10403clade_378clade_309heteroFALSEFALSE
SPC10414clade_378clade_500heteroFALSETRUE
SPC10415clade_378clade_309hetero+++FALSETRUE
SPC10097clade_553clade_553homo++FALSE
SPC10110clade_553clade_92hetero++++TRUETRUE
SPC10197clade_553clade_309hetero++++FALSEFALSE
SPC10211clade_553clade_170hetero++++FALSEFALSE
SPC10213clade_553clade_85hetero++++FALSETRUE
SPC10233clade_553clade_262hetero++++TRUEFALSE
SPC10243clade_553clade_408hetero++++TRUETRUE
SPC10298clade_553clade_172hetero++++TRUETRUE
SPC10301clade_553clade_172hetero++++TRUETRUE
SPC10304clade_553clade_262hetero++++FALSETRUE
SPC10355clade_553clade_408hetero++++FALSETRUE
SPC10363clade_553clade_444hetero+++FALSETRUE
SPC10386clade_553clade_478hetero++++FALSETRUE
SPC10388clade_553clade_466hetero++++FALSETRUE
SPC10390clade_553clade_260hetero++++FALSETRUE
SPC10403clade_553clade_309hetero+++FALSETRUE
SPC10414clade_553clade_500hetero++++FALSETRUE
SPC10415clade_553clade_309hetero++++TRUETRUE
SPC10110clade_92clade_92homo+++FALSE
SPC10197clade_92clade_309hetero+++FALSEFALSE
SPC10211clade_92clade_170hetero++++TRUETRUE
SPC10213clade_92clade_85hetero++++TRUETRUE
SPC10233clade_92clade_262hetero++++FALSEFALSE
SPC10243clade_92clade_408hetero++++FALSEFALSE
SPC10298clade_92clade_172hetero++++TRUETRUE
SPC10301clade_92clade_172hetero++++TRUEFALSE
SPC10304clade_92clade_262hetero+++FALSETRUE
SPC10355clade_92clade_408hetero++++FALSETRUE
SPC10363clade_92clade_444hetero++++FALSETRUE
SPC10386clade_92clade_478hetero+FALSEFALSE
SPC10388clade_92clade_466hetero+++FALSETRUE
SPC10390clade_92clade_260hetero++++FALSETRUE
SPC10403clade_92clade_309hetero+++FALSETRUE
SPC10414clade_92clade_500hetero++++TRUETRUE
SPC10415clade_92clade_309hetero++++FALSEFALSE
SPC10197clade_309clade_309homo++++TRUE
SPC10211clade_309clade_170hetero++++TRUEFALSE
SPC10213clade_309clade_85hetero++++TRUEFALSE
SPC10233clade_309clade_262hetero++++TRUEFALSE
SPC10243clade_309clade_408hetero++++TRUETRUE
SPC10298clade_309clade_172hetero+++FALSEFALSE
SPC10301clade_309clade_172hetero++++TRUEFALSE
SPC10304clade_309clade_262hetero++++FALSETRUE
SPC10355clade_309clade_408hetero+++FALSEFALSE
SPC10363clade_309clade_444hetero+FALSEFALSE
SPC10386clade_309clade_478heteroFALSEFALSE
SPC10388clade_309clade_466heteroFALSEFALSE
SPC10390clade_309clade_260heteroFALSEFALSE
SPC10403clade_309clade_309heteroFALSEFALSE
SPC10414clade_309clade_500heteroFALSEFALSE
SPC10415clade_309clade_309heteroFALSEFALSE
SPC10211clade_170clade_170homo++++TRUE
SPC10213clade_170clade_85hetero++++TRUEFALSE
SPC10233clade_170clade_262hetero++++TRUEFALSE
SPC10243clade_170clade_408hetero++++FALSEFALSE
SPC10298clade_170clade_172hetero++++FALSEFALSE
SPC10301clade_170clade_172hetero++++TRUEFALSE
SPC10304clade_170clade_262hetero+++FALSEFALSE
SPC10355clade_170clade_408hetero++FALSEFALSE
SPC10363clade_170clade_444heteroFALSEFALSE
SPC10386clade_170clade_478heteroFALSEFALSE
SPC10388clade_170clade_466heteroFALSEFALSE
SPC10390clade_170clade_260heteroFALSEFALSE
SPC10403clade_170clade_309heteroFALSEFALSE
SPC10414clade_170clade_500heteroFALSEFALSE
SPC10415clade_170clade_309heteroFALSEFALSE
SPC10213clade_85clade_85homo+++FALSE
SPC10233clade_85clade_262hetero++++TRUEFALSE
SPC10243clade_85clade_408hetero++++TRUEFALSE
SPC10298clade_85clade_172hetero++++FALSEFALSE
SPC10301clade_85clade_172hetero++++TRUEFALSE
SPC10304clade_85clade_262hetero++FALSEFALSE
SPC10355clade_85clade_408hetero+++FALSEFALSE
SPC10363clade_85clade_444heteroFALSEFALSE
SPC10386clade_85clade_478heteroFALSEFALSE
SPC10388clade_85clade_466heteroFALSEFALSE
SPC10390clade_38clade_260heteroFALSEFALSE
SPC10403clade_38clade_309heteroFALSEFALSE
SPC10414clade_85clade_500heteroFALSEFALSE
SPC10415clade_38clade_309heteroFALSEFALSE
SPC10233clade_262clade_262homo++++TRUE
SPC10243clade_262clade_408hetero++++TRUETRUE
SPC10298clade_262clade_172hetero++++TRUEFALSE
SPC10301clade_262clade_172hetero++++TRUEFALSE
SPC10304clade_262clade_262hetero++++FALSEFALSE
SPC10355clade_262clade_408hetero+FALSEFALSE
SPC10363clade_262clade_444heteroFALSEFALSE
SPC10386clade_262clade_478heteroFALSEFALSE
SPC10388clade_262clade_466heteroFALSEFALSE
SPC10390clade_262clade_260heteroFALSEFALSE
SPC10403clade_262clade_309heteroFALSEFALSE
SPC10414clade_262clade_500heteroFALSEFALSE
SPC10415clade_262clade_309heteroFALSEFALSE
SPC10243clade_408clade_408homo++++TRUE
SPC10298clade_408clade_172hetero++++TRUEFALSE
SPC10301clade_408clade_172hetero++++TRUETRUE
SPC10304clade_408clade_262hetero++++FALSETRUE
SPC10355clade_408clade_408hetero+++FALSEFALSE
SPC10363clade_408clade_444hetero++++FALSETRUE
SPC10386clade_408clade_478hetero++FALSEFALSE
SPC10388clade_408clade_466hetero+++FALSEFALSE
SPC10390clade_408clade_260hetero+++FALSEFALSE
SPC10403clade_408clade_309hetero+++FALSEFALSE
SPC10414clade_408clade_500hetero+++FALSEFALSE
SPC10415clade_408clade_309hetero++FALSEFALSE
SPC10298clade_172clade_172homo++++TRUE
SPC10301clade_172clade_172hetero++++TRUETRUE
SPC10304clade_172clade_262hetero++++FALSETRUE
SPC10355clade_172clade_408hetero+FALSEFALSE
SPC10363clade_172clade_444heteroFALSEFALSE
SPC10386clade_172clade_478heteroFALSEFALSE
SPC10388clade_172clade_466hetero++FALSEFALSE
SPC10390clade_172clade_260heteroFALSEFALSE
SPC10403clade_172clade_309heteroFALSEFALSE
SPC10414clade_172clade_500heteroFALSEFALSE
SPC10415clade_172clade_309heteroFALSEFALSE
SPC10301clade_172clade_172homo++++TRUE
SPC10304clade_172clade_262hetero++++TRUETRUE
SPC10355clade_172clade_408hetero++++FALSEFALSE
SPC10363clade_172clade_444hetero++++TRUETRUE
SPC10386clade_172clade_478heteroFALSEFALSE
SPC10388clade_172clade_466hetero++++TRUEFALSE
SPC10390clade_172clade_260hetero++++FALSEFALSE
SPC10403clade_172clade_309hetero+FALSEFALSE
SPC10414clade_172clade_500hetero+++FALSEFALSE
SPC10415clade_172clade_309hetero+++FALSEFALSE
SPC10304clade_262clade_262homoFALSE
SPC10355clade_262clade_408hetero++FALSEFALSE
SPC10363clade_262clade_444hetero+FALSETRUE
SPC10386clade_262clade_478hetero+FALSETRUE
SPC10388clade_262clade_466heteroFALSEFALSE
SPC10390clade_262clade_260hetero++++FALSETRUE
SPC10403clade_262clade_309heteroFALSETRUE
SPC10414clade_262clade_380heteroFALSEFALSE
SPC10415clade_262clade_309hetero++++TRUETRUE
SPC10355clade_408clade_408homo++FALSE
SPC10363clade_408clade_444hetero+FALSEFALSE
SPC10386clade_408clade_478hetero+++FALSETRUE
SPC10388clade_408clade_466hetero+FALSEFALSE
SPC10390clade_408clade_260hetero+++FALSEFALSE
SPC10403clade_408clade_309heteroFALSEFALSE
SPC10414clade_408clade_500heteroFALSEFALSE
SPC10415clade_408clade_309hetero++++TRUETRUE
SPC10363clade_444clade_444homo+FALSE
SPC10386clade_444clade_478hetero+FALSETRUE
SPC10388clade_444clade_466hetero+FALSEFALSE
SPC10390clade_444clade_260heteroFALSEFALSE
SPC10403clade_444clade_309heteroFALSEFALSE
SPC10414clade_444clade_500heteroFALSEFALSE
SPC10415clade_444clade_309hetero+FALSEFALSE
SPC10386clade_478clade_478homoFALSE
SPC10388clade_478clade_466hetero+FALSETRUE
SPC10390clade_478clade_260hetero++FALSETRUE
SPC10403clade_478clade_309heteroFALSETRUE
SPC10414clade_478clade_500heteroFALSETRUE
SPC10415clade_478clade_309hetero++++TRUETRUE
SPC10388clade_466clade_466homoFALSE
SPC10390clade_466clade_260heteroFALSEFALSE
SPC10403clade_466clade_309heteroFALSEFALSE
SPC10414clade_466clade_500heteroFALSETRUE
SPC10415clade_466clade_309heteroFALSEFALSE
SPC10390clade_260clade_260homo++FALSE
SPC10403clade_260clade_309heteroFALSEFALSE
SPC10414clade_260clade_500heteroFALSEFALSE
SPC10415clade_260clade_309hetero++++TRUETRUE
SPC10403clade_309clade_309homoFALSE
SPC10414clade_309clade_500heteroFALSETRUE
SPC10415clade_309clade_309heteroFALSEFALSE
SPC10414clade_500clade_500homoFALSE
SPC10415clade_500clade_309heteroFALSEFALSE
SPC10415clade_309clade_309homo++++TRUE
SPC10155clade_553clade_252heteroFALSEFALSE
SPC10167clade_553clade_253heteroFALSEFALSE
SPC10202clade_553clade_351hetero++FALSEFALSE
SPC10238clade_553clade_354hetero++++TRUETRUE
SPC10256clade_553clade_252hetero++++TRUETRUE
SPC10313clade_553clade_260hetero+++FALSETRUE
SPC10325clade_553clade_408hetero++++FALSETRUE
SPC10358clade_553clade_494hetero++++TRUETRUE
SPC10468clade_553clade_360hetero++++FALSETRUE
SPC10470clade_553clade_537hetero++++FALSETRUE
SPC10567clade_553clade_444hetero++++FALSETRUE
SPC10097clade_252clade_553heteroFALSEFALSE
SPC10155clade_252clade_252homo++FALSE
SPC10167clade_252clade_253hetero++++FALSETRUE
SPC10202clade_252clade_351hetero++++TRUETRUE
SPC10238clade_252clade_354hetero++++TRUETRUE
SPC10256clade_252clade_252hetero++++TRUETRUE
SPC10304clade_252clade_262hetero++++TRUETRUE
SPC10313clade_252clade_260hetero++++TRUETRUE
SPC10325clade_252clade_408hetero++++TRUETRUE
SPC10355clade_252clade_408hetero+FALSEFALSE
SPC10358clade_252clade_494hetero++++TRUETRUE
SPC10386clade_252clade_478hetero++++TRUETRUE
SPC10390clade_252clade_260hetero++++TRUETRUE
SPC10415clade_252clade_309hetero++++TRUETRUE
SPC10468clade_252clade_360hetero++++TRUETRUE
SPC10470clade_252clade_537hetero++++TRUETRUE
SPC10567clade_252clade_444hetero++++TRUETRUE
SPC10155clade_253clade_252hetero++++FALSETRUE
SPC10167clade_253clade_253homo+FALSE
SPC10202clade_253clade_351hetero++FALSEFALSE
SPC10238clade_253clade_354hetero++++TRUETRUE
SPC10256clade_253clade_252hetero++++TRUETRUE
SPC10304clade_253clade_262hetero++++FALSETRUE
SPC10313clade_253clade_260heteroFALSEFALSE
SPC10325clade_253clade_408hetero++++FALSETRUE
SPC10355clade_253clade_408hetero+++FALSETRUE
SPC10358clade_253clade_494hetero++++TRUETRUE
SPC10386clade_253clade_478heteroFALSEFALSE
SPC10390clade_253clade_260hetero++++FALSETRUE
SPC10415clade_253clade_309hetero++++TRUETRUE
SPC10468clade_253clade_360hetero++++TRUETRUE
SPC10470clade_253clade_537heteroFALSEFALSE
SPC10567clade_253clade_444hetero++++TRUETRUE
SPC10167clade_351clade_253hetero++FALSEFALSE
SPC10202clade_351clade_351homo+++FALSE
SPC10238clade_351clade_354hetero++++TRUETRUE
SPC10256clade_351clade_252hetero++++TRUETRUE
SPC10304clade_351clade_262hetero++++FALSETRUE
SPC10313clade_351clade_260hetero+++FALSETRUE
SPC10325clade_351clade_408hetero++++FALSETRUE
SPC10355clade_351clade_408hetero++++FALSETRUE
SPC10358clade_351clade_494hetero++++FALSETRUE
SPC10386clade_351clade_478hetero++++TRUETRUE
SPC10390clade_351clade_260hetero++++TRUETRUE
SPC10415clade_351clade_309hetero++++TRUETRUE
SPC10468clade_351clade_360hetero++++TRUETRUE
SPC10470clade_351clade_537hetero++++TRUETRUE
SPC10567clade_351clade_444hetero++++TRUETRUE
SPC10202clade_354clade_351hetero++++TRUETRUE
SPC10238clade_354clade_354homo++++TRUE
SPC10256clade_354clade_252hetero++++TRUETRUE
SPC10304clade_354clade_262hetero++++TRUETRUE
SPC10313clade_354clade_260hetero++++TRUETRUE
SPC10325clade_354clade_408hetero++++TRUETRUE
SPC10355clade_354clade_408hetero++++TRUETRUE
SPC10358clade_354clade_494hetero++++TRUETRUE
SPC10386clade_354clade_478hetero++++TRUETRUE
SPC10390clade_354clade_260hetero++++TRUETRUE
SPC10415clade_354clade_309hetero++++TRUETRUE
SPC10468clade_354clade_360hetero++++TRUETRUE
SPC10470clade_354clade_537hetero++++TRUETRUE
SPC10567clade_354clade_444hetero++++TRUETRUE
SPC10238clade_252clade_354hetero++++TRUETRUE
SPC10256clade_252clade_252homo++++TRUE
SPC10304clade_252clade_262hetero++++TRUETRUE
SPC10313clade_252clade_260hetero++++TRUETRUE
SPC10325clade_252clade_408hetero++++TRUETRUE
SPC10355clade_252clade_408hetero++++TRUETRUE
SPC10358clade_252clade_494hetero++++TRUETRUE
SPC10386clade_252clade_478hetero++++TRUETRUE
SPC10390clade_252clade_260hetero++++TRUETRUE
SPC10415clade_252clade_309hetero++++TRUETRUE
SPC10468clade_252clade_360hetero++++TRUETRUE
SPC10470clade_252clade_537hetero++++TRUETRUE
SPC10567clade_252clade_444hetero++++TRUETRUE
SPC10256clade_262clade_252hetero++++TRUETRUE
SPC10313clade_262clade_260heteroFALSETRUE
SPC10325clade_262clade_408hetero+++FALSETRUE
SPC10358clade_262clade_494hetero++++FALSETRUE
SPC10468clade_262clade_360hetero++++TRUETRUE
SPC10470clade_262clade_537hetero++++FALSETRUE
SPC10567clade_262clade_444hetero++++FALSETRUE
SPC10304clade_260clade_262heteroFALSETRUE
SPC10313clade_260clade_260homoFALSE
SPC10325clade_260clade_408heteroFALSEFALSE
SPC10355clade_260clade_408hetero++FALSETRUE
SPC10358clade_260clade_494heteroFALSETRUE
SPC10386clade_260clade_478heteroFALSETRUE
SPC10390clade_260clade_260hetero++++TRUETRUE
SPC10415clade_260clade_309hetero++++TRUETRUE
SPC10468clade_260clade_360hetero++FALSETRUE
SPC10470clade_260clade_537heteroFALSETRUE
SPC10567clade_260clade_444heteroFALSETRUE
SPC10313clade_408clade_260heteroFALSEFALSE
SPC10325clade_408clade_408homo++FALSE
SPC10355clade_408clade_408hetero+++FALSETRUE
SPC10358clade_408clade_494hetero+++FALSETRUE
SPC10386clade_408clade_478hetero+FALSEFALSE
SPC10390clade_408clade_260hetero++++TRUETRUE
SPC10415clade_408clade_309hetero++++TRUETRUE
SPC10468clade_408clade_360hetero++++FALSETRUE
SPC10470clade_408clade_537hetero++FALSETRUE
SPC10567clade_408clade_444hetero+FALSETRUE
SPC10325clade_408clade_408hetero+++FALSETRUE
SPC10358clade_408clade_494hetero+++FALSETRUE
SPC10468clade_408clade_360hetero++++FALSETRUE
SPC10470clade_408clade_537hetero++++FALSETRUE
SPC10567clade_408clade_444hetero+FALSETRUE
SPC10355clade_494clade_408hetero+++FALSETRUE
SPC10358clade_494clade_494homoFALSE
SPC10386clade_494clade_478heteroFALSEFALSE
SPC10390clade_494clade_260hetero+++FALSETRUE
SPC10415clade_494clade_309hetero++++TRUETRUE
SPC10468clade_494clade_360hetero++++TRUETRUE
SPC10470clade_494clade_537heteroFALSEFALSE
SPC10567clade_494clade_444heteroFALSETRUE
SPC10358clade_478clade_494heteroFALSEFALSE
SPC10468clade_478clade_360hetero++++FALSETRUE
SPC10470clade_478clade_537heteroFALSEFALSE
SPC10567clade_478clade_444heteroFALSETRUE
SPC10468clade_260clade_360hetero++++FALSETRUE
SPC10470clade_260clade_537hetero+++FALSETRUE
SPC10567clade_260clade_444hetero++FALSETRUE
SPC10468clade_309clade_360hetero++++TRUETRUE
SPC10470clade_309clade_537hetero++++TRUETRUE
SPC10567clade_309clade_444hetero++++TRUETRUE
SPC10415clade_360clade_309hetero++++TRUETRUE
SPC10468clade_360clade_360homo+FALSE
SPC10470clade_360clade_537hetero+++FALSETRUE
SPC10567clade_360clade_444hetero+++FALSETRUE
SPC10468clade_537clade_360hetero+++FALSETRUE
SPC10470clade_537clade_537homoFALSE
SPC10567clade_537clade_444heteroFALSETRUE
SPC10470clade_444clade_537heteroFALSETRUE
SPC10567clade_444clade_444homoFALSE
SPC10097SPC10097clade_553clade_553clade_553homo++FALSE
SPC10097SPC10304clade_553clade_553clade_262semi++FALSEFALSE
SPC10097SPC10325clade_553clade_553clade_408semi++++FALSEFALSE
SPC10097SPC10355clade_553clade_553clade_408semi+++FALSEFALSE
SPC10097SPC10386clade_553clade_553clade_478semi++++FALSETRUE
SPC10097SPC10390clade_553clade_553clade_260semi+++FALSEFALSE
SPC10097SPC10415clade_553clade_553clade_309semi++++FALSETRUE
SPC10097SPC10567clade_553clade_553clade_444semiFALSEFALSE
SPC10304SPC10304clade_553clade_262clade_262semiFALSEFALSE
SPC10304SPC10325clade_553clade_262clade_408hetero++++FALSEFALSE
SPC10304SPC10355clade_553clade_262clade_408hetero+++FALSEFALSE
SPC10304SPC10386clade_553clade_262clade_478hetero++++FALSETRUE
SPC10304SPC10390clade_553clade_262clade_260hetero+++FALSEFALSE
SPC10304SPC10415clade_553clade_262clade_309hetero++++FALSETRUE
SPC10304SPC10567clade_553clade_262clade_444hetero+++FALSETRUE
SPC10325SPC10325clade_553clade_408clade_408semi+++FALSEFALSE
SPC10325SPC10355clade_553clade_408clade_408hetero++++FALSEFALSE
SPC10325SPC10386clade_553clade_408clade_478hetero++++FALSETRUE
SPC10325SPC10390clade_553clade_408clade_260hetero++++FALSEFALSE
SPC10325SPC10415clade_553clade_408clade_309hetero++++FALSETRUE
SPC10325SPC10567clade_553clade_408clade_444hetero++++FALSEFALSE
SPC10355SPC10355clade_553clade_408clade_408semiFALSEFALSE
SPC10355SPC10386clade_553clade_408clade_478heteroFALSEFALSE
SPC10355SPC10390clade_553clade_408clade_260hetero+FALSEFALSE
SPC10355SPC10415clade_553clade_408clade_309hetero++++FALSETRUE
SPC10355SPC10567clade_553clade_408clade_444heteroFALSEFALSE
SPC10386SPC10386clade_553clade_478clade_478semi++++FALSETRUE
SPC10386SPC10390clade_553clade_478clade_260hetero+++FALSEFALSE
SPC10386SPC10415clade_553clade_478clade_309hetero++++TRUETRUE
SPC10386SPC10567clade_553clade_478clade_444hetero+++FALSETRUE
SPC10390SPC10390clade_553clade_260clade_260semi+++FALSEFALSE
SPC10390SPC10415clade_553clade_260clade_309hetero++++FALSETRUE
SPC10390SPC10567clade_553clade_260clade_444hetero++++FALSEFALSE
SPC10415SPC10415clade_553clade_309clade_309semi++++FALSEFALSE
SPC10415SPC10567clade_553clade_309clade_444hetero++++FALSETRUE
SPC10567SPC10567clade_553clade_444clade_444semi+FALSETRUE
SPC10304SPC10304clade_262clade_262clade_262homoFALSE
SPC10304SPC10325clade_262clade_262clade_408semiFALSEFALSE
SPC10304SPC10355clade_262clade_262clade_408semiFALSEFALSE
SPC10304SPC10386clade_262clade_262clade_478semiFALSEFALSE
SPC10304SPC10390clade_262clade_262clade_260semiFALSEFALSE
SPC10304SPC10415clade_262clade_262clade_309semi++++FALSETRUE
SPC10304SPC10567clade_262clade_262clade_444semi−−FALSEFALSE
SPC10325SPC10325clade_262clade_408clade_408semi++FALSEFALSE
SPC10325SPC10355clade_262clade_408clade_408heteroFALSEFALSE
SPC10325SPC10386clade_262clade_408clade_478hetero+++FALSEFALSE
SPC10325SPC10390clade_262clade_408clade_260hetero+++FALSEFALSE
SPC10325SPC10415clade_262clade_408clade_309hetero++++FALSEFALSE
SPC10325SPC10567clade_262clade_408clade_444hetero−−FALSEFALSE
SPC10355SPC10355clade_262clade_408clade_408semiFALSEFALSE
SPC10355SPC10386clade_262clade_408clade_478heteroFALSEFALSE
SPC10355SPC10390clade_262clade_408clade_260heteroFALSEFALSE
SPC10355SPC10415clade_262clade_408clade_309hetero++++FALSEFALSE
SPC10355SPC10567clade_262clade_408clade_444hetero−−−FALSEFALSE
SPC10386SPC10386clade_262clade_478clade_478semi−−−FALSEFALSE
SPC10386SPC10390clade_262clade_478clade_260heteroFALSEFALSE
SPC10386SPC10415clade_262clade_478clade_309hetero++++FALSETRUE
SPC10386SPC10567clade_262clade_478clade_444heteroFALSEFALSE
SPC10390SPC10390clade_262clade_260clade_260semi+FALSEFALSE
SPC10390SPC10415clade_262clade_260clade_309hetero++++FALSETRUE
SPC10390SPC10567clade_262clade_260clade_444heteroFALSEFALSE
SPC10415SPC10415clade_262clade_309clade_309semi++++FALSEFALSE
SPC10415SPC10567clade_262clade_309clade_444hetero++++FALSETRUE
SPC10567SPC10567clade_262clade_444clade_444semiFALSEFALSE
SPC10325SPC10325clade_408clade_408clade_408homoFALSE
SPC10325SPC10355clade_408clade_408clade_408semiFALSEFALSE
SPC10325SPC10386clade_408clade_408clade_478semi++FALSEFALSE
SPC10325SPC10390clade_408clade_408clade_260semi++FALSEFALSE
SPC10325SPC10415clade_408clade_408clade_309semi++++FALSEFALSE
SPC10325SPC10567clade_408clade_408clade_444semiFALSEFALSE
SPC10355SPC10355clade_408clade_408clade_408semiFALSEFALSE
SPC10355SPC10386clade_408clade_408clade_478heteroFALSEFALSE
SPC10355SPC10390clade_408clade_408clade_260heteroFALSEFALSE
SPC10355SPC10415clade_408clade_408clade_309hetero++++FALSEFALSE
SPC10355SPC10567clade_408clade_408clade_444heteroFALSEFALSE
SPC10386SPC10386clade_408clade_478clade_478semiFALSEFALSE
SPC10386SPC10390clade_408clade_478clade_260hetero++++FALSEFALSE
SPC10386SPC10415clade_408clade_478clade_309hetero++++FALSETRUE
SPC10386SPC10567clade_408clade_478clade_444heteroFALSEFALSE
SPC10390SPC10390clade_408clade_260clade_260semi++FALSEFALSE
SPC10390SPC10415clade_408clade_260clade_309hetero++++FALSEFALSE
SPC10390SPC10567clade_408clade_260clade_444hetero+FALSEFALSE
SPC10415SPC10415clade_408clade_309clade_309semi++++FALSEFALSE
SPC10415SPC10567clade_408clade_309clade_444hetero++++FALSETRUE
SPC10567SPC10567clade_408clade_444clade_444semi−−FALSEFALSE
SPC10355SPC10355clade_408clade_408clade_408homoFALSE
SPC10355SPC10386clade_408clade_408clade_478semiFALSEFALSE
SPC10355SPC10390clade_408clade_408clade_260semi+FALSEFALSE
SPC10355SPC10415clade_408clade_408clade_309semi++++FALSEFALSE
SPC10355SPC10567clade_408clade_408clade_444semiFALSEFALSE
SPC10386SPC10386clade_408clade_478clade_478semiFALSEFALSE
SPC10386SPC10390clade_408clade_478clade_260hetero+FALSEFALSE
SPC10386SPC10415clade_408clade_478clade_309hetero++++FALSETRUE
SPC10386SPC10567clade_408clade_478clade_444heteroFALSEFALSE
SPC10390SPC10390clade_408clade_260clade_260semi+++FALSEFALSE
SPC10390SPC10415clade_408clade_260clade_309hetero++++FALSETRUE
SPC10390SPC10567clade_408clade_260clade_444heteroFALSEFALSE
SPC10415SPC10415clade_408clade_309clade_309semi++++FALSEFALSE
SPC10415SPC10567clade_408clade_309clade_444hetero++++FALSETRUE
SPC10567SPC10567clade_408clade_444clade_444semiFALSEFALSE
SPC10386SPC10386clade_478clade_478clade_478homoFALSE
SPC10386SPC10390clade_478clade_478clade_260semiFALSEFALSE
SPC10386SPC10415clade_478clade_478clade_309semi++++FALSETRUE
SPC10386SPC10567clade_478clade_478clade_444semi−−−FALSEFALSE
SPC10390SPC10390clade_478clade_260clade_260semi+++FALSEFALSE
SPC10390SPC10415clade_478clade_260clade_309hetero++++FALSETRUE
SPC10390SPC10567clade_478clade_260clade_444heteroFALSEFALSE
SPC10415SPC10415clade_478clade_309clade_309semi++++FALSETRUE
SPC10415SPC10567clade_478clade_309clade_444hetero++++FALSETRUE
SPC10567SPC10567clade_478clade_444clade_444semiFALSEFALSE
SPC10390SPC10390clade_260clade_260clade_260homo+++FALSE
SPC10390SPC10415clade_260clade_260clade_309semi++++FALSETRUE
SPC10390SPC10567clade_260clade_260clade_444semi+FALSEFALSE
SPC10415SPC10415clade_260clade_309clade_309semiFALSEFALSE
SPC10415SPC10567clade_260clade_309clade_444hetero++++FALSETRUE
SPC10567SPC10567clade_260clade_444clade_444semiFALSEFALSE
SPC10415SPC10415clade_309clade_309clade_309homo++++FALSE
SPC10415SPC10567clade_309clade_309clade_444semi++++FALSETRUE
SPC10567SPC10567clade_309clade_444clade_444semi++++FALSETRUE
SPC10567SPC10567clade_444clade_444clade_444homoFALSE
SPC10155SPC10155clade_553clade_252clade_252semi++++FALSEFALSE
SPC10155SPC10167clade_553clade_382clade_253hetero++++FALSEFALSE
SPC10155SPC10202clade_553clade_252clade_351hetero++++FALSEFALSE
SPC10155SPC10238clade_553clade_252clade_354hetero++++FALSEFALSE
SPC10155SPC10256clade_553clade_252clade_252hetero++++TRUETRUE
SPC10155SPC10313clade_553clade_252clade_260hetero++++FALSETRUE
SPC10155SPC10358clade_553clade_252clade_494hetero++++FALSETRUE
SPC10155SPC10468clade_553clade_252clade_360hetero++++FALSETRUE
SPC10155SPC10470clade_553clade_252clade_537hetero++++FALSEFALSE
SPC10155SPC10613clade_553clade_382clade_309hetero++++FALSE
SPC10167SPC10167clade_553clade_253clade_253semi+++FALSEFALSE
SPC10167SPC10202clade_553clade_253clade_351hetero++++FALSEFALSE
SPC10167SPC10238clade_553clade_253clade_354hetero++++FALSETRUE
SPC10167SPC10256clade_553clade_253clade_252hetero++++TRUETRUE
SPC10167SPC10313clade_553clade_253clade_260hetero++++FALSEFALSE
SPC10167SPC10358clade_553clade_253clade_494hetero++++FALSETRUE
SPC10167SPC10468clade_553clade_253clade_360hetero++++FALSEFALSE
SPC10167SPC10470clade_553clade_253clade_537hetero++++FALSEFALSE
SPC10167SPC10613clade_553clade_253clade_309hetero++++FALSE
SPC10202SPC10202clade_553clade_351clade_351semi++++FALSEFALSE
SPC10202SPC10238clade_553clade_351clade_354hetero++++FALSEFALSE
SPC10202SPC10256clade_553clade_351clade_252hetero++++TRUETRUE
SPC10202SPC10313clade_553clade_351clade_260hetero++++FALSEFALSE
SPC10202SPC10358clade_553clade_351clade_494hetero++++FALSETRUE
SPC10202SPC10468clade_553clade_351clade_360hetero++++FALSEFALSE
SPC10202SPC10470clade_553clade_351clade_537hetero++++FALSETRUE
SPC10202SPC10613clade_553clade_351clade_309hetero++++FALSE
SPC10238SPC10238clade_553clade_354clade_354semi++++FALSEFALSE
SPC10238SPC10256clade_553clade_354clade_252hetero++++TRUEFALSE
SPC10238SPC10313clade_553clade_354clade_260hetero++++FALSEFALSE
SPC10238SPC10358clade_553clade_354clade_494hetero++++FALSETRUE
SPC10238SPC10468clade_553clade_354clade_360hetero++++FALSEFALSE
SPC10238SPC10470clade_553clade_354clade_537hetero++++FALSETRUE
SPC10238SPC10613clade_553clade_354clade_309hetero++++FALSE
SPC10256SPC10256clade_553clade_252clade_252semi++++TRUEFALSE
SPC10256SPC10313clade_553clade_252clade_260hetero++++TRUETRUE
SPC10256SPC10358clade_553clade_252clade_494hetero++++TRUETRUE
SPC10256SPC10468clade_553clade_252clade_360hetero++++TRUETRUE
SPC10256SPC10470clade_553clade_252clade_537hetero++++TRUETRUE
SPC10256SPC10613clade_553clade_252clade_309hetero++++TRUE
SPC10313SPC10313clade_553clade_260clade_260semi++FALSETRUE
SPC10313SPC10358clade_553clade_260clade_494hetero++++FALSETRUE
SPC10313SPC10468clade_553clade_260clade_360hetero++++FALSETRUE
SPC10313SPC10470clade_553clade_260clade_537hetero++++FALSETRUE
SPC10313SPC10613clade_553clade_260clade_309hetero++++FALSE
SPC10358SPC10358clade_553clade_494clade_494semi++++FALSETRUE
SPC10358SPC10468clade_553clade_494clade_360hetero++++FALSETRUE
SPC10358SPC10470clade_553clade_494clade_537hetero++++FALSETRUE
SPC10358SPC10613clade_553clade_494clade_309hetero++++FALSE
SPC10468SPC10468clade_553clade_360clade_360semi++++FALSETRUE
SPC10468SPC10470clade_553clade_360clade_537hetero++++FALSETRUE
SPC10468SPC10613clade_553clade_360clade_309hetero++++FALSE
SPC10155SPC10155clade_262clade_252clade_252semi−−−−FALSEFALSE
SPC10155SPC10167clade_262clade_252clade_253hetero−−−−FALSEFALSE
SPC10155SPC10202clade_262clade_252clade_351heteroFALSEFALSE
SPC10155SPC10238clade_262clade_252clade_354hetero++++TRUETRUE
SPC10155SPC10256clade_262clade_252clade_252hetero++++TRUETRUE
SPC10155SPC10313clade_262clade_252clade_260hetero++++FALSEFALSE
SPC10155SPC10358clade_262clade_252clade_494hetero++++TRUETRUE
SPC10155SPC10468clade_262clade_252clade_360hetero++++FALSETRUE
SPC10155SPC10470clade_262clade_252clade_537hetero++FALSEFALSE
SPC10155SPC10613clade_262clade_252clade_309hetero++++FALSE
SPC10167SPC10167clade_262clade_253clade_253semi−−−−FALSEFALSE
SPC10167SPC10202clade_262clade_553clade_351hetero−−−−FALSEFALSE
SPC10167SPC10238clade_262clade_253clade_354hetero++++FALSETRUE
SPC10167SPC10256clade_262clade_253clade_252hetero++++TRUETRUE
SPC10167SPC10313clade_262clade_253clade_260hetero−−−−FALSEFALSE
SPC10167SPC10358clade_262clade_253clade_494hetero−−−−FALSEFALSE
SPC10167SPC10468clade_262clade_553clade_360heteroFALSEFALSE
SPC10167SPC10470clade_262clade_253clade_537hetero−−−−FALSEFALSE
SPC10167SPC10613clade_262clade_553clade_309hetero++FALSE
SPC10202SPC10202clade_262clade_351clade_351semi−−−−FALSEFALSE
SPC10202SPC10238clade_262clade_351clade_354hetero++++FALSEFALSE
SPC10202SPC10256clade_262clade_351clade_252hetero++++TRUETRUE
SPC10202SPC10313clade_262clade_351clade_260hetero−−−−FALSEFALSE
SPC10202SPC10358clade_262clade_351clade_494hetero−−FALSEFALSE
SPC10202SPC10468clade_262clade_351clade_360hetero++++FALSEFALSE
SPC10202SPC10470clade_262clade_351clade_537hetero++++FALSETRUE
SPC10202SPC10613clade_262clade_351clade_309hetero++++FALSE
SPC10238SPC10238clade_262clade_354clade_354semi++++FALSEFALSE
SPC10238SPC10256clade_262clade_354clade_252hetero++++TRUETRUE
SPC10238SPC10313clade_262clade_354clade_260hetero++++FALSETRUE
SPC10238SPC10358clade_262clade_354clade_494hetero++++FALSETRUE
SPC10238SPC10468clade_262clade_354clade_360hetero++++FALSEFALSE
SPC10238SPC10470clade_262clade_354clade_537hetero++++FALSETRUE
SPC10238SPC10613clade_262clade_354clade_309hetero++++TRUE
SPC10256SPC10256clade_262clade_252clade_252semi++++TRUEFALSE
SPC10256SPC10313clade_262clade_252clade_260hetero++++TRUETRUE
SPC10256SPC10358clade_262clade_252clade_494hetero++++TRUETRUE
SPC10256SPC10468clade_262clade_252clade_360hetero++++TRUETRUE
SPC10256SPC10470clade_262clade_252clade_537hetero++++TRUETRUE
SPC10256SPC10613clade_262clade_252clade_309hetero++++TRUE
SPC10313SPC10313clade_262clade_260clade_260semiFALSETRUE
SPC10313SPC10358clade_262clade_260clade_494heteroFALSEFALSE
SPC10313SPC10468clade_262clade_260clade_360hetero++++FALSETRUE
SPC10313SPC10470clade_262clade_260clade_537hetero+FALSETRUE
SPC10313SPC10613clade_262clade_260clade_309hetero++++FALSE
SPC10358SPC10358clade_262clade_494clade_494semi−−−−FALSEFALSE
SPC10358SPC10468clade_262clade_494clade_360hetero++++FALSEFALSE
SPC10358SPC10470clade_262clade_494clade_537hetero−−FALSEFALSE
SPC10358SPC10613clade_262clade_494clade_309hetero++++FALSE
SPC10468SPC10468clade_262clade_360clade_360semi++++FALSEFALSE
SPC10468SPC10470clade_262clade_360clade_537hetero++++FALSETRUE
SPC10468SPC10613clade_262clade_360clade_309hetero++++FALSE
SPC10155SPC10155clade_408clade_252clade_252semi++++FALSEFALSE
SPC10155SPC10167clade_408clade_252clade_253hetero++++FALSEFALSE
SPC10155SPC10202clade_408clade_252clade_351hetero++++FALSEFALSE
SPC10155SPC10238clade_408clade_252clade_354hetero++++TRUETRUE
SPC10155SPC10256clade_408clade_252clade_252hetero++++TRUETRUE
SPC10155SPC10313clade_408clade_252clade_260hetero++++FALSETRUE
SPC10155SPC10358clade_408clade_252clade_494hetero++++FALSETRUE
SPC10155SPC10468clade_408clade_252clade_360hetero++++FALSETRUE
SPC10155SPC10470clade_408clade_252clade_537hetero++++FALSETRUE
SPC10155SPC10613clade_408clade_252clade_309hetero++++FALSE
SPC10167SPC10167clade_408clade_253clade_253semi+++FALSEFALSE
SPC10167SPC10202clade_408clade_253clade_351heteroFALSEFALSE
SPC10167SPC10238clade_408clade_253clade_354hetero++++FALSEFALSE
SPC10167SPC10256clade_408clade_253clade_252hetero++++TRUETRUE
SPC10167SPC10313clade_408clade_253clade_260heteroFALSEFALSE
SPC10167SPC10358clade_408clade_253clade_494heteroFALSEFALSE
SPC10167SPC10468clade_408clade_253clade_360hetero++++FALSEFALSE
SPC10167SPC10470clade_408clade_253clade_537hetero++++FALSEFALSE
SPC10167SPC10613clade_408clade_253clade_309hetero++++FALSE
SPC10202SPC10202clade_408clade_351clade_351semi−−−−FALSEFALSE
SPC10202SPC10238clade_408clade_351clade_354hetero++++FALSEFALSE
SPC10202SPC10256clade_408clade_351clade_252hetero++++TRUETRUE
SPC10202SPC10313clade_408clade_351clade_260hetero−−−−FALSEFALSE
SPC10202SPC10358clade_408clade_351clade_494hetero−−FALSEFALSE
SPC10202SPC10468clade_408clade_381clade_360hetero++++FALSEFALSE
SPC10202SPC10470clade_408clade_351clade_537hetero++++FALSEFALSE
SPC10202SPC10613clade_408clade_351clade_309hetero++++FALSE
SPC10238SPC10238clade_408clade_354clade_354semi++++FALSEFALSE
SPC10238SPC10256clade_408clade_354clade_252hetero++++TRUEFALSE
SPC10238SPC10313clade_408clade_354clade_260hetero++++FALSEFALSE
SPC10238SPC10358clade_408clade_354clade_494hetero++++FALSEFALSE
SPC10238SPC10468clade_408clade_354clade_360hetero++++FALSEFALSE
SPC10238SPC10470clade_408clade_354clade_537hetero++++TRUETRUE
SPC10238SPC10613clade_408clade_354clade_309hetero++++TRUE
SPC10256SPC10256clade_408clade_252clade_252semi++++TRUEFALSE
SPC10256SPC10313clade_408clade_252clade_260hetero++++TRUETRUE
SPC10256SPC10358clade_408clade_252clade_494hetero++++TRUETRUE
SPC10256SPC10468clade_408clade_252clade_360hetero++++TRUETRUE
SPC10256SPC10470clade_408clade_252clade_537hetero++++TRUETRUE
SPC10256SPC10613clade_408clade_252clade_500hetero++++TRUE
SPC10313SPC10313clade_408clade_260clade_260semi−−−−FALSEFALSE
SPC10313SPC10358clade_408clade_260clade_494hetero−−−−FALSEFALSE
SPC10313SPC10468clade_408clade_260clade_360hetero++++FALSEFALSE
SPC10313SPC10470clade_408clade_260clade_537hetero+++FALSETRUE
SPC10313SPC10613clade_408clade_260clade_309hetero++++FALSE
SPC10358SPC10358clade_408clade_494clade_494semi−−−−FALSEFALSE
SPC10358SPC10468clade_408clade_494clade_360hetero++++FALSEFALSE
SPC10358SPC10470clade_408clade_494clade_537heteroFALSEFALSE
SPC10358SPC10613clade_408clade_494clade_309hetero++++FALSE
SPC10468SPC10468clade_408clade_360clade_360semiFALSEFALSE
SPC10468SPC10470clade_408clade_360clade_537hetero++++FALSETRUE
SPC10468SPC10613clade_408clade_360clade_309hetero++++FALSE
SPC10155SPC10155clade_408clade_252clade_252semi++++FALSETRUE
SPC10155SPC10167clade_408clade_252clade_253hetero++++FALSETRUE
SPC10155SPC10202clade_408clade_252clade_351hetero++++FALSETRUE
SPC10155SPC10238clade_408clade_252clade_354hetero++++TRUETRUE
SPC10155SPC10256clade_408clade_252clade_252hetero++++TRUETRUE
SPC10155SPC10313clade_408clade_252clade_260hetero++++FALSETRUE
SPC10155SPC10358clade_408clade_252clade_494hetero++++FALSETRUE
SPC10155SPC10468clade_408clade_252clade_360hetero++++FALSETRUE
SPC10155SPC10470clade_408clade_252clade_537hetero++++FALSEFALSE
SPC10155SPC10613clade_408clade_382clade_309hetero++++FALSE
SPC10167SPC10167clade_408clade_553clade_553semiFALSEFALSE
SPC10167SPC10202clade_408clade_253clade_351hetero−−−FALSEFALSE
SPC10167SPC10238clade_408clade_253clade_354hetero++++FALSETRUE
SPC10167SPC10256clade_408clade_553clade_252hetero++++TRUETRUE
SPC10167SPC10313clade_408clade_253clade_260heteroFALSEFALSE
SPC10167SPC10358clade_408clade_253clade_494heteroFALSEFALSE
SPC10167SPC10468clade_408clade_253clade_360hetero++FALSEFALSE
SPC10167SPC10470clade_408clade_253clade_537hetero−−−−FALSEFALSE
SPC10167SPC10613clade_408clade_253clade_309hetero−−−FALSE
SPC10202SPC10202clade_408clade_351clade_351semi−−FALSEFALSE
SPC10202SPC10238clade_408clade_351clade_354hetero++++TRUETRUE
SPC10202SPC10256clade_408clade_351clade_252hetero++++TRUETRUE
SPC10202SPC10313clade_408clade_351clade_260hetero−−−−FALSEFALSE
SPC10202SPC10358clade_408clade_351clade_494heteroFALSEFALSE
SPC10202SPC10468clade_408clade_351clade_360hetero+++FALSEFALSE
SPC10202SPC10470clade_408clade_351clade_537hetero+++FALSEFALSE
SPC10202SPC10613clade_408clade_351clade_309hetero++++FALSE
SPC10238SPC10238clade_408clade_354clade_354semi++++TRUEFALSE
SPC10238SPC10256clade_408clade_354clade_252hetero++++TRUEFALSE
SPC10238SPC10313clade_408clade_354clade_260hetero++++FALSETRUE
SPC10238SPC10358clade_408clade_354clade_494hetero++++TRUETRUE
SPC10238SPC10468clade_408clade_354clade_360hetero++++FALSETRUE
SPC10238SPC10470clade_408clade_354clade_537hetero++++TRUETRUE
SPC10238SPC10613clade_408clade_354clade_309hetero++++TRUE
SPC10256SPC10256clade_408clade_252clade_252semi++++TRUEFALSE
SPC10256SPC10313clade_408clade_252clade_260hetero++++TRUETRUE
SPC10256SPC10358clade_408clade_252clade_494hetero++++TRUETRUE
SPC10256SPC10468clade_408clade_252clade_360hetero++++TRUETRUE
SPC10256SPC10470clade_408clade_252clade_537hetero++++TRUETRUE
SPC10256SPC10613clade_408clade_252clade_309hetero++++TRUE
SPC10313SPC10313clade_408clade_260clade_260semi−−−FALSEFALSE
SPC10313SPC10358clade_408clade_260clade_494hetero++FALSEFALSE
SPC10313SPC10468clade_408clade_260clade_360hetero+++FALSEFALSE
SPC10313SPC10470clade_408clade_260clade_537hetero++++FALSETRUE
SPC10313SPC10613clade_408clade_260clade_309hetero−−−FALSE
SPC10358SPC10358clade_408clade_494clade_494semi++++FALSETRUE
SPC10358SPC10468clade_408clade_494clade_360hetero++++FALSETRUE
SPC10358SPC10470clade_408clade_494clade_537hetero+++FALSEFALSE
SPC10358SPC10613clade_408clade_494clade_309hetero++++FALSE
SPC10468SPC10468clade_408clade_360clade_360semi++++FALSEFALSE
SPC10468SPC10470clade_408clade_360clade_537hetero++++FALSETRUE
SPC10468SPC10613clade_408clade_360clade_500hetero++++FALSE
SPC10155SPC10155clade_478clade_252clade_252semiFALSEFALSE
SPC10155SPC10167clade_478clade_252clade_253hetero++++FALSEFALSE
SPC10155SPC10202clade_478clade_252clade_351heteroFALSEFALSE
SPC10155SPC10238clade_478clade_252clade_354hetero++++FALSETRUE
SPC10155SPC10256clade_478clade_252clade_252hetero++++TRUETRUE
SPC10155SPC10313clade_478clade_252clade_260hetero++++FALSETRUE
SPC10155SPC10358clade_478clade_252clade_494hetero++++FALSETRUE
SPC10155SPC10468clade_478clade_252clade_360hetero++++FALSEFALSE
SPC10155SPC10470clade_478clade_252clade_537hetero−−−−FALSEFALSE
SPC10155SPC10613clade_478clade_252clade_309hetero++++FALSE
SPC10167SPC10167clade_478clade_253clade_253semi−−−−FALSEFALSE
SPC10167SPC10202clade_478clade_253clade_351hetero−−−−FALSEFALSE
SPC10167SPC10238clade_478clade_253clade_354hetero++++FALSETRUE
SPC10167SPC10256clade_478clade_253clade_252hetero++++TRUETRUE
SPC10167SPC10313clade_478clade_253clade_260hetero−−−−FALSEFALSE
SPC10167SPC10358clade_478clade_253clade_494hetero−−−−FALSEFALSE
SPC10167SPC10468clade_478clade_253clade_360hetero−−−FALSEFALSE
SPC10167SPC10470clade_478clade_253clade_537hetero−−−−FALSEFALSE
SPC10167SPC10613clade_478clade_253clade_309hetero−−−FALSE
SPC10202SPC10202clade_478clade_351clade_351semi−−−−FALSEFALSE
SPC10202SPC10238clade_478clade_351clade_354hetero++++FALSEFALSE
SPC10202SPC10256clade_478clade_351clade_252hetero++++TRUETRUE
SPC10202SPC10313clade_478clade_351clade_260hetero−−−−FALSEFALSE
SPC10202SPC10358clade_478clade_351clade_494hetero−−−−FALSEFALSE
SPC10202SPC10468clade_478clade_351clade_360heteroFALSEFALSE
SPC10202SPC10470clade_478clade_351clade_537hetero−−−−FALSEFALSE
SPC10202SPC10613clade_478clade_351clade_309hetero++++FALSE
SPC10238SPC10238clade_478clade_354clade_354semi++++FALSEFALSE
SPC10238SPC10256clade_478clade_354clade_252hetero++++TRUEFALSE
SPC10238SPC10313clade_478clade_354clade_260hetero++++FALSETRUE
SPC10238SPC10358clade_478clade_354clade_494hetero++++TRUETRUE
SPC10238SPC10468clade_478clade_354clade_360hetero++++FALSETRUE
SPC10238SPC10470clade_478clade_354clade_537hetero++++FALSETRUE
SPC10238SPC10613clade_478clade_354clade_309hetero++++TRUE
SPC10256SPC10256clade_478clade_252clade_252semi++++TRUEFALSE
SPC10256SPC10313clade_478clade_252clade_260hetero++++TRUETRUE
SPC10256SPC10358clade_478clade_252clade_494hetero++++TRUETRUE
SPC10256SPC10468clade_478clade_252clade_360hetero++++TRUETRUE
SPC10256SPC10470clade_478clade_252clade_537hetero++++TRUETRUE
SPC10256SPC10613clade_478clade_252clade_309hetero++++TRUE
SPC10313SPC10313clade_478clade_260clade_260semi−−−−FALSEFALSE
SPC10313SPC10358clade_478clade_260clade_494hetero−−−−FALSEFALSE
SPC10313SPC10468clade_478clade_260clade_360hetero++++FALSETRUE
SPC10313SPC10470clade_478clade_260clade_537hetero−−−FALSEFALSE
SPC10313SPC10613clade_478clade_260clade_309heteroFALSE
SPC10358SPC10358clade_478clade_494clade_494semi−−−−FALSEFALSE
SPC10358SPC10468clade_478clade_494clade_360hetero++++FALSEFALSE
SPC10358SPC10470clade_478clade_494clade_537hetero−−FALSEFALSE
SPC10358SPC10613clade_478clade_494clade_309hetero++++FALSE
SPC10468SPC10468clade_478clade_360clade_360semi++++FALSEFALSE
SPC10468SPC10470clade_478clade_360clade_537hetero++++FALSETRUE
SPC10468SPC10613clade_478clade_360clade_309hetero++++FALSE
SPC10155SPC10155clade_260clade_252clade_252semi++++FALSEFALSE
SPC10155SPC10167clade_260clade_252clade_253hetero++++FALSETRUE
SPC10155SPC10202clade_260clade_252clade_351hetero++++FALSEFALSE
SPC10155SPC10238clade_260clade_252clade_354hetero++++FALSEFALSE
SPC10155SPC10256clade_260clade_252clade_252hetero++++TRUETRUE
SPC10155SPC10313clade_260clade_252clade_260hetero++++FALSEFALSE
SPC10155SPC10358clade_260clade_252clade_494hetero++++FALSETRUE
SPC10155SPC10468clade_260clade_252clade_360hetero++++FALSETRUE
SPC10155SPC10470clade_260clade_252clade_537hetero++++FALSEFALSE
SPC10155SPC10613clade_260clade_252clade_309hetero++++FALSE
SPC10167SPC10167clade_260clade_253clade_253semi−−−−FALSEFALSE
SPC10167SPC10202clade_260clade_253clade_351hetero−−−−FALSEFALSE
SPC10167SPC10238clade_260clade_253clade_354hetero++++FALSETRUE
SPC10167SPC10256clade_260clade_253clade_252hetero++++TRUETRUE
SPC10167SPC10313clade_260clade_253clade_260hetero−−−−FALSEFALSE
SPC10167SPC10358clade_260clade_253clade_494hetero−−−−FALSEFALSE
SPC10167SPC10468clade_260clade_253clade_360hetero+++FALSEFALSE
SPC10167SPC10470clade_260clade_253clade_537hetero−−−−FALSEFALSE
SPC10167SPC10613clade_260clade_253clade_309heteroFALSE
SPC10202SPC10202clade_260clade_351clade_351semi−−−−FALSEFALSE
SPC10202SPC10238clade_260clade_351clade_354hetero++++FALSEFALSE
SPC10202SPC10256clade_260clade_351clade_252hetero++++TRUEFALSE
SPC10202SPC10313clade_260clade_351clade_260hetero−−−−FALSEFALSE
SPC10202SPC10358clade_260clade_351clade_494hetero−−−FALSEFALSE
SPC10202SPC10468clade_260clade_351clade_360hetero++++FALSEFALSE
SPC10202SPC10470clade_260clade_351clade_537hetero++++FALSEFALSE
SPC10202SPC10613clade_260clade_351clade_309hetero++++FALSE
SPC10238SPC10238clade_260clade_354clade_354semi++++FALSEFALSE
SPC10238SPC10256clade_260clade_354clade_252hetero++++TRUEFALSE
SPC10238SPC10313clade_260clade_354clade_260hetero++++FALSETRUE
SPC10238SPC10358clade_260clade_354clade_494hetero++++FALSETRUE
SPC10238SPC10468clade_260clade_354clade_360hetero++++TRUETRUE
SPC10238SPC10470clade_260clade_354clade_537hetero++++TRUETRUE
SPC10238SPC10613clade_260clade_354clade_309hetero++++TRUE
SPC10256SPC10256clade_260clade_252clade_252semi++++TRUEFALSE
SPC10256SPC10313clade_260clade_252clade_260hetero++++TRUETRUE
SPC10256SPC10358clade_260clade_252clade_494hetero++++TRUETRUE
SPC10256SPC10468clade_260clade_252clade_360hetero++++TRUETRUE
SPC10256SPC10470clade_260clade_252clade_537hetero++++TRUETRUE
SPC10256SPC10613clade_260clade_252clade_309hetero++++TRUE
SPC10313SPC10313clade_260clade_260clade_260semi−−−−FALSEFALSE
SPC10313SPC10358clade_260clade_260clade_494hetero−−−−FALSEFALSE
SPC10313SPC10468clade_260clade_260clade_360hetero++++FALSEFALSE
SPC10313SPC10470clade_260clade_260clade_537hetero+++FALSETRUE
SPC10313SPC10613clade_260clade_260clade_309hetero++++FALSE
SPC10358SPC10358clade_260clade_494clade_494semiFALSEFALSE
SPC10358SPC10468clade_260clade_494clade_360hetero++++FALSEFALSE
SPC10358SPC10470clade_260clade_494clade_537hetero+++FALSEFALSE
SPC10358SPC10613clade_260clade_494clade_309hetero++++FALSE
SPC10468SPC10468clade_260clade_360clade_360semi++++FALSEFALSE
SPC10468SPC10470clade_260clade_360clade_537hetero++++FALSETRUE
SPC10468SPC10613clade_260clade_360clade_309hetero++++FALSE
SPC10155SPC10155clade_309clade_252clade_252semi++++TRUETRUE++++FALSE
SPC10155SPC10167clade_309clade_252clade_253hetero++++TRUETRUE++++FALSE
SPC10155SPC10202clade_309clade_252clade_351hetero++++TRUETRUE++++FALSE
SPC10155SPC10238clade_309clade_252clade_354hetero++++TRUETRUEFALSE
SPC10155SPC10256clade_309clade_252clade_252hetero++++TRUETRUE++++TRUE
SPC10155SPC10313clade_309clade_252clade_260hetero++++FALSETRUE++++FALSE
SPC10155SPC10358clade_309clade_252clade_494hetero++++TRUETRUE++++FALSE
SPC10155SPC10468clade_309clade_252clade_360hetero++++TRUETRUE++++FALSE
SPC10155SPC10470clade_309clade_252clade_537hetero++++TRUETRUE++++FALSE
SPC10155SPC10613clade_309clade_252clade_309hetero++++TRUE++++FALSE
SPC10167SPC10167clade_309clade_253clade_253semi++++FALSETRUE++++FALSE
SPC10167SPC10202clade_309clade_253clade_351hetero++++FALSETRUE++++FALSE
SPC10167SPC10238clade_309clade_253clade_354hetero++++TRUETRUE++++FALSE
SPC10167SPC10256clade_309clade_253clade_252hetero++++TRUETRUE++++TRUE
SPC10167SPC10313clade_309clade_253clade_260hetero++++TRUETRUE++++FALSE
SPC10167SPC10358clade_309clade_253clade_494hetero++++TRUETRUE+++FALSE
SPC10167SPC10468clade_309clade_253clade_360hetero++++TRUETRUE++++FALSE
SPC10167SPC10470clade_309clade_253clade_537hetero++++TRUETRUE++++FALSE
SPC10167SPC10613clade_309clade_253clade_309hetero++++TRUE++++FALSE
SPC10202SPC10202clade_309clade_351clade_351semi++++TRUETRUE++++FALSE
SPC10202SPC10238clade_309clade_351clade_354hetero++++TRUETRUE++++FALSE
SPC10202SPC10256clade_309clade_351clade_252hetero++++TRUETRUE++++TRUE
SPC10202SPC10313clade_309clade_351clade_260hetero++++TRUETRUE++++FALSE
SPC10202SPC10358clade_309clade_351clade_494hetero++++TRUETRUE++++FALSE
SPC10202SPC10468clade_309clade_351clade_360hetero++++TRUETRUE++++FALSE
SPC10202SPC10470clade_309clade_351clade_537hetero++++TRUETRUE++++FALSE
SPC10202SPC10613clade_309clade_351clade_309hetero++++TRUE++++FALSE
SPC10238SPC10238clade_309clade_354clade_354semi++++TRUETRUE++++TRUE
SPC10238SPC10256clade_309clade_354clade_252hetero++++TRUEFALSE++++TRUE
SPC10238SPC10313clade_309clade_354clade_260hetero++++TRUETRUE++++FALSE
SPC10238SPC10358clade_309clade_354clade_494hetero++++TRUETRUE++++FALSE
SPC10238SPC10468clade_309clade_354clade_360hetero++++TRUETRUE++++FALSE
SPC10238SPC10470clade_309clade_354clade_537hetero++++TRUETRUE++++FALSE
SPC10238SPC10613clade_309clade_354clade_309hetero++++TRUE++++TRUE
SPC10256SPC10256clade_309clade_252clade_252semi++++TRUEFALSE++++TRUE
SPC10256SPC10313clade_309clade_252clade_260hetero++++TRUETRUE++++TRUE
SPC10256SPC10358clade_309clade_252clade_494hetero++++TRUETRUE++++TRUE
SPC10256SPC10468clade_309clade_252clade_360hetero++++TRUETRUE++++TRUE
SPC10256SPC10470clade_309clade_252clade_537hetero++++TRUETRUE++++TRUE
SPC10256SPC10613clade_309clade_252clade_309hetero++++TRUE++++TRUE
SPC10313SPC10313clade_309clade_260clade_260semi++++TRUETRUE++++FALSE
SPC10313SPC10358clade_309clade_260clade_494hetero++++TRUETRUE++++FALSE
SPC10313SPC10468clade_309clade_260clade_360hetero++++TRUETRUE++++FALSE
SPC10313SPC10470clade_309clade_260clade_537hetero++++TRUETRUE+FALSE
SPC10313SPC10613clade_309clade_260clade_309hetero++++TRUE+FALSE
SPC10358SPC10358clade_309clade_494clade_494semi++++TRUETRUE++++FALSE
SPC10358SPC10468clade_309clade_494clade_360hetero++++TRUETRUE++++FALSE
SPC10358SPC10470clade_309clade_494clade_537hetero++++TRUETRUE++++FALSE
SPC10358SPC10613clade_309clade_494clade_309hetero++++TRUE++++FALSE
SPC10468SPC10468clade_309clade_360clade_360semi++++TRUETRUE++++TRUE
SPC10468SPC10470clade_309clade_360clade_537hetero++++TRUETRUE++++FALSE
SPC10468SPC10613clade_309clade_360clade_309hetero++++TRUE++++FALSE
SPC10155SPC10155clade_444clade_252clade_252semi++++FALSEFALSE
SPC10155SPC10167clade_444clade_252clade_253hetero+++FALSEFALSE
SPC10155SPC10202clade_444clade_252clade_351hetero++++FALSEFALSE
SPC10155SPC10238clade_444clade_252clade_354hetero++++TRUETRUE
SPC10155SPC10256clade_444clade_252clade_252hetero++++TRUETRUE
SPC10155SPC10313clade_444clade_252clade_260hetero++++FALSETRUE
SPC10155SPC10358clade_444clade_252clade_494hetero++++FALSETRUE
SPC10155SPC10468clade_444clade_252clade_360hetero++++FALSETRUE
SPC10155SPC10470clade_444clade_252clade_537hetero+FALSEFALSE
SPC10155SPC10613clade_444clade_252clade_309hetero++++FALSE
SPC10167SPC10167clade_444clade_253clade_253semi−−−−FALSEFALSE
SPC10167SPC10202clade_444clade_253clade_351hetero−−−−FALSEFALSE
SPC10167SPC10238clade_444clade_253clade_354hetero++++FALSETRUE
SPC10167SPC10256clade_444clade_253clade_252hetero++++TRUETRUE
SPC10167SPC10313clade_444clade_253clade_260hetero−−−−FALSEFALSE
SPC10167SPC10358clade_444clade_253clade_494hetero−−−−FALSEFALSE
SPC10167SPC10468clade_444clade_253clade_360hetero++++FALSEFALSE
SPC10167SPC10470clade_444clade_253clade_537hetero−−−−FALSEFALSE
SPC10167SPC10613clade_444clade_253clade_309hetero−−−−FALSE
SPC10202SPC10202clade_444clade_351clade_351semiFALSEFALSE
SPC10202SPC10238clade_444clade_351clade_354hetero++++FALSETRUE
SPC10202SPC10256clade_444clade_351clade_252hetero++++TRUETRUE
SPC10202SPC10313clade_444clade_351clade_260hetero−−−−FALSEFALSE
SPC10202SPC10358clade_444clade_351clade_494hetero−−−FALSEFALSE
SPC10202SPC10468clade_444clade_351clade_360hetero++++FALSEFALSE
SPC10202SPC10470clade_444clade_351clade 537heteroFALSEFALSE
SPC10202SPC10613clade_444clade_351clade_309hetero++++FALSE
SPC10238SPC10238clade_444clade_354clade_354semi++++FALSEFALSE
SPC10238SPC10256clade_444clade_354clade_252hetero++++TRUEFALSE
SPC10238SPC10313clade_444clade_354clade_260hetero++++TRUETRUE
SPC10238SPC10358clade_444clade_354clade_494hetero++++TRUETRUE
SPC10238SPC10468clade_444clade_354clade_360hetero++++TRUETRUE
SPC10238SPC10470clade_444clade_354clade_537hetero++++TRUETRUE
SPC10238SPC10613clade_444clade_354clade_309hetero++++TRUE
SPC10256SPC10256clade_444clade_252clade_252semi++++TRUEFALSE
SPC10256SPC10313clade_444clade_252clade_260hetero++++TRUETRUE
SPC10256SPC10358clade_444clade_252clade_494hetero++++TRUETRUE
SPC10256SPC10468clade_444clade_252clade_360hetero++++TRUETRUE
SPC10256SPC10470clade_444clade_252clade_537hetero++++TRUETRUE
SPC10256SPC10613clade_444clade_252clade_309hetero++++TRUE
SPC10313SPC10313clade_444clade_260clade_260semi−−−−FALSEFALSE
SPC10313SPC10358clade_444clade_260clade_494hetero−−−−FALSEFALSE
SPC10313SPC10468clade_444clade_260clade_360hetero++FALSETRUE
SPC10313SPC10470clade_444clade_260clade_537heteroFALSETRUE
SPC10313SPC10613clade_444clade_260clade_309hetero++++FALSE
SPC10358SPC10358clade_444clade_494clade_494semiFALSEFALSE
SPC10358SPC10468clade_444clade_494clade_360hetero++++FALSEFALSE
SPC10358SPC10470clade_444clade_494clade_537heteroFALSEFALSE
SPC10358SPC10613clade_444clade_494clade_309hetero++++FALSE
SPC10468SPC10468clade_444clade_360clade_360semi++++FALSEFALSE
SPC10468SPC10470clade_444clade_360clade_537hetero++++FALSETRUE
SPC10468SPC10613clade_444clade_360clade_309hetero++++FALSE
SPC10097SPC10097clade_252clade_553clade_553semiFALSEFALSE
SPC10097SPC10304clade_252clade_553clade_262hetero++++FALSEFALSE
SPC10097SPC10325clade_252clade_553clade_408hetero++++FALSEFALSE
SPC10097SPC10355clade_252clade_553clade_408hetero++++FALSEFALSE
SPC10097SPC10386clade_252clade_553clade_478hetero++++FALSEFALSE
SPC10097SPC10390clade_252clade_553clade_260hetero+++FALSEFALSE
SPC10097SPC10415clade_252clade_553clade_309hetero++++TRUETRUE
SPC10097SPC10567clade_252clade_553clade_444hetero++++FALSEFALSE
SPC10304SPC10304clade_252clade_262clade_262semi−−FALSEFALSE
SPC10304SPC10325clade_252clade_262clade_408hetero++++FALSEFALSE
SPC10304SPC10355clade_252clade_262clade_408heteroFALSEFALSE
SPC10304SPC10386clade_252clade_262clade_478hetero−−−−FALSEFALSE
SPC10304SPC10390clade_252clade_262clade_260hetero++++FALSETRUE
SPC10304SPC10415clade_252clade_262clade_309hetero++++FALSETRUE
SPC10304SPC10567clade_252clade_262clade_444heteroFALSEFALSE
SPC10325SPC10325clade_252clade_408clade_408semi++++FALSEFALSE
SPC10325SPC10355clade_252clade_408clade_408hetero++++FALSEFALSE
SPC10325SPC10386clade_252clade_408clade_478hetero+++FALSEFALSE
SPC10325SPC10390clade_252clade_408clade_260hetero++++FALSEFALSE
SPC10325SPC10415clade_252clade_408clade_309hetero++++FALSETRUE
SPC10325SPC10567clade_252clade_408clade_444hetero++++FALSETRUE
SPC10355SPC10355clade_252clade_408clade_408semi−−−FALSEFALSE
SPC10355SPC10386clade_252clade_408clade_478hetero−−−−FALSEFALSE
SPC10355SPC10390clade_252clade_408clade_260hetero++++FALSETRUE
SPC10355SPC10415clade_252clade_408clade_309hetero++++FALSEFALSE
SPC10355SPC10567clade_252clade_408clade_444hetero+++FALSEFALSE
SPC10386SPC10386clade_252clade_478clade_478semi−−FALSEFALSE
SPC10386SPC10390clade_252clade_478clade_260hetero++++FALSEFALSE
SPC10386SPC10415clade_252clade_478clade_309hetero++++FALSETRUE
SPC10386SPC10567clade_252clade_478clade_444heteroFALSEFALSE
SPC10390SPC10390clade_252clade_260clade_260semi++++FALSEFALSE
SPC10390SPC10415clade_252clade_260clade_309hetero++++FALSETRUE
SPC10390SPC10567clade_252clade_260clade_444hetero++++FALSETRUE
SPC10415SPC10415clade_252clade_309clade_309semi++++FALSETRUE
SPC10415SPC10567clade_252clade_309clade_444hetero++++TRUETRUE
SPC10567SPC10567clade_252clade_444clade_444semi+++FALSETRUE
SPC10097SPC10097clade_253clade_553clade_553semiFALSEFALSE
SPC10097SPC10304clade_253clade_553clade_262heteroFALSEFALSE
SPC10097SPC10325clade_253clade_553clade_408hetero−−−FALSEFALSE
SPC10097SPC10355clade_253clade_553clade_408hetero−−−−FALSEFALSE
SPC10097SPC10386clade_253clade_553clade_478hetero−−−FALSEFALSE
SPC10097SPC10390clade_253clade_553clade_260hetero++FALSEFALSE
SPC10097SPC10415clade_253clade_553clade_309hetero++++FALSETRUE
SPC10097SPC10567clade_253clade_553clade_444heteroFALSEFALSE
SPC10304SPC10304clade_253clade_262clade_262semi−−−−FALSEFALSE
SPC10304SPC10325clade_253clade_262clade_408heteroFALSEFALSE
SPC10304SPC10355clade_253clade_262clade_408hetero−−−−FALSEFALSE
SPC10304SPC10386clade_253clade_262clade_478hetero−−−−FALSEFALSE
SPC10304SPC10390clade_253clade_262clade_260hetero++++FALSEFALSE
SPC10304SPC10415clade_253clade_262clade_309hetero++++FALSETRUE
SPC10304SPC10567clade_253clade_262clade_444hetero−−−−FALSEFALSE
SPC10325SPC10325clade_253clade_408clade_408semiFALSEFALSE
SPC10325SPC10355clade_253clade_408clade_408hetero−−−−FALSEFALSE
SPC10325SPC10386clade_253clade_408clade_478hetero−−−−FALSEFALSE
SPC10325SPC10390clade_253clade_408clade_360hetero++FALSEFALSE
SPC10325SPC10415clade_253clade_408clade_309hetero++++FALSETRUE
SPC10325SPC10567clade_253clade_408clade_444hetero++++FALSEFALSE
SPC10355SPC10355clade_253clade_408clade_408semi−−−−FALSEFALSE
SPC10355SPC10386clade_253clade_408clade_478hetero−−−−FALSEFALSE
SPC10355SPC10390clade_253clade_408clade_260hetero++++FALSEFALSE
SPC10355SPC10415clade_253clade_408clade_309hetero++++FALSEFALSE
SPC10355SPC10567clade_253clade_408clade_444hetero−−−−FALSEFALSE
SPC10386SPC10386clade_253clade_478clade_478semi−−−−FALSEFALSE
SPC10386SPC10390clade_253clade_478clade_260hetero−−−−FALSEFALSE
SPC10386SPC10415clade_253clade_478clade_309hetero++++FALSETRUE
SPC10386SPC10567clade_253clade_478clade_444hetero−−−−FALSEFALSE
SPC10390SPC10390clade_253clade_260clade_260semi−−−FALSEFALSE
SPC10390SPC10415clade_253clade_260clade_309hetero++++FALSETRUE
SPC10390SPC10567clade_253clade_260clade_444hetero+FALSEFALSE
SPC10415SPC10415clade_253clade_309clade_309semi++++FALSETRUE
SPC10415SPC10567clade_253clade_309clade_444hetero++++FALSETRUE
SPC10567SPC10567clade_253clade_444clade_444semi−−−−FALSEFALSE
SPC10097SPC10097clade_351clade_553clade_553semi+++FALSEFALSE
SPC10097SPC10304clade_351clade_553clade_262hetero++++FALSEFALSE
SPC10097SPC10325clade_351clade_553clade_408hetero+++FALSEFALSE
SPC10097SPC10355clade_351clade_553clade_408hetero++++FALSEFALSE
SPC10097SPC10386clade_351clade_553clade_478hetero++++FALSEFALSE
SPC10097SPC10390clade_351clade_553clade_260hetero++++FALSETRUE
SPC10097SPC10415clade_351clade_553clade_309hetero++++FALSETRUE
SPC10097SPC10567clade_351clade_553clade_444hetero++++FALSETRUE
SPC10304SPC10304clade_351clade_262clade_262semi−−−FALSEFALSE
SPC10304SPC10325clade_351clade_262clade_408hetero++FALSEFALSE
SPC10304SPC10355clade_351clade_262clade_408hetero−−FALSEFALSE
SPC10304SPC10386clade_351clade_262clade_478hetero−−−−FALSEFALSE
SPC10304SPC10390clade_351clade_262clade_260hetero++++FALSEFALSE
SPC10304SPC10415clade_351clade_262clade_309hetero++++FALSETRUE
SPC10304SPC10567clade_351clade_262clade_444hetero++++FALSEFALSE
SPC10325SPC10325clade_351clade_408clade_408semi++FALSEFALSE
SPC10325SPC10355clade_351clade_408clade_408hetero+++FALSEFALSE
SPC10325SPC10386clade_351clade_408clade_478heteroFALSEFALSE
SPC10325SPC10390clade_351clade_408clade_260hetero++++FALSEFALSE
SPC10325SPC10415clade_351clade_408clade_309hetero++++FALSETRUE
SPC10325SPC10567clade_351clade_408clade_444hetero++++FALSEFALSE
SPC10355SPC10355clade_351clade_408clade_408semiFALSEFALSE
SPC10355SPC10386clade_351clade_408clade_478heteroFALSEFALSE
SPC10355SPC10390clade_351clade_408clade_260hetero+++FALSEFALSE
SPC10355SPC10415clade_351clade_408clade_309hetero++++FALSEFALSE
SPC10355SPC10567clade_351clade_408clade_444hetero+++FALSEFALSE
SPC10386SPC10386clade_351clade_478clade_478semi−−−FALSEFALSE
SPC10386SPC10390clade_351clade_478clade_260hetero+++FALSEFALSE
SPC10386SPC10415clade_351clade_478clade_309hetero++++FALSETRUE
SPC10386SPC10567clade_351clade_478clade_444heteroFALSEFALSE
SPC10390SPC10390clade_351clade_260clade_260semi++++FALSEFALSE
SPC10390SPC10415clade_351clade_260clade_309hetero++++FALSETRUE
SPC10390SPC10567clade_351clade_260clade_444hetero++++FALSETRUE
SPC10415SPC10415clade_351clade_309clade_309semi++++FALSETRUE
SPC10415SPC10567clade_351clade_309clade_444hetero++++TRUETRUE
SPC10567SPC10567clade_351clade_444clade_444semi+++FALSETRUE
SPC10097SPC10097clade_354clade_553clade_553semi++++FALSEFALSE
SPC10097SPC10304clade_354clade_553clade_262hetero++++FALSEFALSE
SPC10097SPC10325clade_354clade_553clade_408hetero++++FALSEFALSE
SPC10097SPC10355clade_354clade_553clade_408hetero++++FALSETRUE
SPC10097SPC10386clade_354clade_553clade_478hetero++++FALSETRUE
SPC10097SPC10390clade_354clade_553clade_260hetero++++FALSETRUE
SPC10097SPC10415clade_354clade_553clade_309hetero++++FALSEFALSE
SPC10097SPC10567clade_354clade_553clade_444hetero++++FALSETRUE
SPC10304SPC10304clade_354clade_262clade_262semi++++FALSEFALSE
SPC10304SPC10325clade_354clade_262clade_408hetero++++FALSEFALSE
SPC10304SPC10355clade_354clade_262clade_408hetero++++FALSETRUE
SPC10304SPC10386clade_354clade_262clade_478hetero++++FALSETRUE
SPC10304SPC10390clade_354clade_262clade_260hetero++++FALSEFALSE
SPC10304SPC10415clade_354clade_262clade_309hetero++++FALSETRUE
SPC10304SPC10567clade_354clade_262clade_444hetero++++TRUETRUE
SPC10325SPC10325clade_354clade_408clade_408semi++++FALSEFALSE
SPC10325SPC10355clade_354clade_408clade_408hetero++++FALSETRUE
SPC10325SPC10386clade_354clade_408clade_478hetero++++FALSETRUE
SPC10325SPC10390clade_354clade_408clade_260hetero++++FALSETRUE
SPC10325SPC10415clade_354clade_408clade_309hetero++++TRUETRUE
SPC10325SPC10567clade_354clade_408clade_444hetero++++TRUETRUE
SPC10355SPC10355clade_354clade_408clade_408semi++++FALSEFALSE
SPC10355SPC10386clade_354clade_408clade_478hetero++++FALSETRUE
SPC10355SPC10390clade_354clade_408clade_260hetero++++FALSEFALSE
SPC10355SPC10415clade_354clade_408clade_309hetero++++FALSEFALSE
SPC10355SPC10567clade_354clade_408clade_444hetero++++TRUETRUE
SPC10386SPC10386clade_354clade_478clade_478semi++++FALSETRUE
SPC10386SPC10390clade_354clade_478clade_260hetero++++FALSETRUE
SPC10386SPC10415clade_354clade_478clade_309hetero++++TRUETRUE
SPC10386SPC10567clade_354clade_478clade_444hetero++++TRUETRUE
SPC10390SPC10390clade_354clade_260clade_260semi++++FALSETRUE
SPC10390SPC10415clade_354clade_260clade_309hetero++++TRUETRUE
SPC10390SPC10567clade_354clade_260clade_444hetero++++TRUETRUE
SPC10415SPC10415clade_354clade_309clade_309semi++++FALSEFALSE
SPC10415SPC10567clade_354clade_309clade_444hetero++++TRUETRUE
SPC10567SPC10567clade_354clade_444clade_444semi++++TRUETRUE
SPC10097SPC10097clade_252clade_553clade_553semi++++TRUETRUE
SPC10097SPC10304clade_252clade_553clade_262hetero++++TRUETRUE
SPC10097SPC10325clade_252clade_553clade_408hetero++++TRUEFALSE
SPC10097SPC10355clade_252clade_553clade_408hetero++++TRUETRUE
SPC10097SPC10386clade_252clade_553clade_478hetero++++TRUETRUE
SPC10097SPC10390clade_252clade_553clade_260hetero++++TRUETRUE
SPC10097SPC10415clade_252clade_553clade_309hetero++++TRUETRUE
SPC10097SPC10567clade_252clade_553clade_444hetero++++TRUETRUE
SPC10304SPC10304clade_252clade_262clade_262semi++++TRUETRUE
SPC10304SPC10325clade_252clade_262clade_408hetero++++TRUETRUE
SPC10304SPC10355clade_252clade_262clade_408hetero++++TRUETRUE
SPC10304SPC10386clade_252clade_262clade_478hetero++++TRUETRUE
SPC10304SPC10390clade_252clade_262clade_260hetero++++TRUETRUE
SPC10304SPC10415clade_252clade_262clade_309hetero++++TRUETRUE
SPC10304SPC10567clade_252clade_262clade_444hetero++++TRUETRUE
SPC10325SPC10325clade_252clade_408clade_408semi++++TRUETRUE
SPC10325SPC10355clade_252clade_408clade_408hetero++++TRUEFALSE
SPC10325SPC10386clade_252clade_408clade_478hetero++++TRUETRUE
SPC10325SPC10390clade_252clade_408clade_260hetero++++TRUETRUE
SPC10325SPC10415clade_252clade_408clade_309hetero++++TRUETRUE
SPC10325SPC10567clade_252clade_408clade_444hetero++++TRUETRUE
SPC10355SPC10355clade_252clade_408clade_408semi++++TRUEFALSE
SPC10355SPC10386clade_252clade_408clade_478hetero++++TRUETRUE
SPC10355SPC10390clade_252clade_408clade_260hetero++++TRUETRUE
SPC10355SPC10415clade_252clade_408clade_309hetero++++TRUEFALSE
SPC10355SPC10567clade_252clade_408clade_444hetero++++TRUETRUE
SPC10386SPC10386clade_252clade_478clade_478semi++++TRUETRUE
SPC10386SPC10390clade_252clade_478clade_260hetero++++TRUETRUE
SPC10386SPC10415clade_252clade_478clade_309hetero++++TRUETRUE
SPC10386SPC10567clade_252clade_478clade_444hetero++++TRUETRUE
SPC10390SPC10390clade_252clade_260clade_260semi++++TRUETRUE
SPC10390SPC10415clade_252clade_260clade_309hetero++++TRUETRUE
SPC10390SPC10567clade_252clade_260clade_444hetero++++TRUETRUE
SPC10415SPC10415clade_252clade_309clade_309semi++++TRUETRUE
SPC10415SPC10567clade_252clade_309clade_444hetero++++TRUETRUE
SPC10567SPC10567clade_252clade_444clade_444semi++++TRUETRUE
SPC10097SPC10097clade_260clade_553clade_553semi+FALSEFALSE
SPC10097SPC10304clade_260clade_553clade_262hetero++++FALSETRUE
SPC10097SPC10325clade_260clade_553clade_408hetero++++FALSEFALSE
SPC10097SPC10355clade_260clade_553clade_408hetero++++FALSEFALSE
SPC10097SPC10386clade_260clade_553clade_478hetero++++FALSETRUE
SPC10097SPC10390clade_260clade_553clade_260hetero++++FALSETRUE
SPC10097SPC10415clade_260clade_553clade_309hetero++++FALSETRUE
SPC10097SPC10567clade_260clade_553clade_444hetero++++FALSETRUE
SPC10304SPC10304clade_260clade_262clade_262semiFALSEFALSE
SPC10304SPC10325clade_260clade_262clade_408hetero++++FALSETRUE
SPC10304SPC10355clade_260clade_262clade_408hetero++++FALSETRUE
SPC10304SPC10386clade_260clade_262clade_478heteroFALSEFALSE
SPC10304SPC10390clade_260clade_262clade_260hetero++++FALSETRUE
SPC10304SPC10415clade_260clade_262clade_309hetero++++FALSETRUE
SPC10304SPC10567clade_260clade_262clade_444hetero+FALSETRUE
SPC10325SPC10325clade_260clade_408clade_408semi++++FALSEFALSE
SPC10325SPC10355clade_260clade_408clade_408heteroFALSEFALSE
SPC10325SPC10386clade_260clade_408clade_478hetero++++FALSETRUE
SPC10325SPC10390clade_260clade_408clade_260hetero++++FALSETRUE
SPC10325SPC10415clade_260clade_408clade_309hetero++++FALSETRUE
SPC10325SPC10567clade_260clade_408clade_444hetero++++FALSETRUE
SPC10355SPC10355clade_260clade_408clade_408semiFALSEFALSE
SPC10355SPC10386clade_260clade_408clade_478heteroFALSEFALSE
SPC10355SPC10390clade_260clade_408clade_260hetero++++FALSEFALSE
SPC10355SPC10415clade_260clade_408clade_309hetero++++FALSETRUE
SPC10355SPC10567clade_260clade_408clade_444hetero++++FALSETRUE
SPC10386SPC10386clade_260clade_478clade_478semi−−−−FALSEFALSE
SPC10386SPC10390clade_260clade_478clade_260hetero++++FALSETRUE
SPC10386SPC10415clade_260clade_478clade_309hetero++++FALSETRUE
SPC10386SPC10567clade_260clade_478clade_444hetero+++FALSETRUE
SPC10390SPC10390clade_260clade_260clade_260semi++++FALSETRUE
SPC10390SPC10415clade_260clade_260clade_309hetero++++TRUETRUE
SPC10390SPC10567clade_260clade_260clade_444hetero++++FALSETRUE
SPC10415SPC10415clade_260clade_309clade_309semi++++TRUETRUE
SPC10415SPC10567clade_260clade_309clade_444hetero++++TRUETRUE
SPC10567SPC10567clade_260clade_444clade_444semi++++FALSETRUE
SPC10097SPC10097clade_494clade_553clade_553semi++++FALSETRUE
SPC10097SPC10304clade_494clade_553clade_262hetero++++FALSETRUE
SPC10097SPC10325clade_494clade_553clade_408hetero++++FALSETRUE
SPC10097SPC10355clade_494clade_553clade_408hetero++++FALSETRUE
SPC10097SPC10386clade_494clade_553clade_478hetero++++FALSETRUE
SPC10097SPC10390clade_494clade_553clade_260hetero++++FALSETRUE
SPC10097SPC10415clade_494clade_553clade_309hetero++++TRUETRUE
SPC10097SPC10567clade_494clade_553clade_444hetero++++FALSETRUE
SPC10304SPC10304clade_494clade_262clade_262semi−−−−FALSEFALSE
SPC10304SPC10325clade_494clade_262clade_408hetero+FALSEFALSE
SPC10304SPC10355clade_494clade_262clade_408hetero++FALSEFALSE
SPC10304SPC10386clade_494clade_262clade_478hetero−−−−FALSEFALSE
SPC10304SPC10390clade_494clade_262clade_260hetero++++FALSETRUE
SPC10304SPC10415clade_494clade_262clade_309hetero++++TRUETRUE
SPC10304SPC10567clade_494clade_262clade_444hetero−−−−FALSEFALSE
SPC10325SPC10325clade_494clade_408clade_408semi++++FALSEFALSE
SPC10325SPC10355clade_494clade_408clade_408hetero++FALSEFALSE
SPC10325SPC10386clade_494clade_408clade_478hetero++++FALSEFALSE
SPC10325SPC10390clade_494clade_408clade_260hetero++++FALSEFALSE
SPC10325SPC10415clade_494clade_408clade_309hetero++++TRUETRUE
SPC10325SPC10567clade_494clade_408clade_444hetero++++FALSETRUE
SPC10355SPC10355clade_494clade_408clade_408semi−−FALSEFALSE
SPC10355SPC10386clade_494clade_408clade_478hetero−−−FALSEFALSE
SPC10355SPC10390clade_494clade_408clade_260hetero++++FALSEFALSE
SPC10355SPC10415clade_494clade_408clade_309hetero++++FALSETRUE
SPC10355SPC10567clade_494clade_408clade_444hetero++FALSEFALSE
SPC10386SPC10386clade_494clade_478clade_478semi−−−FALSEFALSE
SPC10386SPC10390clade_494clade_478clade_260heteroFALSEFALSE
SPC10386SPC10415clade_494clade_478clade_309hetero++++TRUETRUE
SPC10386SPC10567clade_494clade_478clade_444hetero−−−−FALSEFALSE
SPC10390SPC10390clade_494clade_260clade_260semiFALSEFALSE
SPC10390SPC10415clade_494clade_260clade_309hetero++++TRUETRUE
SPC10390SPC10567clade_494clade_260clade_444hetero+++FALSEFALSE
SPC10415SPC10415clade_494clade_309clade_309semi++++TRUETRUE
SPC10415SPC10567clade_494clade_309clade_444hetero++++TRUETRUE
SPC10567SPC10567clade_494clade_444clade_444semiFALSEFALSE
SPC10097SPC10097clade_360clade_553clade_553semiFALSEFALSE
SPC10097SPC10304clade_360clade_553clade_262heteroFALSEFALSE
SPC10097SPC10325clade_360clade_553clade_408hetero+FALSEFALSE
SPC10097SPC10355clade_360clade_553clade_408hetero++++FALSEFALSE
SPC10097SPC10386clade_360clade_553clade_478hetero++++FALSEFALSE
SPC10097SPC10390clade_360clade_553clade_260hetero++++FALSETRUE
SPC10097SPC10415clade_360clade_553clade_309hetero++++FALSETRUE
SPC10097SPC10567clade_360clade_553clade_444hetero++++FALSETRUE
SPC10304SPC10304clade_360clade_262clade_262semiFALSEFALSE
SPC10304SPC10325clade_360clade_262clade_408heteroFALSEFALSE
SPC10304SPC10355clade_360clade_262clade_408heteroFALSEFALSE
SPC10304SPC10386clade_360clade_262clade_478hetero++++FALSEFALSE
SPC10304SPC10390clade_360clade_262clade_260hetero++++FALSETRUE
SPC10304SPC10415clade_360clade_262clade_309hetero++++FALSETRUE
SPC10304SPC10567clade_360clade_262clade_444hetero++++FALSETRUE
SPC10325SPC10325clade_360clade_408clade_408semi++FALSEFALSE
SPC10325SPC10355clade_360clade_408clade_408hetero++++FALSEFALSE
SPC10325SPC10386clade_360clade_408clade_478hetero+++FALSEFALSE
SPC10325SPC10390clade_360clade_408clade_260hetero++++FALSEFALSE
SPC10325SPC10415clade_360clade_408clade_309hetero++++TRUETRUE
SPC10325SPC10567clade_360clade_408clade_444hetero++++FALSETRUE
SPC10355SPC10355clade_360clade_408clade_408semiFALSEFALSE
SPC10355SPC10386clade_360clade_408clade_478heteroFALSEFALSE
SPC10355SPC10390clade_360clade_408clade_260hetero++++FALSETRUE
SPC10355SPC10415clade_360clade_408clade_309hetero++++FALSETRUE
SPC10355SPC10567clade_360clade_408clade_444hetero++++FALSEFALSE
SPC10386SPC10386clade_360clade_478clade_478semiFALSEFALSE
SPC10386SPC10390clade_360clade_478clade_260hetero++++FALSETRUE
SPC10386SPC10415clade_360clade_478clade_309hetero++++FALSETRUE
SPC10386SPC10567clade_360clade_478clade_444hetero++++FALSETRUE
SPC10390SPC10390clade_360clade_260clade_260semi++++FALSETRUE
SPC10390SPC10415clade_360clade_260clade_309hetero++++TRUETRUE
SPC10390SPC10567clade_360clade_260clade_444hetero++++FALSETRUE
SPC10415SPC10415clade_360clade_309clade_309semi++++TRUETRUE
SPC10415SPC10567clade_360clade_309clade_444hetero++++TRUETRUE
SPC10567SPC10567clade_360clade_444clade_444semi++++FALSETRUE

[0360]

Bacteroides sp. 1_1_6295Clostridium sp. HGF2628clade_65clade_351
Bacteroides sp. 1_1_6295Bifidobacterium357clade_65clade_172
pseudocatenulatum
Bacteroides sp. 1_1_6295Clostridium symbiosum652clade_65clade_408
Bacteroides sp. 3_1_23308Clostridium nexile607clade_38clade_262
Bacteroides sp. 3_1_23308Bifidobacterium357clade_38clade_172
pseudocatenulatum
Bacteroides sp. 3_1_23308Clostridium symbiosum652clade_38clade_408
Streptococcus thermophilus1883Bifidobacterium357clade_98clade_172
pseudocatenulatum
Clostridium nexile607Bifidobacterium357clade_262clade_172
pseudocatenulatum
Parabacteroides merdae1420Bifidobacterium357clade_286clade_172
pseudocatenulatum
Clostridium tertium653Clostridium mayombei605clade_252clade_354
Clostridium tertium653Clostridium butyricum561clade_252clade_252
Clostridium tertium653Coprococcus comes674clade_252clade_262
Clostridium tertium653Clostridium hylemonae593clade_252clade_260
Clostridium tertium653Clostridium orbiscindens609clade_252clade_494
Clostridium tertium653Lachnospiraceae bacterium1054clade_252clade_260
5_1_57FAA
Clostridium tertium653Ruminococcus gnavus1661clade_252clade_360
Clostridium tertium653Ruminococcus bromii1657clade_252clade_537
Clostridium disporicum579Clostridium mayombei605clade_253clade_354
Clostridium disporicum579Clostridium butyricum561clade_253clade_252
Clostridium disporicum579Clostridium orbiscindens609clade_253clade_494
Clostridium disporicum579Ruminococcus gnavus1661clade_253clade_360
Clostridium mayombei605Clostridium butyricum561clade_354clade_252
Clostridium mayombei605Coprococcus comes674clade_354clade_262
Clostridium mayombei605Clostridium hylemonae593clade_354clade_260
Clostridium mayombei605Clostridium symbiosum652clade_354clade_408
Clostridium mayombei605Clostridium orbiscindens609clade_354clade_494
Clostridium mayombei605Lachnospiraceae bacterium1054clade_354clade_260
5_1_57FAA
Clostridium mayombei605Ruminococcus gnavus1661clade_354clade_360
Clostridium mayombei605Ruminococcus bromii1657clade_354clade_537
Clostridium butyricum561Clostridium mayombei605clade_252clade_354
Clostridium butyricum561Coprococcus comes674clade_252clade_262
Clostridium butyricum561Clostridium hylemonae593clade_252clade_260
Clostridium butyricum561Clostridium symbiosum652clade_252clade_408
Clostridium butyricum561Clostridium orbiscindens609clade_252clade_494
Clostridium butyricum561Lachnospiraceae bacterium1054clade_252clade_260
5_1_57FAA
Clostridium butyricum561Ruminococcus gnavus1661clade_252clade_360
Clostridium butyricum561Ruminococcus bromii1657clade_252clade_537
Coprococcus comes674Clostridium butyricum561clade_262clade_252
Coprococcus comes674Ruminococcus gnavus1661clade_262clade_360
Clostridium hylemonae593Lachnospiraceae bacterium1054clade_260clade_260
5_1_57FAA
Clostridium orbiscindens609Ruminococcus gnavus1661clade_494clade_360
Coprococcus comes674Clostridium tertium653Clostridium mayombei605clade_262clade_252clade_354
Coprococcus comes674Clostridium tertium653Clostridium butyricum561clade_262clade_252clade_252
Coprococcus comes674Clostridium tertium653Clostridium orbiscindens609clade_262clade_252clade_494
Coprococcus comes674Clostridium disporicum579Clostridium butyricum561clade_262clade_253clade_252
Coprococcus comes674Clostridium mayombei605Clostridium butyricum561clade_262clade_354clade_252
Coprococcus comes674Clostridium butyricum561Clostridium hylemonae593clade_262clade_252clade_260
Coprococcus comes674Clostridium butyricum561Clostridium orbiscindens609clade_262clade_252clade_494
Coprococcus comes674Clostridium butyricum561Ruminococcus gnavus1661clade_262clade_252clade_360
Coprococcus comes674Clostridium butyricum561Ruminococcus bromii1657clade_262clade_252clade_537
Clostridium symbiosum652Clostridium tertium653Clostridium mayombei605clade_408clade_252clade_354
Clostridium symbiosum652Clostridium tertium653Clostridium butyricum561clade_408clade_252clade_252
Clostridium symbiosum652Clostridium disporicum579Clostridium butyricum561clade_408clade_253clade_252
Clostridium symbiosum652Clostridium mayombei605Clostridium orbiscindens609clade_408clade_354clade_494
Clostridium symbiosum652Clostridium mayombei605Ruminococcus bromii1657clade_408clade_354clade_537
Clostridium symbiosum652Clostridium butyricum561Clostridium hylemonae593clade_408clade_252clade_260
Clostridium symbiosum652Clostridium butyricum561Clostridium orbiscindens609clade_408clade_252clade_494
Clostridium symbiosum652Clostridium butyricum561Ruminococcus gnavus1661clade_408clade_252clade_360
Clostridium symbiosum652Clostridium butyricum561Ruminococcus bromii1657clade_408clade_252clade_537
Lachnospiraceae bacterium1054Clostridium tertium653Clostridium butyricum561clade_260clade_252clade_252
5_1_57FAA
Lachnospiraceae bacterium1054Clostridium disporicum579Clostridium butyricum561clade_260clade_253clade_252
5_1_57FAA
Lachnospiraceae bacterium1054Clostridium mayombei605Ruminococcus gnavus1661clade_260clade_354clade_360
5_1_57FAA
Lachnospiraceae bacterium1054Clostridium mayombei605Ruminococcus bromii1657clade_260clade_354clade_537
5_1_57FAA
Lachnospiraceae bacterium1054Clostridium butyricum561Clostridium hylemonae593clade_260clade_252clade_260
5_1_57FAA
Lachnospiraceae bacterium1054Clostridium butyricum561Clostridium orbiscindens609clade_260clade_252clade_494
5_1_57FAA
Lachnospiraceae bacterium1054Clostridium butyricum561Ruminococcus gnavus1661clade_260clade_252clade_360
5_1_57FAA
Lachnospiraceae bacterium1054Clostridium butyricum561Ruminococcus bromii1657clade_260clade_252clade_537
5_1_57FAA
Clostridium butyricum561Coprococcus comes674Clostridium symbiosum652clade_252clade_262clade_408
Clostridium butyricum561Coprococcus comes674Lachnospiraceae bacterium1054clade_252clade_262clade_260
5_1_57FAA
Clostridium butyricum561Clostridium symbiosum652Lachnospiraceae bacterium1054clade_252clade_408clade_260
5_1_57FAA

[0361]

Mort.Clade1Clade2Clade3
SP4271PBS1Vehiclen/an/a0.822.63
SP42714V5F2FSV33_10pctn/an/a0.9900
(EMT)
SP427679F3DE277512.1CollinsellaFaecalibacteriumBlautia1.84++++0.851.41clade_553clade_478clade_309
aerofaciensprausnitziiproducta
SP42712V7B4DE643314.1FaecalibacteriumBlautia productaEubacterium1.27++++0.8123clade_478clade_309clade_444
prausnitziirectale
SP42756995DE022136.1ClostridiumLachnospiraceaeBlautia0.81++++0.9310clade_408clade_260clade_309
bolteaebacteriumproducta
5_1_57FAA
SP42710E4W6DE061176.1CollinsellaClostridiumRuminococcus2.87++++0.960.20clade_553clade_252clade_360
aerofaciensbutyricumgnavus
SP42778527DE554703.1CollinsellaClostridiumClostridium3.09++++0.781.72clade_553clade_252clade_260
aerofaciensbutyricumhylemonae
SP42733668DE705158.1CoprococcusClostridiumClostridium3++++0.851.72clade_262clade_351clade_252
comesinnocuumbutyricum
SP4279CE39DE266960.1ClostridiumClostridiumRuminococcus3.06++++0.9110clade_408clade_252clade_360
bolteaebutyricumgnavus
SP4278BCY10DE897971.1ClostridiumCollinsellaClostridium1.46++++0.831.71clade_354clade_553clade_408
mayombeiaerofacienssymbiosum
SP42713Y4K11DE001210.1ClostridiumCollinsellaBlautia2++++0.881.10clade_252clade_553clade_309
tertiumaerofaciensproducta
SP42711FBK12DE586246.1ClostridiumLachnospiraceaeBlautia1.88++++0.9410clade_354clade_260clade_309
mayombeibacteriumproducta
5_1_57FAA
SP42743R113DE844277.1CoprococcusClostridiumBlautia2.1++++0.8810clade_262clade_354clade_309
comesmayombeisp. M25
SP42721HR14DE208485.1CoprococcusClostridiumClostridium1.8++++0.891.31clade_262clade_252clade_494
comestertiumorbiscindens
SP42731PBS31Naiven/an/a100
NoCdiff

[0362]

36153.1
34151.3
26155.2
24151.6
36242.7
34240.7
26244.6

[0363]

36152.5
34150.4
26154.2
24151.2
36241.7
34240.2
26243.1
24240.1

[0364]

36154.3
34152.1
26155.8
24153.3
36243.9
34241.4
26245.1
24242.5

[0365]

SP-3273Vehicle Control300.892.2
SP-3274Vanco. Positive Control00.991
SP-32712N19572.0E+0700.870
SP-32713N19572.0E+06400.862.2
SP-32714N19572.0E+05500.802.8
SP-3381Vehicle Control600.813.2
SP-3382Vanco. Positive Control01.000
SP-338310% fecal suspension00.951
SP-3385N19572.0E+07100.802
SP-3386N19572.0E+0600.971
SP-3387N19572.0E+05200.851.7
SP-33811N19572.0E+07200.862
SP-33812N19572.0E+06300.832.5
SP-33813N19612.0E+07100.931.3
SP-33814N19552.0E+0700.911.2
SP-33815N19552.0E+06100.901.5
SP-33816N19552.0E+05100.892.7
SP-33817N19672.0E+07100.941.4
SP-33818N19832.0E+0700.921
SP-33819N19892.0E+07100.911.3
SP-33820N19962.0E+07100.931.3
SP-33821Naïve01.000
SP-3391Vehicle Control200.882.2
SP-3392Vanco. Positive Control00.990
SP-339310% fecal suspension00.970
SP-3394N19952.0E+07200.832.1
SP-3395N19952.0E+06100.911.5
SP-3396N19952.0E+0500.961.2
SP-3397N19502.0E+0700.941
SP-3398N19942.0E+07200.871.8
SP-3399N19972.0E+0700.951.2
SP-33910N19672.0E+0700.931.2
SP-33911N19832.0E+07100.832.2
SP-33912N19892.0E+0700.881.5
SP-33913N19962.0E+0700.971
SP-33914N20022.0E+07200.922
SP-33915N20002.0E+0700.981.2
SP-33921Naïve00.980
SP-3421Vehicle Control400.852.5
SP-3422Vanco. Positive Control01.000
SP-3425N19572.0E+0800.940.2
SP-3426N19572.0E+0700.960
SP-3427N19572.0E+06100.881.3
SP-3428N19802.0E+08100.921.8
SP-3429N19982.0E+08200.832.8
SP-34210N19762.0E+08100.921.4
SP-34211N19872.0E+08100.931.6
SP-34212N20052.0E+08200.862.4
SP-34213N19582.0E+0800.941.5
SP-34214N20042.0E+08100.931.4
SP-34215N19492.0E+08100.871.5
SP-34218N19702.0E+08500.813
SP-34221Naïve00.990
SP-3611Vehicle Control300.882.6
SP-361210% fecal suspension00.990
SP-3613N4351.0E+07800.833.6
SP-3614N19791.0E+0700.970
SP-3615N4141.0E+0700.970
SP-3616N5121.0E+07200.941.6
SP-3617N5821.0E+07100.930.9
SP-3618N5711.0E+07300.882.1
SP-3619N5101.0E+0700.930.3
SP-36110N19811.0E+07400.832.8
SP-36111N19691.0E+07800.823.6
SP-36112N4611.0E+07100.891.2
SP-36113N4601.0E+0700.931.1
SP-36114N19591.0E+07300.891.9
SP-36115N20061.0E+07300.891.9
SP-36116N19531.0E+07100.832.3
SP-36117N19601.0E+0700.921
SP-36118N20071.0E+07100.910.9
SP-36119N19781.0E+07100.911.3
SP-36120N19721.0E+07300.832.6
SP-36121Naïve01.000
SP-3631Vehicle Control300.852.6
SP-363210% fecal suspension00.950
SP-3638N19741.0E+07600.813.2
SP-3639N5821.0E+07600.813.2
SP-36310N4351.0E+07300.862.1
SP-36311N4141.0E+07400.832.5
SP-36312N4571.0E+07300.832.2
SP-36313N5111.0E+07200.872
SP-36314N5131.0E+0700.880.2
SP-36315N6821.0E+07300.822.6
SP-36316N7361.0E+07400.822.8
SP-36317N7321.0E+07100.861.3
SP-36318N19481.0E+07600.853.2
SP-36319N8531.0E+07100.852.2
SP-36320N19791.0E+07600.783.2
SP-36321N8791.0E+07400.832.8
SP-36322N9991.0E+07200.882.4
SP-36323N9751.0E+07300.802.6
SP-36324N8611.0E+07500.853
SP-36325N10951.0E+07800.833.6
SP-36326Naïve01.000
SP-3641Vehicle Control400.832.8
SP-3644N5821.0E+0700.810.9
SP-3645N5821.0E+0600.840.9
SP-3646N5821.0E+05400.762.5
SP-36413N4141.0E+0700.840
SP-36414N4141.0E+06300.792.4
SP-36415N4141.0E+05100.762
SP-3642210% fecal suspension00.970
SP-36423Nave00.990
SP-3651Vehicle Control400.832.8
SP-365410% fecal suspension00.980
SP-36513N5821.0E+07600.803.2
SP-36514N5821.0E+06100.891.5
SP-36515N4141.0E+07200.861.7
SP-36516N4141.0E+06800.833.5
SP-36521Naïve01.000
SP-3661Vehicle Control200.822.4
SP-366410% fecal suspension00.931
SP-3667N5821.0E+0700.861
SP-36610N4141.0E+07200.832.4
SP-36613N4021.0E+07300.812.1
SP-36616N19821.0E+0700.901.1
SP-36619N4601.0E+07100.832.2
SP-36622N5136.7E+06400.822.8
SP-36623N19661.0E+0700.900.5
SP-36624N19771.0E+07200.831.9
SP-36625N19791.0E+07200.832.4
SP-36626N6821.0E+07200.832.3
SP-36627N19471.0E+07100.821.3
SP-36628N5821.0E+07200.821.8
SP-36629N4141.0E+0700.851.5
SP-36630N6031.0E+07300.822.2
SP-36631Naïve00.990
SP-3681Vehicle Control500.852.8
SP-368210% fecal suspension00.970
SP-3687N19661.0E+0700.891
SP-3688N19661.0E+06100.911.5
SP-3689N19661.0E+05500.823.1
SP-36821Naïve01.000
SP-3741Vehicle Control1000.834
SP-374410% fecal suspension100.890.5
SP-37411N19661.0E+0800.871
SP-37412N19661.0E+0800.910.5
SP-37413N19661.0E+07100.881.3
SP-37414N19661.0E+06500.793
SP-37415N5841.0E+0800.891
SP-37416N5841.0E+07300.842.4
SP-37417N19621.0E+0700.930
SP-37418N3821.0E+07100.851.5
SP-37419N19641.0E+07200.891.8
SP-37420N19651.0E+07300.852.1
SP-37421N3061.0E+07100.900.4
SP-37422N19881.0E+0700.891
SP-37423N20031.0E+0700.921.2
SP-37424N19931.0E+07200.772.4
SP-37425Naïve00.990
SP-3761Vehicle Control600.833.2
SP-376210% fecal suspension00.980
SP-3763N19661.0E+08300.792.4
SP-3764N19661.0E+0700.950
SP-3765N19661.0E+08300.792.6
SP-3766N19661.0E+07100.882.2
SP-3767N19861.0E+07400.802.8
SP-3768N19621.0E+0800.980
SP-3769N19621.0E+0700.950
SP-37610N19631.0E+07400.812.6
SP-37611N19841.0E+0800.970
SP-37612N19841.0E+0700.901.1
SP-37613N19901.0E+0800.921
SP-37614N19901.0E+0700.921
SP-37615N19991.0E+08100.871.4
SP-37616N19991.0E+0700.930
SP-37617N19681.0E+07500.783
SP-37618N19511.0E+0700.931
SP-37619N19911.0E+0700.931.1
SP-37620N19751.0E+07500.783
SP-37621Naïve00.990
SP-3831Vehicle Control1000.834
SP-383210% fecal suspension00.920.1
SP-3839N19621.0E+09100.951.3
SP-38310N19621.0E+08100.931.3
SP-38311N19621.0E+0700.921
SP-38312N19841.0E+0900.891
SP-38313N19841.0E+08100.941.3
SP-38314N19841.0E+07100.901.3
SP-38321Naïve01.000
SP-3901Vehicle Control800.823.6
SP-390210% fecal suspension00.980.1
SP-3903N19622.0E+0700.970
SP-3904N19622.0E+0600.980
SP-3905N19842.0E+0700.951
SP-3906N19842.0E+0600.950.1
SP-3909N19622.0E+0700.931
SP-39010N19622.0E+06100.931.3
SP-39011N19842.0E+07200.862.2
SP-39012N19842.0E+09300.882.1
SP-39013N19522.0E+0700.891
SP-39014N20012.0E+0700.950.2
SP-39015N19732.0E+07100.900.7
SP-39016N19542.0E+0700.941.1
SP-39017N19852.0E+07100.861.8
SP-39018N19712.0E+0700.890.9
SP-39019N19562.0E+0700.950
SP-39020N19922.0E+0700.950
SP-39031Naïve00.980

[0366]

N306clade_252, (clade_260 or clade_260c orBlautia producta, Clostridium hylemonae,
clade_260g or clade_260h), (clade_262 orClostridium innocuum, Clostridium orbiscindens,
clade_262i), (clade_309 or clade_309c orClostridium symbiosum, Clostridium tertium,
clade_309e or clade_309g or clade_309h orCollinsella aerofaciens, Coprobacillus sp. D7,
clade_309i), (clade_351 or clade_351e),Coprococcus comes, Eubacterium rectale,
(clade_38 or clade_38e or clade_38i),Eubacterium sp. WAL 14571, Faecalibacterium
(clade_408 or clade_408b or clade_408d orprausnitzii, Lachnospiraceae bacterium 5_1_57FAA,
clade_408f or clade_408g or clade_408h),Roseburia faecalis, Ruminococcus obeum,
(clade_444 or clade_444i), (clade_478 orRuminococcus torques
clade_478i), (clade_481 or clade_481a or
clade_481b or clade_481e or clade_481g or
clade_481h or clade_481i), clade_494,
(clade_553 or clade_553i)
N382clade_252, (clade_260 or clade_260c orBlautia producta, Clostridium hylemonae,
clade_260g or clade_260h), (clade_262 orClostridium innocuum, Clostridium orbiscindens,
clade_262i), (clade_309 or clade_309c orClostridium symbiosum, Clostridium tertium,
clade_309e or clade_309g or clade_309h orCollinsella aerofaciens, Coprococcus comes,
clade_309i), (clade_351 or clade_351e),Lachnospiraceae bacterium 5_1_57FAA,
(clade_360 or clade_360c or clade_360g orRuminococcus bromii, Ruminococcus gnavus
clade_360h or clade_360i), (clade_408 or
clade_408b or clade_408d or clade_408f or
clade_408g or clade_408h), clade_494,
clade_537, (clade_553 or clade_553i)
N402(clade_262 or clade_262i), clade_286,Alistipes shahii, Coprococcus comes, Dorea
(clade_309 or clade_309c or clade_309e orformicigenerans, Dorea longicatena, Eubacterium
clade_309g or clade_309h or clade_309i),rectale, Faecalibacterium prausnitzii, Odoribacter
(clade_360 or clade_360c or clade_360g orsplanchnicus, Parabacteroides merdae,
clade_360h or clade_360i), (clade_444 orRuminococcus obeum, Ruminococcus torques
clade_444i), clade_466, (clade_478 or
clade_478i), clade_500
N414(clade_262 or clade_262i), (clade_309 orCoprococcus comes, Dorea formicigenerans, Dorea
clade_309c or clade_309e or clade_309g orlongicatena, Eubacterium eligens, Eubacterium
clade_309h or clade_309i), (clade_360 orrectale, Faecalibacterium prausnitzii, Odoribacter
clade_360c or clade_360g or clade_360h orsplanchnicus, Ruminococcus obeum, Ruminococcus
clade_360i), (clade_444 or clade_444i),torques
clade_466, (clade_478 or clade_478i),
(clade_522 or clade_522i)
N435(clade_262 or clade_262i), (clade_309 orCoprococcus comes, Dorea formicigenerans, Dorea
clade_309c or clade_309e or clade_309g orlongicatena, Eubacterium rectale, Faecalibacterium
clade_309h or clade_309i), (clade_360 orprausnitzii, Odoribacter splanchnicus,
clade_360c or clade_360g or clade_360h orRuminococcus obeum, Ruminococcus torques
clade_360i), (clade_444 or clade_444i),
clade_466, (clade_478 or clade_478i)
N457(clade_262 or clade_262i), (clade_309 orDorea longicatena, Eubacterium eligens,
clade_309c or clade_309e or clade_309g orEubacterium rectale, Faecalibacterium prausnitzii,
clade_309h or clade_309i), (clade_360 orRoseburia intestinalis, Ruminococcus obeum,
clade_360c or clade_360g or clade_360h orRuminococcus torques
clade_360i), (clade_444 or clade_444i),
(clade_478 or clade_478i), (clade_522 or
clade_522i)
N460(clade_262 or clade_262i), (clade_309 orCoprococcus comes, Dorea formicigenerans,
clade_309c or clade_309e or clade_309g orEubacterium rectale, Faecalibacterium prausnitzii,
clade_309h or clade_309i), (clade_360 orOdoribacter splanchnicus, Ruminococcus obeum,
clade_360c or clade_360g or clade_360h orRuminococcus torques
clade_360i), (clade_444 or clade_444i),
clade_466, (clade_478 or clade_478i)
N461(clade_262 or clade_262i), (clade_309 orCoprococcus comes, Dorea formicigenerans, Dorea
clade_309c or clade_309e or clade_309g orlongicatena, Eubacterium rectale, Faecalibacterium
clade_309h or clade_309i), (clade_360 orprausnitzii, Ruminococcus obeum, Ruminococcus
clade_360c or clade_360g or clade_360h ortorques
clade_360i), (clade_444 or clade_444i),
(clade_478 or clade_478i)
N510(clade_262 or clade_262i), (clade_309 orDorea longicatena, Eubacterium eligens,
clade_309c or clade_309e or clade_309g orEubacterium rectale, Faecalibacterium prausnitzii,
clade_309h or clade_309i), (clade_360 orRuminococcus obeum, Ruminococcus torques
clade_360c or clade_360g or clade_360h or
clade_360i), (clade_444 or clade_444i),
(clade_478 or clade_478i), (clade_522 or
clade_522i)
N511(clade_262 or clade_262i), (clade_309 orCoprococcus comes, Eubacterium rectale,
clade_309c or clade_309e or clade_309g orFaecalibacterium prausnitzii, Roseburia intestinalis,
clade_309h or clade_309i), (clade_444 orRuminococcus obeum, Ruminococcus torques
clade_444i), (clade_478 or clade_478i)
N512(clade_262 or clade_262i), (clade_309 orCoprococcus comes, Dorea formicigenerans, Dorea
clade_309c or clade_309e or clade_309g orlongicatena, Eubacterium rectale, Ruminococcus
clade_309h or clade_309i), (clade_360 orobeum, Ruminococcus torques
clade_360c or clade_360g or clade_360h or
clade_360i), (clade_444 or clade_444i)
N513(clade_262 or clade_262i), (clade_309 orCoprococcus comes, Dorea formicigenerans,
clade_309c or clade_309e or clade_309g orEubacterium rectale, Faecalibacterium prausnitzii,
clade_309h or clade_309i), (clade_360 orRuminococcus obeum, Ruminococcus torques
clade_360c or clade_360g or clade_360h or
clade_360i), (clade_444 or clade_444i),
(clade_478 or clade_478i)
N571(clade_262 or clade_262i), (clade_309 orDorea longicatena, Eubacterium rectale,
clade_309c or clade_309e or clade_309g orFaecalibacterium prausnitzii, Ruminococcus obeum,
clade_309h or clade_309i), (clade_360 orRuminococcus torques
clade_360c or clade_360g or clade_360h or
clade_360i), (clade_444 or clade_444i),
(clade_478 or clade_478i)
N582(clade_262 or clade_262i), (clade_309 orClostridium symbiosum, Eubacterium rectale,
clade_309c or clade_309e or clade_309g orFaecalibacterium prausnitzii, Ruminococcus obeum,
clade_309h or clade_309i), (clade_408 orRuminococcus torques
clade_408b or clade_408d or clade_408f or
clade_408g or clade_408h), (clade_444 or
clade_444i), (clade_478 or clade_478i)
N584(clade_260 or clade_260c or clade_260g orBlautia producta, Clostridium symbiosum,
clade_260h), (clade_262 or clade_262i),Collinsella aerofaciens, Coprococcus comes,
(clade_309 or clade_309c or clade_309e orLachnospiraceae bacterium 5_1_57FAA
clade_309g or clade_309h or clade_309i),
(clade_408 or clade_408b or clade_408d or
clade_408f or clade_408g or clade_408h),
(clade_553 or clade_553i)
N603(clade_172 or clade_172i), (clade_309 orBifidobacterium adolescentis, Dorea longicatena,
clade_309c or clade_309e or clade_309g orEubacterium rectale, Faecalibacterium prausnitzii,
clade_309h or clade_309i), (clade_360 orRuminococcus obeum
clade_360c or clade_360g or clade_360h or
clade_360i), (clade_444 or clade_444i),
(clade_478 or clade_478i)
N682clade_170, (clade_309 or clade_309c orBacteroides caccae, Eubacterium rectale,
clade_309e or clade_309g or clade_309h orFaecalibacterium prausnitzii, Ruminococcus obeum
clade_309i), (clade_444 or clade_444i),
(clade_478 or clade_478i)
N732(clade_262 or clade_262i), (clade_309 orCoprococcus comes, Faecalibacterium prausnitzii,
clade_309c or clade_309e or clade_309g orRuminococcus obeum, Ruminococcus torques
clade_309h or clade_309i), (clade_478 or
clade_478i)
N736(clade_262 or clade_262i), (clade_309 orDorea longicatena, Faecalibacterium prausnitzii,
clade_309c or clade_309e or clade_309g orRuminococcus obeum, Ruminococcus torques
clade_309h or clade_309i), (clade_360 or
clade_360c or clade_360g or clade_360h or
clade_360i), (clade_478 or clade_478i)
N853(clade_262 or clade_262i), (clade_444 orEubacterium rectale, Faecalibacterium prausnitzii,
clade_444i), (clade_478 or clade_478i)Ruminococcus torques
N861(clade_262 or clade_262i), (clade_309 orClostridium hathewayi, Ruminococcus obeum,
clade_309c or clade_309e or clade_309g orRuminococcus torques
clade_309h or clade_309i), (clade_408 or
clade_408b or clade_408d or clade_408f or
clade_408g or clade_408h)
N879(clade_309 or clade_309c or clade_309e orFaecalibacterium prausnitzii, Roseburia intestinalis,
clade_309g or clade_309h or clade_309i),Ruminococcus obeum
(clade_444 or clade_444i), (clade_478 or
clade_478i)
N975clade_170, (clade_262 or clade_262i),Bacteroides caccae, Coprococcus comes, Dorea
(clade_360 or clade_360c or clade_360g orlongicatena
clade_360h clade_360i)
N999(clade_309 or clade_309c or clade_309e orDorea formicigenerans, Faecalibacterium
clade_309g or clade_309h or clade_309i),prausnitzii, Ruminococcus obeum
(clade_360 or clade_360c or clade_360g or
clade_360h or clade_360i), (clade_478 or
clade_478i)
N1095(clade_444 or clade_444i), (clade_522 orEubacterium eligens, Eubacterium rectale
clade_522i)
N1947(clade_262 or clade_262i), (clade_309 orBacteroides sp. 3_1_23, Collinsella aerofaciens,
clade_309c or clade_309e or clade_309g orDorea longicatena, Escherichia coli, Eubacterium
clade_309h or clade_309i), (clade_360 orrectale, Faecalibacterium prausnitzii, Roseburia
clade_360c or clade_360g or clade_360h orintestinalis, Ruminococcus obeum, Ruminococcus
clade_360i), (clade_38 or clade_38e ortorques
clade_38i), (clade_444 or clade_444i),
(clade_478 or clade_478i), (clade_553 or
clade_553i), (clade_92 or clade_92e or
clade_92i)
N1948(clade_262 or clade_262i), (clade_38 orBacteroides sp. 1_1_6, Bacteroides sp. 3_1_23,
clade_38e or clade_38i), (clade_478 orFaecalibacterium prausnitzii, Ruminococcus
clade_478i), (clade_65 or clade_65e)torques
N1949(clade_309 or clade_309c or clade_309e orBacteroides sp. 1_1_6, Bacteroides sp. 3_1_23,
clade_309g or clade_309h or clade_309i),Bacteroides vulgatus, Blautia producta,
(clade_378 or clade_378e), (clade_38 orEnterococcus faecalis, Erysipelotrichaceae
clade_38e or clade_38i), (clade_479 orbacterium 3_1_53, Escherichia coli
clade_479c or clade_479g or clade_479h),
(clade_497 or clade_497e or clade_497f),
(clade_65 or clade_65e), (clade_92 or
clade_92e or clade_92i)
N1950clade_253, (clade_309 or clade_309c orBacteroides sp. 1_1_6, Bacteroides sp. 3_1_23,
clade_309e or clade_309g or clade_309h orBacteroides vulgatus, Blautia producta, Clostridium
clade_309i), (clade_378 or clade_378e),disporicum, Erysipelotrichaceae bacterium 3_1_53
(clade_38 or clade_38e or clade_38i),
(clade_479 or clade_479c or clade_479g or
clade_479h), (clade_65 or clade_65e)
N1951(clade_260 or clade_260c or clade_260g orBlautia producta, Clostridium bolteae, Clostridium
clade_260h), (clade_262 or clade_262i),hylemonae, Clostridium symbiosum, Coprococcus
(clade_309 or clade_309c or clade_309e orcomes, Eubacterium rectale,
clade_309g or clade_309h or clade_309i),Lachnospiraceae bacterium 5_1_57FAA,
(clade_360 or clade_360c or clade_360g orRuminococcus gnavus
clade_360h or clade_360i), (clade_408 or
clade_408b or clade_408d or clade_408f or
clade_408g or clade_408h), (clade_444 or
clade_444i)
N1952clade_252, clade_253, (clade_260 orBlautia producta, Clostridium bolteae, Clostridium
clade_260c or clade_260g or clade_260h),butyricum, Clostridium disporicum, Clostridium
(clade_262 or clade_262i), (clade_309 orhylemonae, Clostridium innocuum, Clostridium
clade_309c or clade_309e or clade_309g ormayombei, Clostridium orbiscindens, Clostridium
clade_309h or clade_309i), (clade_351 orsymbiosum, Clostridium tertium, Collinsella
clade_351e), (clade_354 or clade_354e),aerofaciens, Coprococcus comes,
(clade_360 or clade_360c or clade_360g orLachnospiraceae bacterium 5_1_57FAA,
clade_360h or clade_360i), (clade_408 orRuminococcus bromii, Ruminococcus gnavus
clade_408b or clade_408d or clade_408f or
clade_408g or clade_408h), clade_494,
clade_537, (clade_553 or clade_553i)
N1953clade_253, (clade_262 or clade_262i),Bacteroides sp. 1_1_6, Bacteroides vulgatus,
(clade_309 or clade_309c or clade_309e orClostridium disporicum, Clostridium mayombei,
clade_309g or clade_309h or clade_309i),Clostridium symbiosum, Coprobacillus sp. D7,
(clade_354 or clade_354e), (clade_360 orCoprococcus comes, Dorea formicigenerans,
clade_360c or clade_360g or clade_360h orEnterococcus faecalis, Erysipelotrichaceae
clade_360i), (clade_378 or clade_378e),bacterium 3_1_53, Escherichia coli, Eubacterium
(clade_408 or clade_408b or clade_408d orrectale, Faecalibacterium prausnitzii, Odoribacter
clade_408f or clade_408g or clade_408h),splanchnicus, Ruminococcus obeum
(clade_444 or clade_444i), clade_466,
(clade_478 or clade_478i), (clade_479 or
clade_479c or clade_479g or clade_479h),
(clade_481 or clade_481a or clade_481b or
clade_481e or clade_481g or clade_481h or
clade_481i), (clade_497 or clade_497e or
clade_497f), (clade_65 or clade_65e),
(clade_92 or clade_92e or clade_92i)
N1954clade_252, clade_253, (clade_260 orBlautia sp. M25, Clostridium bolteae, Clostridium
clade_260c or clade_260g or clade_260h),butyricum, Clostridium disporicum, Clostridium
(clade_262 or clade_262i), (clade_309 orhylemonae, Clostridium innocuum, Clostridium
clade_309c or clade_309e or clade_309g ormayombei, Clostridium orbiscindens, Clostridium
clade_309h or clade_309i), (clade_351 orsymbiosum, Clostridium tertium, Collinsella
clade_351e), (clade_354 or clade_354e),aerofaciens, Coprococcus comes,
(clade_360 or clade_360c or clade_360g orLachnospiraceae bacterium 5_1_57FAA,
clade_360h or clade_360i), (clade_408 orRuminococcus bromii, Ruminococcus gnavus
clade_408b or clade_408d or clade_408f or
clade_408g or clade_408h), clade_494,
clade_537, (clade_553 or clade_553i)
N1955(clade_309 or clade_309c or clade_309e orBacteroides sp. 1_1_6, Bacteroides sp. 2_1_22,
clade_309g or clade_309h or clade_309i),Bacteroides sp. 3_1_23, Bacteroides vulgatus,
(clade_354 or clade_354e), (clade_378 orBlautia producta, Clostridium sordellii,
clade_378e), (clade_38 or clade_38e orCoprobacillus sp. D7, Enterococcus faecalis,
clade_38i), (clade_479 or clade_479c orEnterococcus faecium, Erysipelotrichaceae
clade_479g or clade_479h), (clade_481 orbacterium 3_1_53, Escherichia coli
clade_481a or clade_481b or clade_481e or
clade_481g or clade_481h or clade_481i),
(clade_497 or clade_497e or clade_497f),
(clade_65 or clade_65e), (clade_92 or
clade_92e or clade_92i)
N1956clade_252, clade_253, (clade_260 orBlautia producta, Clostridium bolteae, Clostridium
clade_260c or clade_260g or clade_260h),butyricum, Clostridium disporicum, Clostridium
(clade_262 or clade_262i), (clade_309 orhylemonae, Clostridium innocuum, Clostridium
clade_309c or clade_309e or clade_309g ormayombei, Clostridium nexile, Clostridium
clade_309h or clade_309i), (clade_351 ororbiscindens, Clostridium symbiosum, Clostridium
clade_351e), (clade_354 or clade_354e),tertium, Collinsella aerofaciens,
(clade_360 or clade_360c or clade_360g orLachnospiraceae bacterium 5_1_57FAA,
clade_360h or clade_380i), (clade_408 orRuminococcus bromii, Ruminococcus gnavus
clade_408b or clade_408d or clade_408f or
clade_408g or clade_408h), clade_494,
clade_537, (clade_553 or clade_553i)
N1957(clade_309 or clade_309c or clade_309e orBacteroides sp. 1_1_6, Bacteroides sp. 3_1_23,
clade_309g or clade_309h or clade_309i),Bacteroides vulgatus, Blautia producta, Clostridium
(clade_351 or clade_351e), (clade_354 orinnocuum, Clostridium sordellii, Coprobacillus sp.
clade_354e), (clade_378 or clade_378e),D7, Enterococcus faecalis, Escherichia coli
(clade_38 or clade_38e or clade_38i),
(clade_481 or clade_481a or clade_481b or
clade_481e or clade_481g or clade_481h or
clade_481i), (clade_497 or clade_497e or
clade_497f), (clade_65 or clade_65e),
(clade_92 or clade_92e or clade_92i)
N1958(clade_351 or clade_351e), (clade_354 orClostridium innocuum, Clostridium sordellii,
clade_354e), (clade_481 or clade_481a orCoprobacillus sp. D7
clade_481b or clade_481e or clade_481g or
clade_481h or clade_481i)
N1959clade_253, (clade_262 or clade_262i),Bacteroides sp. 1_1_6, Bacteroides sp. 3_1_23,
(clade_309 or clade_309c or clade_309e orBacteroides vulgatus, Blautia producta, Clostridium
clade_309g or clade_309h or clade_309i),disporicum, Coprococcus comes, Dorea
(clade_360 or clade_360c or clade_360g orformicigenerans, Dorea longicatena, Enterococcus
clade_360h or clade_360i), (clade_378 orfaecalis, Erysipelotrichaceae bacterium 3_1_53,
clade_378e), (clade_38 or clade_38e orEscherichia coli, Eubacterium eligens, Eubacterium
clade_38i), (clade_444 or clade_444i),rectale, Faecalibacterium prausnitzii, Ruminococcus
(clade_478 or clade_478i), (clade_479 orobeum, Ruminococcus torques
clade_479c or clade_479g or clade_479h),
(clade_497 or clade_497e or clade_497f),
(clade_522 or clade_522i), (clade_65 or
clade_65e), (clade_92 or clade_92e or
clade_92i)
N1960clade_253, (clade_262 or clade_262i),Clostridium disporicum, Clostridium mayombei,
(clade_309 or clade_309c or clade_309e orClostridium symbiosum, Coprobacillus sp. D7,
clade_309g or clade_309h or clade_309i),Coprococcus comes, Dorea formicigenerans,
(clade_354 or clade_354e), (clade_360 orEnterococcus faecalis, Erysipelotrichaceae bacterium
clade_360c or clade_360g or clade_360h or3_1_53, Escherichia coli, Eubacterium
clade_360i), (clade_408 or clade_408b orrectale, Faecalibacterium prausnitzii, Ruminococcus
clade_408d or clade_408f or clade_408g orobeum
clade_408h), (clade_444 or clade_444i),
(clade_478 or clade_478i), (clade_479 or
clade_479c or clade_479g or clade_479h),
(clade_481 or clade_481a or clade_481b or
clade_481e or clade_481g or clade_481h or
clade_481i), (clade_497 or clade_497e or
clade_497f), (clade_92 or clade_92e or
clade_92i)
N1961(clade_309 or clade_309c or clade_309e orBacteroides sp. 1_1_6, Bacteroides sp. 3_1_23,
clade_309g or clade_309h or clade_309i),Bacteroides vulgatus, Blautia producta, Clostridium
(clade_351 or clade_351e), (clade_378 orinnocuum, Enterococcus faecalis, Escherichia coli
clade_378e), (clade_38 or clade_38e or
clade_38i), (clade_497 or clade_497e or
clade_497f), (clade_65 or clade_65e),
(clade_92 or clade_92e or clade_92i)
N1962clade_252, clade_253, (clade_260 orBlautia producta, Clostridium bolteae, Clostridium
clade_260c or clade_260g or clade_260h),butyricum, Clostridium disporicum, Clostridium
(clade_262 or clade_262i), (clade_309 orhylemonae, Clostridium innocuum, Clostridium
clade_309c or clade_309e or clade_309g ormayombei, Clostridium orbiscindens, Clostridium
clade_309h or clade_309i), (clade_351 orsymbiosum, Clostridium tertium, Collinsella
clade_351e), (clade_354 or clade_354e),aerofaciens, Coprococcus comes,
(clade_360 or clade_360c or clade_360g orLachnospiraceae bacterium 5_1_S7FAA,
clade_360h or clade_360i), (clade_408 orRuminococcus bromii, Ruminococcus gnavus
clade_408b or clade_408d or clade_408f or
clade_408g or clade_408h), clade_494,
clade_537, (clade_553 or clade_553i)
N1963clade_252, clade_253, (clade_260 orBlautia producta, Clostridium disporicum,
clade_260c or clade_260g or clade_260h),Clostridium hylemonae, Clostridium innocuum,
(clade_262 or clade_262i), (clade_309 orClostridium orbiscindens,Clostridium symbiosum,
clade_309c or clade_309e or clade_309g orClostridium tertium, Collinsella aerofaciens,
clade_309h or clade_309i), (clade_351 orCoprococcus comes, Lachnospiraceae bacterium
clade_351e), (clade_360 or clade_360c or5_1_57FAA, Ruminococcus bromii, Ruminococcus
clade_360g or clade_360h or clade_360i),gnavus
(clade_408 or clade_408b or clade_408d or
clade_408f or clade_408g or clade_408h),
clade_494, clade_537, (clade_553 or
clade_553i)
N1964clade_170, (clade_260 or clade_260c orAlistipes shahii, Bacteroides caccae, Bacteroides
clade_260g or clade_260h), (clade_262 orstercoris, Blautia producta, Clostridium hathewayi,
clade_262i), clade_286, (clade_309 orClostridium symbiosum, Collinsella aerofaciens,
clade_309c or clade_309e or clade_309g orCoprococcus comes, Dorea formicigenerans,
clade_309h or clade_309i), (clade 360 orEubacterium rectale, Holdemania filiformis,
clade_360c or clade_360g or clade_360h orLachnospiraceae bacterium 5_1_57FAA,
clade_360i), (clade_408 or clade_408b orParabacteroides merdae, Ruminococcus bromii,
clade_408d or clade_408f or clade_408g orRuminococcus obeum, Ruminococcus torques
clade_408h), (clade_444 or clade_444i),
clade_485, clade_500, clade_537, (clade_553
or clade_553i), clade_85
N1965clade_252, clade_253, (clade_260 orBlautia products, Clostridium bolteae, Clostridium
clade_260c or clade_260g or clade_260h),butyricum, Clostridium disporicum, Clostridium
(clade_262 or clade_262i), (clade_309 ormayombel, Clostridium symbiosum, Collinsella
clade_309c or clade_309e or clade_309g oraerofaciens, Coprococcus comes, Eubacterium
clade_309h or clade_309i), (clade_354 orrectale, Faecalibacterium prausnitzii,
clade_354e), (clade_408 or clade_408b orLachnospiraceae bacterium 5_1_57FAA, Roseburia
clade_408d or clade_408f or clade_408g orintestinalis, Ruminococcus bromii, Ruminococcus
clade_408h), (clade_444 or clade_444i),obeum
(clade_478 or clade_478i), clade_537,
(clade_553 or clade_553i)
N1966clade_252, clade_253, (clade_260 orBlautia producta, Clostridium bolteae, Clostridium
clade_260c or clade_260g or clade_260h),butyricum, Clostridium disporicum, Clostridium
(clade_262 or clade_262i), (clade_309 ormayombei, Clostridium symbiosum, Collinsella
clade_309c or clade_309e or clade_309g oraerofaciens, Coprococcus comes,
clade_309h or clade_309i), (clade_354 orLachnospiraceae bacterium 5_1_57FAA
clade_354e), (clade_408 or clade_408b or
clade_408d or clade_408f or clade_408g or
clade_408h), (clade_553 or clade_553i)
N1967(clade_309 or clade_309c or clade_309e orBacteroides sp. 1_1_6, Bacteroides sp. 3_1_23,
clade_309g or clade_309h or clade_309i),Bacteroides vulgatus, Blautia producta,
(clade_378 or clade_378e), (clade_38 orEnterococcus faecium, Escherichia coli
clade_38e or clade_38i), (clade_497 or
clade_497e or clade_497f), (clade_65 or
clade_65e), (clade_92 or clade_92e or
clade_92i)
N1968clade_252, clade_253, (clade_351 orClostridium butyricum, Clostridium disporicum,
clade_351e), (clade_354 or clade_354e),Clostridium innocuum, Clostridium mayombei,
(clade_478 or clade_478i), clade_494,Clostridium orbiscindens, Clostridium tertium,
clade_537, (clade_553 or clade_553i)Collinsella aerofaciens, Faecalibacterium
prausnitzii, Ruminococcus bromii
N1969clade_252, clade_253, (clade_262 orBlautia producta, Clostridium butyricum,
clade_262i), (clade_309 or clade_309c orClostridium disporicum, Clostridium mayombei,
clade_309e or clade_309g or clade_309h orDorea formicigenerans, Erysipelotrichaceae
clade_309i), (clade_354 or clade_354e),bacterium 3_1_53, Ruminococcus torques
(clade_360 or clade_360c or clade_360g or
clade_360h or clade_360i), (clade_479 or
clade_479c or clade_479g or clade_479h)
N1970(clade_351 or clade_351e), (clade_354 orBacteroides sp. 1_1_6, Bacteroides sp. 3_1_23,
clade_354e), (clade_378 or clade_378e),Bacteroides vulgatus, Clostridium innocuum,
(clade_38 or clade_38e or clade_38i),Clostridium sordellii, Coprobacillus sp. D7,
(clade_481 or clade_481a or clade_481b orEnterococcus faecalis, Escherichia coli
clade_481e or clade_481g or clade_481h or
clade_481i), (clade_497 or clade_497e or
clade_497f), (cladc_65 or clade_65e),
(clade_92 or clade_92e or clade_92i)
N1971clade_252, clade_253, (clade_260 orClostridium bolteae, Clostridium butyricum,
clade_260c or clade_260g or clade_260h),Clostridium disporicum, Clostridium hylemonae,
(clade_262 or clade_262i), (clade_351 orClostridium innocuum, Clostridium mayombei,
clade_351e), (clade_354 or clade_354e),Clostridium orbiscindens, Clostridium symbiosum,
(clade_360 or clade_360c or clade_360g orClostridium tertium, Collinsessa aerofaciens,
clade_360h or clade_360i), (clade_408 orCoprococcus comes, Lachnospiraceae bacterium
clade_408b or clade_408d or clade_408f or5_1_57FAA, Ruminococcus bromii, Ruminococcus
clade_408g or clade_408h), clade_494,gnavus
clade_537, (clade_553 or clade_553i)
N1972clade_253, (clade_262 or clade_262i),Clostridium disporicum, Clostridium mayombei,
(clade_309 or clade_309c or clade_309e orClostridium symbiosum, Coprobacillus sp. D7,
clade_309g or clade_309h or clade_309i),Coprococcus comes, Dorea formicigenerans,
(clade_354 or clade_354e), (clade_360 orErysipelotrichaceae bacterium 3_1_53,
clade_360c or clade_360g or clade_360h orEubacterium rectale, Faecalibacterium prausnitzii,
clade_360i), (clade_408 or clade_408b orRuminococcus obeum
clade_408d or clade_408f or clade_408g or
clade_408h), (clade_444 or clade_444i),
(clade_478 or clade_478i), (clade_479 or
clade_479c or clade_479g or clade_479h),
(clade_481 or clade_481a or clade_481b or
clade_481e or clade_481g or clade_481h or
clade_481i)
N1973clade_252, clade_253, (clade_260 orBlautia producta, Clostridium bolteae, Clostridium
clade_260c or clade_260g or clade_260h),butyricum, Clostridium disporicum, Clostridium
(clade_262 or clade_262i), (clade_309 orhylemonae, Clostridium innocuum, Clostridium
clade_309c or clade_309e or clade_309g ormayombei, Clostridium orbiscindens, Clostridium
clade_309h or clade_309i), (clade_351 orsymbiosum, Clostridium tertium, Coprococcus
clade_351e), (clade_354 or clade_354e),comes, Lachnospiraceae bacterium 5_1_57FAA,
(clade_360 or clade_360c or clade_360g orRuminococcus bromii, Ruminococcus gnavus
clade_360h or clade_360i), (clade_408 or
clade_408b or clade_408d or clade_408f or
clade_408g or clade_408h), clade_494,
clade_537
N1974(clade_262 or clade_262i), (clade_309 orCoprococcus comes, Dorea formicigenerans, Dorea
clade_309c or clade_309e or clade_309g orlongicatena, Eubacterium rectale, Faecalibacterium
clade_309h or clade_309f), (clade_360 orprausnitzii, Odoribacter splanchnicus, Roseburia
clade_360c or clade_360g or clade_360h orintestinalis, Ruminococcus obeum, Ruminococcus
clade_360i), (clade_444 or clade_444i),torques
clade_466, (clade_478 or clade_478i)
N1975(clade_260 or clade_260c or clade_260g orBlautia producta, Clostridium bolteae, Clostridium
clade_260h), (clade_262 or clade_262i),hylemonae, Clostridium innocuum, Clostridium
(clade_309 or clade_309c or clade_309e ormayombei, Clostridium orbiscindens, Clostridium
clade_309g or clade_309h or clade_309i),symbiosum, Collinsella aerofaciens, Coprococcus
(clade_351 or clade_351e), (clade_354 orcomes, Eubacterium rectale, Faecalibacterium
clade_354e), (clade_360 or clade_360c orprausnitzii, Lachnospiraceae bacterium 5_1_57FAA,
clade_360g or clade_360h or clade_360i),Ruminococcus bromii, Ruminococcus gnavus
(clade_408 or clade_408b or clade_408d or
clade_408f or clade_408g or clade_408h),
(clade_444 or clade_444i), (clade_478 or
clade_478i), clade_494, clade_537, (clade_553
or clade_553i)
N1976(clade_351 or clade_351e), (clade_378 orBacteroides sp. 1_1_6, Bacteroides sp. 3_1_23,
clade_378e), (clade_38 or clade_38e orBacteroides vulgatus, Clostridium innocuum,
clade_38i), (clade_481 or clade_481a orCoprobacillus sp. D7, Enterococcus faecalis
clade_481b or clade_481e or clade_481g or
clade_481h or clade_481i), (clade_497 or
clade_497e or clade_497f), (clade_65 or
clade_65e)
N1977clade_252, clade_253, (clade_262 orBlautia producta, Clostridium butyricum,
clade_262i), (clade_309 or clade_309c orClostridium disporicum, Clostridium mayombei,
clade_309e or clade_309g or clade_309h orDorea formicigenerans, Erysipelotrichaceae
clade_309i), (clade_354 or clade_354e),bacterium 3_1_53, Eubacterium tenue,
(clade_360 or clade_360c or clade_360g orRuminococcus torques
clade_360h or clade_360i), (clade_479 or
clade_479c or clade_479g or clade_479h)
N1978clade_253, (clade_262 or clade_262i),Bacteroides sp. 1_1_6, Bacteroides vulgatus,
(clade_309 or clade_309c or clade_309e orClostridium disporicum, Clostridium mayombei,
clade_309g or clade_309h or clade_309i),Clostridium symbiosum, Coprobacillus sp. D7,
(clade_354 or clade_354e), (clade_360 orCoprococcus comes, Dorea formicigenerans,
clade_360c or clade_360g or clade_360h orErysipelotrichaceae bacterium 3_1_53, Escherichia
clade_360i), (clade_378 or clade_378e),coli, Eubacterium rectale, Faecalibacterium
(clade_408 or clade_408b or clade_408d orprausnttzii, Odoribacter splanchnicus,
clade_408f or clade_408g or clade_408h),Ruminococcus obeum
(clade_444 or clade_444i), clade_466,
(clade_478 or clade_478i), (clade_479 or
clade_479c or clade_479g or clade_479h),
(clade_481 or clade_481a or clade_481b or
clade_481e or clade_481g or clade_481h or
clade_481i), (clade_65 or clade_65e),
(clade_92 or clade_92e or clade_92i)
N1979(clade_262 or clade_262i), (clade_309 orBacteroides sp. 1_1_6, Coprococcus comes, Dorea
clade_309c or clade_309e or clade_309g orformicigenerans, Dorea longicatena, Eubacterium
clade_309h or clade_309i), (clade_360 orrectale, Faecalibacterium prausnitzii, Ruminococcus
clade_360c or clade_360g or clade_360h orobeum, Ruminococcus torques
clade_360i), (clade_444 or clade_444i),
(clade_478 or clade_478i), (clade_65 or
clade_65e)
N1980(clade_309 or clade_309c or clade_309e orBlautia producta, Clostridium innocuum,
clade_309g or clade_309h or clade_309i),Clostridium sordellii, Coprobacillus sp. D7,
(clade_351 or clade_351e), (clade_354 orEnterococcus faecalis, Escherichia coli
clade_354e), (clade_481 or clade_481a or
clade_481b or clade_481e or clade_481g or
clade_481h or clade_481i), (clade_497 or
clade_497e or clade_497f), (clade_92 or
clade_92e or clade_92i)
N1981(clade_262 or clade_262i), (clade_309 orBacteroides sp. 3_1_23, Dorea longicatena,
clade_309c or clade_309e or clade_309g orEubacterium eligens, Eubacterium rectale,
clade_309h or clade_309i), (clade_360 orFaecalibacterium prausnitzii, Ruminococcus obeum,
clade_360c or clade_360g or clade_360h orRuminococcus torques
clade_360i), (clade_38 or clade_38e or
clade_38i), (clade_444 or clade_444i),
(clade_478 or clade_478i), (clade_522 or
clade_522i)
N1982clade_252, clade_253, (clade_260 orBlautia producta, Clostridium bolteae, Clostridium
clade_260c or clade_260g or clade_260h),butyricum, Clostridium disporicum, Clostridium
(clade_262 or clade_262i), (clade_309 ormayombei, Clostridium symbiosum, Collinsella
clade_309c or clade_309e or clade_309g oraerofaciens, Coprococcus comes, Dorea
clade_309h or clade_309i), (clade_354 orformicigenerans, Erysipelotrichaceae bacterium
clade_354e), (clade_360 or clade_360c or3_1_53, Eubacterium rectale,
clade_360g or clade_360h or clade_360i),Lachnospiraceae bacterium 5_1_57FAA,
(clade_408 or clade_408b or clade_408d orRuminococcus obeum, Ruminococcus torques
clade_408f or clade_408g or clade_408h),
(clade_444 or clade_444i), (clade_479 or
clade_479c or clade_479g or clade_479h),
(clade_553 or clade_553i)
N1983clade_252, clade_253, (clade_309 orBacteroides sp. 1_1_6, Bacteroides sp. 3_1_23,
clade_309c or clade_309e or clade_309g orBacteroides vulgatus, Blautia producta, Clostridium
clade_309h or clade_309i), (clade_354 orbutyricum, Clostridium disporicum, Clostridium
clade_354e), (clade_378 or clade_378e),mayombei, Enterococcus faecium,
(clade_38 or clade_38e or clade_38i),Erysipelotrichaceae bacterium 3_1_53, Escherichia
(clade_479 or clade_479c or clade_479g orcoli
clade_479h), (clade_497 or clade_497e or
clade_497f), (clade_65 or clade_65e),
(clade_92 or clade_92e or clade_92i)
N1984clade_253, (clade_260 or clade_260c orBlautia producta, Clostridium disporicum,
clade_260g or clade_260h), (clade_309 orClostridium innocuum, Clostridium mayombei,
clade_309c or clade_309e or clade_309g orClostridium orbiscindens, Clostridium symbiosum,
clade_309h or clade_309i), (clade_351 orCollinsella aerofaciens, Eubacterium rectale,
clade_351e), (clade_354 or clade_354e),Lachnospiraceae bacterium 5_1_57FAA
(clade_403 or clade_408b or clade_408d or
clade_408f or clade_408g or clade_408h),
(clade_444 or clade_444i), clade_494,
(clade_553 or clade_553i)
N1985clade_252, clade_253, (clade_260 orBlautia glucerasei, Clostridium bolteae, Clostridium
clade_260c or clade_260g or clade_260h),butyricum, Clostridium disporicum, Clostridium
(clade_262 or clade_262i), (clade_309 orhylemonae, Clostridium innocuum, Clostridium
clade_309c or clade_309e or clade_309g ormayombei, Clostridium orbiscindens, Clostridium
clade_309h or clade_309i), (clade_351 orsymbiosum, Clostridium tertiurm, Collinsella
clade_351e), (clade_354 or clade_354e),aerofaciens, Coprococcus comes,
(clade_360 or clade_360c or clade_360g orLachnospiraceae bacterium 5_1_57FAA,
clade_360h or clade_360i), (clade_408 orRuminococcus bromii, Ruminococcus gnavus
clade_408b or clade_408d or clade_408f or
clade_408g or clade_408h), clade_494,
clade_537, (clade_553 or clade_553i)
N1986clade_253, (clade_260 or clade_260c orBlautia producta, Clostridium disporicum,
clade_260g or clade_260h), (clade_262 orClostridium symbiosum, Collinsella aerofaciens,
clade_262i), (clade_309 or clade_309c orCoprococcus comes, Lachnospiraceae bacterium
clade_309e or clade_309g or clade_309h or5_1_57FAA
clade_309i), (clade_408 or clade_408b or
clade_408d or clade_408f or clade_408g or
clade_408h), (clade_553 or clade_553i)
N1987(clade_309 or clade_309c or clade_309e orBlautia producta, Clostridium sordellii, Escherichia
clade_309g or clade_309h or clade_309i),coli
(clade_354 or clade_354e), (clade_92 or
clade_92e or clade_92i)
N1988clade_252, clade_253, (clade_260 orAlistipes shahii, Blautia producta, Clostridium
clade_260c or clade_260g or clade_260h),bolteae, Clostridium butyricum, Clostridium
(clade_262 or clade_262i), (clade_309 ordisporicum, Clostridium mayombei, Clostridium
clade_309c or clade_309e or clade_309g orsymbiosum, Collinsella aerofaciens, Coprococcus
clade_309h or clade_309i), (clade_354 orcomes, Eubacterium rectale, Faecalibacterium
clade_354e), (clade_408 or clade_408b orprausnitzii, Holdemania filiformis, Lachnospiraceae
clade_408d or clade_408f or clade_408g orbacterium 5_1_57FAA, Roseburia intestinalis,
clade_408h), (clade_444 or clade_444i),Ruminococcus obeum, Ruminococcus torques
(clade_478 or clade_478i), clade_485,
clade_500, (clade_553 or clade_553i)
N1989clade_252, clade_253, (clade_262 orBacteroides sp. 1_1_6, Bacteroides sp. 3_1_23,
clade_262i), (clade_309 or clade_309c orBacteroides vulgatus, Blautia producta, Clostridium
clade_309e or clade_309g or clade_309h orbutyricum, Clostridium disporicum, Clostridium
clade_309i), (clade_354 or clade_354e),mayombei, Dorea formicigenerans, Enterococcus
(clade_360 or clade_360c or clade_360g orfaecium, Erysipelotrichaceae bacterium 3_1_53,
clade_360h or clade_360i), (clade_378 orEscherichia coli, Eubacterium tenue, Ruminococcus
clade_378e), (clade_38 or clade_38e ortorques
clade_38i), (clade_479 or clade_479c or
clade_479g or clade_479h), (clade_497 or
clade_497e or clade_497f), (clade_65 or
clade_65e), (clade_92 or clade_92e or
clade_92i)
N1990clade_252, clade_253, (clade_260 orBlautia producta, Clostridium disporicum,
clade_260c or clade_260g or clade_260h),Clostridium hylemonae, Clostridium innocuum,
(clade_262 or clade_262i), (clade_309 orClostridium orbiscindens, Clostridium symbiosum,
clade_309c or clade_309e or clade_309g orClostridium tertium, Collinsella aerofaciens,
clade_309h or clade_309i), (clade_351 orCoprococcus comes, Eubacterium rectale,
clade_351e), (clade_360 or clade_360c orFaecalibacterium prausnitzii,
clade_360g or clade_360h or clade_360i),Lachnospiraceae bacterium 5_1_57FAA,
(clade_408 or clade_408b or clade_408d orRuminococcus brornii, Ruminococcus gnavus
clade_408f or clade_408g or clade_408h),
(clade_444 or clade_444i), (clade_478 or
clade_478i), clade_494, clade_537, (clade_553
or clade_553i)
N1991clade_252, clade_253, (clade_260 orBlautia producta, Clostridium bolteae, Clostridium
clade_260c or clade_260g or clade_260h),butyricum, Clostrtdium disporicum, Clostridium
(clade_262 or clade_262i), (clade_309 orhylemonae, Clostridium innocuum, Clostridium
clade_309c or clade_309e or clade_309g ormayombei, Clostridium symbiosum, Clostridium
clade_309h or clade_309i), (clade_351 ortertium, Collinsella aerofaciens, Coprococcus
clade_351e), (clade_354 or clade_354e),comes, Eubacterium rectale, Lachnospiraceae
(clade_360 or clade_360c or clade_360g orbacterium 5_1_57FAA, Ruminococcus gnavus
clade_360h or clade_360i), (clade_408 or
clade_408b or clade_408d or clade_408f or
clade_408g or clade_408h), (clade_444 or
clade_444i), (clade_553 or clade_553i)
N1992clade_252, clade_253, (clade_260 orBlautia producta, Clostridium bolteae, Clostridium
clade_260c or clade_260g or clade_260h),butyricum, Clostridium disporicum, Clostridium
(clade_262 or clade_262i), (clade_309 orhylemonae, Clostridium innocuum, Clostridium
clade_309c or clade_309e or clade_309g ormayombei, Clostridium orbiscindens, Clostridium
clade_309h or clade_309i), (clade_351 orsymbiosum, Clostridium tertium, Collinsella
clade_351e), (clade_354 or clade_354e),aerofaciens, Lachnospiraceae bacterium
(clade_360 or clade_360c or clade_360g or1_4_56FAA, Lachnospiraceae bacterium
clade_360h or clade_360i), (clade_408 or5_1_57FAA, Ruminococcus bromii, Ruminococcus
clade_408b or clade_408d or clade_408f orgnavus
clade_408g or clade_408h), clade_494,
clade_537, (clade_553 or clade_553i)
N1993clade_110, clade_170, (clade_378 orBacteroides caccae, Bacteroides eggerthii,
clade_378e), (clade_38 or clade_38e orBacteroides sp. 1_1_6, Bacteroides sp. 3_1_23,
clade_38i), (clade_65 or clade_65e), clade_85Bacteroides stercoris, Bacteroides uniformis,
Bacteroides vulgatus
N1994clade_253, (clade_378 or clade_378e),Bacteroides sp. 1_1_6, Bacteroides sp. 3_1_23,
(clade_38 or clade_38e or clade_38i),Bacteroides vulgatus, Clostridium disporicum,
(clade_479 or clade_479c or clade_479g orEnterococcus faecium, Erysipelotrichaceae
clade_479h), (clade_497 or clade_497e orbacterium 3_1_53, Escherichia coli
clade_497f), (clade_65 or clade_65e),
(clade_92 or clade_92e or clade_92i)
N1995clade_253, (clade_309 or clade_309c orBacteroides sp. 1_1_6, Bacteroides sp. 3_1_23,
clade_309e or clade_309g or clade_309h orBacteroides vulgatus, Blautia producta, Clostridium
clade_309i), (clade_378 or clade_378e),disporicum, Enterococcus faecium,
(clade_38 or clade_38e or clade_38i),Erysipelotrichaceae bacterium 3_1_53, Escherichia
(clade_479 or clade_479c or clade_479g orcoli
clade_479h), (clade_497 or clade_497e or
clade_497f), (clade_65 or clade_65e),
(clade_92 or clade_92e or clade_92i)
N1996clade_253, (clade_309 or clade_309c orBlautia producta, Clostridium disporicum,
clade_309e or clade_309g or clade_309h orErysipelotrichaceae bacterium 3_1_53
clade_309i), (clade_479 or clade_479c or
clade_479g or clade_479h)
N1997clade_253, (clade_309 or clade_309c orBlautia producta, Clostridium disporicum,
clade_309e or clade_309g or clade_309h orEnterococcus faecium, Erysipelotrichaceae
clade_309i), (clade_479 or clade_479c orbacterium 3_1_53, Escherichia coli
clade_479g or clade_479h), (clade_497 or
clade_497e or clade_497f), (clade_92 or
clade_92e or clade_92i)
N1998(clade_378 or clade_378e), (clade_38 orBacteroides sp. 1_1_6, Bacteroides sp. 3_1_23,
clade_38e or clade_38i), (clade_65 orBacteroides vulgatus
clade_65e)
N1999clade_252, clade_253, (clade_260 orBlautia producta, Clostridium bolteae, Clostridium
clade_260c or clade_260g or clade_260h),butyricum, Clostridium disporicum, Clostridium
(clade_262 or clade_262i), (clade_309 ormayombei, Clostridium symbiosum, Collinsella
clade_309c or clade_309e or clade_309g oraerofaciens, Coprococcus comes, Eubacterium
clade_309h or clade_309i), (clade_354 orrectale, Faecalibacterium prausnitzii,
clade_354e), (clade_408 or clade_408b orLachnospiraceae bacterium 5_1_57FAA
clade_408d or clade_408f or clade_408g or
clade_408h), (clade_444 or clade_444i),
(clade_478 or clade_478i), (clade_553 or
clade_553i)
N2000clade_252, clade_253, (clade_262 orBlautia producta, Clostridium butyricum,
clade_262i), (clade_309 or clade_309c orClostridium disporicum, Clostridium mayombei,
clade_309e or clade_309g or clade_309h orDorea formicigenerans,
clade_309i), (clade_354 or clade_354e),Erysipelotrichaceae bacterium 3_1_53,
(clade_360 or clade_360c or clade_360g orEubacterium tenue, Ruminococcus torques
clade_360h or clade_360i), (clade_479 or
clade_479c or clade_479g or clade_479h)
N2001clade_252, clade_253, (clade_260 orBlautia producta, Clostridium bolteae, Clostridium
clade_260c or clade_260g or clade_260h),disporicum, Clostridium hylemonae, Clostridium
(clade_262 or clade_262i), (clade_309 orinnocuum, Clostridium mayombei, Clostridium
clade_309c or clade_309e or clade_309g ororbiscindens, Clostridium symbiosum, Clostridium
clade_309h or clade_309i), (clade_351 ortertium, Collinsella aerofaciens, Coprococcus
clade_351e), (clade_354 or clade_354e),comes, Lachnospiraceae bacterium 5_1_57FAA,
(clade_360 or clade_360c or clade_360g orRuminococcus bromii, Ruminococcus gnavus
clade_360h or clade_360i), (clade_408 or
clade_408b or clade_408d or clade_408f or
clade_408g or clade_408h), clade_494,
clade_537, (clade_553 or clade_553i)
N2002clade_252, clade_253, (clade_309 orBlautia producta, Clostridium butyricum,
clade_309c or clade_309e or clade_309g orClostridium disporicum, Clostridium mayombei,
clade_309h or clade_309i), (clade_354 orErysipelotrichaceae bacterium 3_1_53
clade_354e), (clade_479 or clade_479c or
clade_479g or clade_479h)
N2003clade_252, clade_253, (clade_260 orBlautia producta, Clostridium bolteae, Clostridium
clade_260c or clade_260g or clade_260h),butyricum, Clostridium disporicum, Clostridium
(clade_262 or clade_262i), (clade_309 orhylemonae, Clostridium mayombei, Clostridium
clade_309c or clade_309e or clade_309g orsordellii, Clostridium symbiosum, Clostridium
clade_309h or clade_309i), (clade_354 ortertium, Collinsella aerofaciens, Coprobacillus sp.
clade_354e), (clade_360 or clade_360c orD7, Coprococcus comes, Eubacterium sp. WAL
clade_360g or clade_360h or clade_360i),14571, Lachnospiraceae bacterium 5_1_57FAA,
(clade_38 or clade_38e or clade_38i),Rumtinococcus bromii, Ruminococcus gnavus
(clade_408 or clade_408b or clade_408d or
clade_408f or clade_408g or clade_408h),
(clade_481 or clade_481a or clade_481b or
clade_481e or clade_481g or clade_481h or
clade_481i), clade_537, (clade_553 or
clade_553i)
N2004(clade_351 or clade_351e), (clade_378 orBacteroides sp. 1_1_6, Bacteroides sp. 3_1_23,
clade_378e), (clade_38 or clade_38e orBacteroides vulgatus, Clostridium innocuum,
clade_38i), (clade_497 or clade_497e orEnterococcus faecalis, Escherichia coli
clade_497f), (clade_65 or clade_65e),
(clade_92 or clade_92e or clade_92i)
N2005(clade_309 or clade_309c or dade_309e orBacteroides sp. 1_1_6, Bacteroides sp. 3_1_23,
clade_309g or clade_309h or clade_309i)Bacteroides vulgatus, Blautia producta,
(clade_378 or clade_378e), (clade_38 orEnterococcus faecalis, Escherichia coli
clade_38e or clade_38i), (clade_497 or
clade_497e or clade_497f), (clade_65 or
clade_65e), (clade_92 or clade_92e or
clade_92i)
N2006clade_170, (clade_262 or clade_262i),Bacteroides caccae, Bacteroides sp. 1_1_6,
(clade_309 or clade_309c or clade_309e orCoprococcus comes, Dorea formicigenerans, Dorea
clade_309g or clade_309h or clade_309i),longicatena, Eubacterium rectale, Faecalibacterium
(clade_360 or clade_360c or clade_360g orprausnitzii, Ruminococcus obeum, Ruminococcus
clade_360h or clade_360i), (clade_444 ortorques
clade_444i), (clade_478 or clade_478i),
(clade_65 or dade_65e)
N2007clade_253, (clade_202 or clade_262i),Bacteroides sp. 1_1_6, Bacteroides vulgatus,
(clade_309 or clade_309c or clade_309e orClostridium disporicurn, Clostridium mayombei,
clade_309g or clade_309h or clade_309i),Clostridium symbiosum, Coprobacillus sp. D7,
(clade_354 or clade_354e), (clade_360 orCoprococcus comes, Dorea formicigenerans,
clade_360c or clade_360g or clade_360h orEnterococcus faecalis,
clade_360i), (clade_378 or clade_378e),Erysipelotrichaceae bacterium 3_1_53,
(clade_408 or clade_408b or clade_408d orEubacterium rectale, Faecalibacterium prausnitzii,
clade_408f or clade_408g or clade_408h),Odoribacter splanchnicus, Ruminococcus obeum
(clade_444 or clade_444i), clade_466,
(clade_478 or clade_478i), (clade_479 or
clade_479c or clade_479g or clade_479h),
(clade_481 or clade_481a or clade_481b or
clade_481e or clade_481g or clade_481h or
clade_481i), (clade_497 or clade_497e or
clade_497f), (clade_65 or clade_65e)

[0367]

Blautia_luticlade_309BlautiaLachnospiraceaeClostridialesyes100100004.0
Blautia_schinkiiclade_309BlautiaLachnospiraceaeClostridialesyes10093704.0
Blautia_sp_M25clade_309BlautiaLachnospiraceaeClostridialesyes10093715.0
Subdoligranulum_variabileclade_478SubdoligranulumRuminococcaceaeClostridialesyes10093015.0
Eubacterium_rectaleclade_444EubacteriumEubacteriaceaeClostridialesyes100871315.0
Lachnospiraceae_bacterium_2_1_58FAAclade_360unassignedLachnospiraceaeClostridialesyes10080704.0
Clostridium_leptumclade_537ClostridiumClostridiaceaeClostridialesyes100731314.0
Faecalibacterium_prausnitziiclade_478FaecalibacteriumRuminococcaceaeClostridialesyes10073014.0
Ruminococcus_bromiiclade_537RuminococcusRuminococcaceaeClostridialesyes10067714.0
Clostridium_citroniaeclade_408ClostridiumClostridiaceaeClostridialesyes100532703.0
Christensenella_minutaclade_558ChristensenellaChristensenellaceaeClostridialesyes10002702.0
Ruminococcus_torquesclade_262BlautiaLachnospiraceaeClostridialesyes9387715.0
Dorea_longicatenaclade_360DoreaLachnospiraceaeClostridialesyes93802015.0
Eubacterium_hadrumclade_408AnaerostipesLachnospiraceaeClostridialesyes9380715.0
Blautia_hanseniiclade_309BlautiaLachnospiraceaeClostridialesyes93731303.0
Clostridium_ramosumclade_481unassignedErysipelotrichaceaeErysipelotrichalesyes93731303.0
Ruminococcus_lactarisclade_262RuminococcusRuminococcaceaeClostridialesyes93673314.0
Clostridiales_sp_SS3_4clade_246ClostridialesunclassifiedClostridialesyes86732003.0
Dorea_formicigeneransclade_360DoreaLachnospiraceaeClostridialesyes8653714.0
Coprococcus_comesclade_262CoprococcusLachnospiraceaeClostridialesyes8647014.0
Lachnospiraceae_bacterium_A4clade_408unassignedLachnospiraceaeClostridialesyes86402002.4
Eubacterium_halliiclade_396EubacteriumEubacteriaceaeClostridialesyes8640713.4
Eubacterium_brachyclade_533EubacteriumEubacteriaceaeClostridialesyes8613002.4
Ruminococcus_callidusclade_406RuminococcusRuminococcaceaeClostridialesyes79671302.3
Clostridium_bartlettiiclade_354unassignedPeptostreptococcaceaeClostridialesyes7967702.3
Clostridium_sporosphaeroidesclade_537ClostridiumClostridiaceaeClostridialesyes79602002.3
Clostridium_bifermentansclade_354unassignedPeptostreptococcaceaeClostridialesyes79531302.3
Turicibacter_sanguinisclade_555TuricibacterErysipelotrichaceaeErysipelotrichalesyes79401301.7
Ruminococcus_albusclade_516RuminococcusRuminococcaceaeClostridialesyes71602702.3
Eubacterium_ramulusclade_482EubacteriumEubacteriaceaeClostridialesyes71473302.3
Eubacterium_desmolansclade_572EubacteriumEubacteriaceaeClostridialesyes71402701.7
Coprococcus_catusclade_393CoprococcusLachnospiraceaeClostridialesyes7133712.7
Clostridium_oroticumclade_96ClostridiumClostridiaceaeClostridialesyes7127701.7
Blautia_gluceraseaclade_309BlautiaLachnospiraceaeClostridialesyes64333301.7
Lachnospiraceae_bacterium_3_1_57FAAclade_408unassignedLachnospiraceaeClostridialesyes64331312.7
Clostridium_virideclade_540ClostridiumClostridiaceaeClostridialesyes64271301.7
Ruminococcus_obeumclade_309BlautiaLachnospiraceaeClostridialesyes6427712.7
Eubacterium_ruminantiumclade_543EubacteriumEubacteriaceaeClostridialesyes57202701.7
Clostridium_thermocellumclade_495ClostridiumClostridiaceaeClostridialesyes50472002.3
Oscillibacter_valericigenesclade_540OscillibacterOscillospiraceaeClostridialesyes50406012.7
Eubacterium_coprostanoligenesclade_537EubacteriumEubacteriaceaeClostridialesyes50271312.7
Clostridium_disporicumclade_253ClostridiumClostridiaceaeClostridialesyes50202701.7
Clostridium_mayombeiclade_354ClostridiumClostridiaceaeClostridialesyes5020001.7
Roseburia_faecalisclade_444RoseburiaLachnospiraceaeClostridialesyes43276001.7
Lachnospiraceae_bacterium_1_4_56FAAclade_262unassignedLachnospiraceaeClostridialesyes43132012.7
Clostridium_spiroformeclade_481unassignedErysipelotrichaceaeErysipelotrichalesyes36333301.7
Eubacterium_siraeumclade_538EubacteriumEubacteriaceaeClostridialesyes36276012.7
Lachnospira_pectinoschizaclade_522LachnospiraLachnospiraceaeClostridialesyes36275301.7
Papillibacter_cinnamivoransclade_572PapillibacterRuminococcaceaeClostridialesyes36275301.7
Clostridium_tyrobutyricumclade_430ClostridiumClostridiaceaeClostridialesyes36271301.7
Roseburia_inulinivoransclade_444RoseburiaLachnospiraceaeClostridialesyes36206012.7
Ethanoligenens_harbinenseclade_439EthanoligenensRuminococcaceaeClostridialesyes36202701.7
Eggerthella_lentaclade_566EggerthellaCoriobacteriaceaeCoriobacterialesyes36134001.7
Clostridium_orbiscindensclade_494unassignedunassignedClostridialesyes29206001.1
Eubacterium_ventriosumclade_519EubacteriumEubacteriaceaeClostridialesyes29204001.1
Clostridium_paraputrificumclade_223ClostridiumClostridiaceaeClostridialesyes29133301.1
Clostridium_sp_YIT_12069clade_537ClostridiumClostridiaceaeClostridialesyes2975301.1
Eubacterium_barkericlade_512EubacteriumEubacteriaceaeClostridialesyes2901300.7
Eubacterium_biformeclade_385unassignedErysipelotrichaceaeErysipelotrichalesyes2901300.7
Alkaliphilus_oremlandiiclade_554AlkaliphilusClostridiaceaeClostridialesyes290700.7
Lachnospiraceae_bacterium_5_1_57FAAclade_260unassignedLachnospiraceaeClostridialesyes21206001.1
Eubacterium_eligensclade_522EubacteriumEubacteriaceaeClostridialesyes21203301.1
Bacillus_sp_9_3AIAclade_527BacillusBacillaceaeBacillalesyes21137301.1
Eubacterium_sp_WAL_14571clade_384EubacteriumEubacteriaceaeClostridialesyes2176001.1
Anaerosporobacter_mobilisclade_396AnaerosporobacterClostridiaceaeClostridialesyes2174701.1
Coprococcus_eutactusclade_543CoprococcusLachnospiraceaeClostridialesyes2172001.1
Eubacterium_sp_oral_clone_JH012clade_476EubacteriumEubacteriaceaeClostridialesyes2171301.1
Lachnospira_multiparaclade_522LachnospiraLachnospiraceaeClostridialesyes2171301.1
Clostridium_carnisclade_253ClostridiumClostridiaceaeClostridialesyes217001.1
Clostridium_colinumclade_576ClostridiumClostridiaceaeClostridialesyes217001.1
Clostridium_hylemonaeclade_260ClostridiumClostridiaceaeClostridialesyes2104000.7
Gloeobacter_violaceusclade_596GloeobacterunassignedGloeobacteralesyes210700.7
Clostridium_algidicarnisclade_430ClostridiumClostridiaceaeClostridialesyes14206701.1
Holdemania_filiformisclade_485HoldemaniaErysipelotrichaceaeErysipelotrichalesyes14137312.1
Clostridium_aldenenseclade_408ClostridiumClostridiaceaeClostridialesyes14136701.1
Sporobacter_termitidisclade_572SporobacterRuminococcaceaeClostridialesyes14136712.1
Ruminococcus_sp_ID8clade_360RuminococcusRuminococcaceaeClostridialesyes14134701.1
Lachnospiraceae_bacterium_4_1_37FAAclade_360unassignedLachnospiraceaeClostridialesyes1406000.7
Ruminococcus_sp_18P13clade_406RuminococcusRuminococcaceaeClostridialesyes140700.7
Blautia_hydrogenotrophicaclade_368BlautiaLachnospiraceaeClostridialesyes140000.7
Anaerotruncus_colihominisclade_516AnaerotruncusRuminococcaceaeClostridialesyes779301.1
Clostridium_symbiosumclade_408ClostridiumClostridiaceaeClostridialesyes778701.1
Clostridium_lactatifermentansclade_576ClostridiumClostridiaceaeClostridialesyes778012.1
Lactobacillus_rogosaeclade_522LactobacillusLactobacillaceaeLactobacillasesyes778001.1
Clostridium_sp_HGF2clade_351ClostridiumClostridiaceaeClostridialesyes774701.1
Clostridium_sp_SY8519clade_482ClostridiumClostridiaceaeClostridialesyes774701.1
Desulfotomaculum_nigrificansclade_560DesulfotomaculumPeptococcaceaeClostridialesyes772701.1
Eubacterium_cylindroidesclade_385unassignedErysipelotrichaceaeErysipelotrichalesyes77701.1
Ruminococcus_sp_K_1clade_309RuminococcusRuminococcaceaeClostridialesyes77001.1
Lachnospiraceae_bacterium_oral_taxon_F15clade_393unassignedLachnospiraceaeClostridialesyes705300.7
Clostridium_nexileclade_262ClostridiumClostridiaceaeClostridialesyes704011.7
Acetanaerobacterium_elongatumclade_439AcetanaerobacteriumRuminococcaceaeClostridialesyes70700.7
Butyricicoccus_pullicaecorumclade_572ButyricicoccusClostridiaceaeClostridialesyes70011.7
Clostridium_butyricumclade_252ClostridiumClostridiaceaeClostridialesyes70000.7
Solobacterium_mooreiclade_388SolobacteriumErysipelotrichaceaeErysipelotrichalesyes70000.7
Bacteroides_uniformisclade_110BacteroidesBacteroidaceaeBacteroidalesno871304.0
Alloscardovia_sp_OB7196clade_475AlloscardoviaBifidobacteriaceaeBifidobacterialesno533302.3
Clostridiales_bacterium_oral_clone_P4PAclade_558unassignedunassignedClostridialesno472702.3
Enterococcus_faeciumclade_497EnterococcusEnterococcaceaeLactobacillalesno47703.0
Clostridiales_bacterium_oral_taxon_F32clade_584unassignedunassignedClostridialesno40001.7
Bifidobacterium_breveclade_172BifidobacteriumBifidobacteriaceaeBifidobacterialesno33702.4
Bifidobacterium_longumclade_172BifidobacteriumBifidobacteriaceaeBifidobacterialesno33012.7
Bacteroides_oleiciplenusclade_85BacteroidesBacteroidaceaeBacteroidalesno274701.7
Dialister_invisusclade_506DialisterVeillonellaceaeSelenomonadalesno27701.7
Anaerobaculum_hydrogeniformansclade_591AnaerobaculumSynergistaceaeSynergistalesno204701.7
Streptococcus_sp_oral_taxon_G63clade_98StreptococcusStreptococcaceaeLactobacillalesno202701.7
Streptococcus_thermophilusclade_98StreptococcusStreptococcaceaeLactobacillalesno201302.4
Dialister_micraerophilusclade_506DialisterVeillonellaceaeSelenomonadalesno201301.7
Bifidobacterium_animalisclade_172BifidobacteriumBifidobacteriaceaeBifidobacterialesno20701.7
Lactobacillus_inersclade_398LactobacillusLactobacillaceaeLactobacillalesno20001.7
Butyrivibrio_fibrisolvensclade_444ButyrivibrioLachnospiraceaeClostridialesno136701.1
Streptococcus_sp_ACS2clade_98StreptococcusStreptococcaceaeLactobacillalesno133301.7
Lactococcus_lactisclade_401LactococcusStreptococcaceaeLactobacillalesno131301.7
Lactobacillus_delbrueckiiclade_72LactobacillusLactobacillaceaeLactobacillalesno131301.7
Cytophaga_xylanolyticaclade_561CytophagaCytophagaceaeCytophagalesno75301.1
Streptococcus_gallolyticusclade_98StreptococcusStreptococcaceaeLactobacillalesno73301.1
Marvinbryantia_formatexigensclade_309unassignedLachnospiraceaeClostridialesno73301.1
Akkermansia_muciniphilaclade_583AkkermansiaVerrucomicrobiaceaeVerrucomicrobialesno72012.7
Bacteroides_doreiclade_378BacteroidesBacteroidaceaeBacteroidalesno72012.7
Megasphaera_genomosp_type_1_28Lclade_506MegasphaeraVeillonellaceaeSelenomonadalesno72001.1
Lactobacillus_hominisclade_398LactobacillusLactobacillaceaeLactobacillalesno71301.7
Actinomyces_oricolaclade_54ActinomycesActinomycetaceaeActinomycetalesno71301.1
Streptobacillus_moniliformisclade_532StreptobacillusLeptotrichiaceaeFusobacterialesno71301.1
Streptococcus_sp_oral_clone_ASCB06clade_98StreptococcusStreptococcaceaeLactobacillalesno7701.1
Bacteroides_sp_D20clade_110BacteroidesBacteroidaceaeBacteroidalesno7712.1
Collinsella_intestinalisclade_553CollinsellaCoriobacteriaceaeCoriobacterialesno7001.7
Methanosphaera_stadtmanaeclade_595MethanosphaeraMethanobacteriaceaeMethanobacterialesno7001.7
Streptococcus_vestibularisclade_98StreptococcusStreptococcaceaeLactobacillalesno7001.1
Clostridiaceae_bacterium_END_2clade_368unassignedClostridiaceaeClostridialesno05300.7
Parabacteroides_distasonisclade_335ParabacteroidesPorphyromonadaceaeBacteroidalesno02701.3
Veillonella_disparclade_358VeillonellaVeillonellaceaeSelenomonadalesno02700.7
Bacteroides_caccaeclade_170BacteroidesBacteroidaceaeBacteroidalesno02011.7
Veillonella_sp_3_1_44clade_358VeillonellaVeillonellaceaeSelenomonadalesno02000.7
Megasphaera_micronuciformisclade_493MegasphaeraVeillonellaceaeSelenomonadalesno02000.7
Oxalobacter_formigenesclade_357OxalobacterOxalobacteraceaeBurkholderialesno02000.7
Streptococcus_parasanguinisclade_98StreptococcusStreptococcaceaeLactobacillalesno01312.3
Bacteroides_fragilisclade_65BacteroidesBacteroidaceaeBacteroidalesno01300.7
Bacteroides_sp_4_1_36clade_110BacteroidesBacteroidaceaeBacteroidalesno01300.7
Lactobacillus_sp_BT6clade_373LactobacillusLactobacillaceaeLactobacillalesno01300.7
Bacteroides_sp_1_1_14clade_65BacteroidesBacteroidaceaeBacteroidalesno01300.7
Escherichia_hermanniiclade_92EscherichiaEnterobacteriaceaeEnterobacterialesno01300.7
Escherichia_sp_B4clade_92EscherichiaEnterobacteriaceaeEnterobacterialesno01300.7
Gemella_moribillorumclade_450GemellaunassignedBacillalesno01300.7
Klebsiella_variicolaclade_92KlebsiellaEnterobacteriaceaeEnterobacterialesno01300.7
Phascolarctobacterium_succinatutensclade_556PhascolarctobacteriumAcidaminococcaceaeSelenomonadalesno01300.7
Streptococcus_sp_CM7clade_60StreptococcusStreptococcaceaeLactobacillalesno01300.7
Bilophila_wadsworthiaclade_521BilophilaDesulfovibrionaceaeDesulfovibrionalesno0712.3
Streptococcus_sp_oral_clone_GM006clade_98StreptococcusStreptococcaceaeLactobacillalesno0701.3
Adlercreutzia_equolifaciensclade_566AdlercreutziaCoriobacteriaceaeCoriobacterialesno0700.7
Lactobacillus_murinusclade_449LactobacillusLactobacillaceaeLactobacillalesno0700.7
Helicobacter_pullorumclade_489HelicobacterHelicobacteraceaeCampylobacteralesno0700.7
Alistipes_finegoldiiclade_500AlistipesRikenellaceaeBacteroidalesno0700.7
Averyella_dalhousiensisclade_92AveryellaEnterobacteriaceaeEnterobacterialesno0700.7
Desulfovibrio_desulfuricansclade_445DesulfovibrioDesulfovibrionaceaeDesulfovibrionalesno0700.7
Plesiomonas_shigelloidesclade_92PlesiomonasEnterobacteriaceaeEnterobacterialesno0700.7
Actinomyces_israeliiclade_212ActinomycesActinomycetaceaeActinomycetalesno0700.7
Bacteroidales_genomosp_P1clade_529unassignedunassignedBacteroidalesno0700.7
Bifidobacterium_bifidumclade_293BifidobacteriumBifidobacteriaceaeBifidobacterialesno0700.7
Cedecea_davisaeclade_92CedeceaEnterobacteriaceaeEnterobacterialesno0700.7
Gardnerella_vaginalisclade_344GardnerellaBifidobacteriaceaeBifidobacterialesno0700.7
Lactobacillus_fermentumclade_313LactobacillusLactobacillaceaeLactobacilialesno0700.7
Lactobacillus_reutericlade_313LactobacillusLactobacillaceaeLactobacillalesno0800.7
Lactococcus_raffinolactisclade_524LactococcusStreptococcaceaeLactobacillalesno0700.7
Pediococcus_pentosaceusclade_372PediococcusLactobacillaceaeLactobacillalesno0700.7
Prevotella_denticolaclade_83PrevotellaPrevotellaceaeBacteroidalesno0700.7
Rothia_mucilaginosaclade_271RothiaMicrococcaceaeActinomycetalesno0700.7
Sutterella_stercoricanisclade_432SutterellaSutterellaceaeBurkholderialesno0700.7
Eggerthelia_sp_1_3_56FAAclade_566EggerthellaCoriobacteriaceaeCoriobacterialesno0001.3
Coriobacteriaceae_bacterium_JC110clade_566unassignedCoriobacteriaceaeCoriobacterialesno0001.3
Megamonas_funiformisclade_542MegamonasVeillonellaceaeSelenomonadalesno0001.3
Gordonibacter_pamelaeaeclade_566GordonibacterCoriobacteriaceaeCoriobacterialesno0001.3
Bifidobacterium_sp_HM2clade_172BifidobacteriumBifidobacteriaceaeBifidobacterialesno0000.7
Bacteroides_stercorisclade_85BacteroidesBacteroidaceaeBacteroidalesno0011.7
Bifidobacterium_angulatumclade_172BifidobacteriumBifidobacteriaceaeBifidobacterialesno0000.7
Parasutterella_excrementihominisclade_432ParasutterellaSutterellaceaeBurkholderialesno0000.7
Phascolarctobacterium_faeciumclade_556PhascolarctobacteriumAcidaminococcaceaeSelenomonadalesno0000.7
Cryptobacterium_curtumclade_566CryptobacteriumCoriobacteriaceaeCoriobacterialesno0000.7
Prevotella_sp_BI_42clade_168PrevotellaPrevotellaceaeBacteroidalesno0000.7
Slackia_isoflavoniconvertensclade_566SlackiaCoriobacteriaceaeCoriobacterialesno0000.7
Acidaminococcus_sp_D21clade_556AcidaminococcusAcidaminococcaceaeSelenomonadalesno0000.7
Atopobium_vaginaeclade_539AtopobiumCoriobacteriaceaeCoriobacterialesno0000.7
Catabacter_hongkongensisclade_558CatabacterCatabacteriaceaeClostridialesno0000.7
Lactobacillus_ruminisclade_449LactobacillusLactobacillaceaeLactobacillalesno0000.7
Lactobacillus_seniorisclade_398LactobacillusLactobacillaceaeLactobacillalesno0000.7
Morganella_morganiiclade_89MorganellaEnterobacteriaceaeEnterobacterialesno0000.7
Parabacteroides_merdaeclade_286ParabacteroidesPorphyromonadaceaeBacteroidalesno0011.7
Peptoniphilus_hareiclade_389PeptoniphilusClostridiales Family XIClostridialesno0000.7
Streptococcus_downeiclade_441StreptococcusStreptococcaceaeLactobacillalesno0000.7

[0368]

Dorea longicatenaEubacterium rectaleclade_360clade_444++++92.9100.0
Ruminococcus torquesRuminococcus torquesclade_262clade_262++++92.993.3
Coprococcus comesEubacterium rectaleclade_262clade_444++++85.746.7
Coprococcus comesRuminococcus bromiiclade_262clade_537++++85.726.7
Ruminococcus torquesCoprococcus comesclade_262clade_262++++78.640.0
Ruminococcus obeumRuminococcus obeumclade_309clade_309++++64.333.3
Ruminococcus obeumCoprococcus comesclade_309clade_262++++64.320.0
Ruminococcus obeumRuminococcus torquesclade_309clade_262++++57.133.3
Clostridium disporicumEubacterium rectaleclade_253clade_444++++50.046.7
Ciostridium mayombeiEubacterium rectaleEubacterium rectaleclade_354clade_444clade_444++++50.020.0
Ciostridium mayombeiFaecalibacterium prausnitziiEubacterium rectaleclade_354clade_478clade_444++++50.020.0
Ciostridium mayombeiFaecalibacterium prausnitziiFaecalibacterium prausnitziiclade_354clade_478clade_478++++50.020.0
Eubacterium rectaleClostridium mayombeiBlautia sp. M25clade_444clade_354clade—309++++50.020.0
Eubacterium rectaleClostridium mayombeiClostridium mayombeiclade_444clade_354clade_354++++50.020.0
Eubacterium rectaleClostridium mayombeiRuminococcus bromiiclade_444clade_354clade_537++++50.020.0
Faecalibacterium prausnitziiClostridium mayombeiBlautia sp. M25clade_478clade_354clade_309++++50.020.0
Faecalibacterium prausnitziiClostridium mayombeiClostridium mayombeiclade_478clade_354clade_354++++50.020.0
Faecalibacterium prausnitziiClostridium mayombeiRuminococcus bromiiclade_478clade_354clade_537++++50.020.0
Clostridium mayombeiClostridium mayombeiclade_354clade_354++++50.020.0
Clostridium mayombeiFaecalibacterium prausnitziiclade_354clade_478++++50.020.0
Clostridium mayombeiRuminococcus bromiiclade_354clade_537++++50.020.0
Clostridium mayombeiEubacterium rectaleclade_354clade_444++++50.020.0
Eubacterium rectaleClostridium disporicumClostridium mayombeiclade_444clade_253clade_354++++42.913.3
Faecalibacterium prausnitziiClostridium disporicumClostridium mayombeiclade_478clade_253clade_354++++42.913.3
Clostridium disporicumClostridium mayombeiclade_253clade_354++++42.913.3
Clostridium disporicumCoprococcus comesclade_253clade_262++++35.713.3
Eubacterium rectaleClostridium orbiscindensBlautia sp. M25clade_444clade_494clade_309++++28.680.0
Faecalibacterium prausnitziiClostridium orbiscindensBlautia sp. M25clade_478clade_494clade_309++++28.673.3
Clostridium disporicumClostridium orbiscindensclade_253clade_494++++28.646.7
Clostridium hylemonaeEubacterium rectaleEubacterium rectaleclade_260clade_444clade_444++++21.440.0
Eubacterium rectaleClostridium hylemonaeBlautia sp. M25clade_444clade_260clade_309++++21.440.0
Coprococcus comesClostridium orbiscindensBlautia sp. M25clade_262clade_494clade_309++++21.433.3
Coprococcus comesClostridium orbiscindensclade_262clade_494++++21.433.3
Eubacterium rectaleClostridium mayombeiClostridium orbiscindensclade_444clade_354clade_494++++21.420.0
Faecalibacterium prausnitziiClostridium mayombeiClostridium orbiscindensclade_478clade_354clade_494++++21.420.0
Clostridium mayombeiClostridium orbiscindensclade_354clade_494++++21.420.0
Clostridium disporicumLachnospiraceae bacteriumclade_253clade_260++++14.340.0
5_1_57FAA
Clostridium hylemonaeLachnospiraceae bacteriumLachnospiraceae bacteriumclade_260clade_260clade_260++++14.326.7
5_1_57FAA5_1_57FAA
Clostridium hylemonaeLachnospiraceae bacteriumclade_260clade_260++++14.326.7
5_1_57FAA
Clostridium hylemonaeLachnospiraceae bacteriumEubacterium rectaleclade_260clade_260clade_444++++14.326.7
5_1_57FAA
Lachnospiraceae bacteriumClostridium hylemonaeBlautia sp. M25clade_260clade_260clade_309++++14.326.7
5_1_57FAA
Bacteroides caccaeBacteroides caccaeclade_170clade_170++++14.320.0
Clostridium hylemonaeFaecalibacterium prausnitziiLachnospiraceae bacteriumclade_260clade_478clade_260++++14.320.0
5_1_57FAA
Bacteroides caccaeRuminococcus torquesclade_170clade_262++++14.320.0
Clostridium mayombeiFaecalibacterium prausnitziiLachnospiraceae bacterium
5_1_57FAAclade_354clade_478clade_260++++14.313.3
Clostridium mayombeiLachnospiraceae bacteriumEubacterium rectaleclade_354clade_260clade_444++++14.313.3
5_1_57FAA
Clostridium mayombeiLachnospiraceae bacteriumLachnospiraceae bacteriumclade_354clade_260clade_260++++14.313.3
5_1_57FAA5_1_57FAA
Lachnospiraceae bacteriumClostridium mayombeiBlautia sp. M25clade_260clade_354clade_309++++14.313.3
5_1_57FAA
Lachnospiraceae bacteriumClostridium mayombeiClostridium mayombeiclade_260clade_354clade_354++++14.313.3
5_1_57FAA
Lachnospiraceae bacteriumClostridium mayombeiRuminococcus bromiiclade_260clade_354clade_537++++14.313.3
5_1_57FAA
Clostridium mayombeiLachnospiraceae bacteriumclade_354clade_260++++14.313.3
5_1_57FAA
Coprococcus comesClostridium hylemonaeBlautia sp. M25clade_262clade_260clade_309++++14.313.3
Lachnospiraceae bacteriumClostridium disporicumClostridium mayombeiclade_260clade_253clade_354++++14.36.7
5_1_57FAA
Dorea longicatenaClostridium symbiosumclade_360clade_408++++7.193.3
Clostridium symbiosumClostridium orbiscindensClostridium orbiscindensclade_408clade_494clade_494++++7.180.0
Clostridium symbiosumClostridium orbiscindensBlautia sp. M25clade_408clade_494clade_309++++7.180.0
Clostridium orbiscindensClostridium symbiosumLachnospiraceae bacteriumclade_494clade_408clade_260++++7.166.7
5_1_57FAA
Lachnospiraceae bacteriumClostridium orbiscindensBlautia sp. M25clade_260clade_494clade_309++++7.166.7
5_1_57FAA
Clostridium symbiosumRuminococcus bromiiclade_408clade_537++++7.166.7
Clostridium disporicumClostridium symbiosumLachnospiraceae bacteriumclade_253clade_408clade_260++++7.140.0
5_1_57FAA
Clostridium hylemonaeClostridium symbiosumEubacterium rectaleclade_260clade_408clade_444++++7.140.0
Coprococcus comesLachnospiraceae bacteriumclade_262clade_260++++7.133.3
5_1_57FAA
Clostridium symbiosumClostridium hylemonaeRuminococcus bromiiclade_408clade_260clade_537++++7.133.3
Clostridium hylemonaeClostridium symbiosumLachnospiraceae bacteriumclade_260clade_408clade_260++++7.126.7
5_1_57FAA
Clostridium mayombeiClostridium symbiosumClostridium symbiosumclade_354clade_408clade_408++++7.120.0
Clostridium mayombeiClostridium symbiosumEubacterium rectaleclade_354clade_408clade_444++++7.120.0
Clostridium mayombeiClostridium symbiosumFaecalibacterium prausnitziiclade_354clade_408clade_478++++7.120.0
Clostridium symbiosumClostridium mayombeiBlautia sp. M25clade_408clade_354clade_309++++7.120.0
Clostridium symbiosumClostridium mayombeiClostridium mayombeiclade_408clade_354clade_354++++7.120.0
Clostridium symbiosumClostridium mayombeiClostridium orbiscindensclade_408clade_354clade_494++++7.120.0
Clostridium symbiosumClostridium mayombeiRuminococcus bromiiclade_408clade_354clade_537++++7.120.0
Clostridium mayombeiClostridium symbiosumclade_354clade_408++++7.120.0
Clostridium mayombeiClostridium symbiosumLachnospiraceae bacteriumclade_354clade_408clade_260++++7.113.3
5_1_57FAA
Clostridium symbiosumClostridium disporicumClostridium mayombeiclade_408clade_253clade_354++++7.113.3
Clostridium symbiosumClostridium mayombeiClostridium hylemonaeclade_408clade_354clade_260++++7.113.3
Eubacterium rectaleClostridium mayombeiClostridium hylemonaeclade_444clade_354clade_260++++7.113.3
Faecalibacterium prausnitziiClostridium mayombeiClostridium hylemonaeclade_478clade_354clade_260++++7.113.3
Lachnospiraceae bacteriumClostridium mayombeiClostridium orbiscindensclade_260clade_354clade_494++++7.113.3
5_1_57FAA
Clostridium mayombeiClostridium hylemonaeclade_354clade_260++++7.113.3
Clostridium hylemonaeCoprococcus comesLachnospiraceae bacteriumclade_260clade_262clade_260++++7.16.7
5_1_57FAA
Lachnospiraceae bacteriumClostridium mayombeiClostridium hylemonaeclade_260clade_354clade_260++++7.16.7
5_1_57FAA

[0369]

OTU Clade
clade_309clade_309clade_309clade_408clade_537clade_444clade_478clade_360clade_537clade_478
Num. ofBlautiaBlautiaBlautia sp.ClostridiumClostridiumEubacteriumFaecalibacteriumLachnospiraceaeRuminococcusSubdoligranulum
OTUslutischinkiiM25citroniaeleptumrectaleprausnitziibacterium 2_1_58FAAbromiivariabile
10YYYYYYYYYY
9YYYYYYYYY
9YYYYYYYYY
9YYYYYYYYY
9YYYYYYYYY
9YYYYYYYYY
9YYYYYYYYY
9YYYYYYYYY
9YYYYYYYYY
9YYYYYYYYY
9YYYYYYYYY
8YYYYYYYY
8YYYYYYYY
8YYYYYYYY
8YYYYYYYY
8YYYYYYYY
8YYYYYYYY
8YYYYYYYY
8YYYYYYYY
8YYYYYYYY
8YYYYYYYY
8YYYYYYYY
8YYYYYYYY
8YYYYYYYY
8YYYYYYYY
8YYYYYYYY
8YYYYYYYY
8YYYYYYYY
8YYYYYYYY
8YYYYYYYY
8YYYYYYYY
8YYYYYYYY
8YYYYYYYY
8YYYYYYYY
8YYYYYYYY
8YYYYYYYY
8YYYYYYYY
8YYYYYYYY
8YYYYYYYY
8YYYYYYYY
8YYYYYYYY
8YYYYYYYY
8YYYYYYYY
8YYYYYYYY
8YYYYYYYY
8YYYYYYYY
8YYYYYYYY
8YYYYYYYY
8YYYYYYYY
8YYYYYYYY
8YYYYYYYY
8YYYYYYYY
8YYYYYYYY
8YYYYYYYY
8YYYYYYYY
8YYYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
7YYYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
6YYYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
5YYYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY
4YYYY

[0370]

Post-Treatment Ecologies
Percent of dosesPercent of post-treatment
in which thepatients in which the
OTU 1OTU 2OTU 3ternary is presentternary is present
Blautia sp. M25FaecalibacteriumRuminococcus bromii10075
prausnitzii
Blautia sp. M25FaecalibacteriumRuminococcus obeum10089
prausnitzii
Blautia sp. M25FaecalibacteriumRuminococcus sp.10089
prausnitzii5_1_39BFAA
Blautia sp. M25FaecalibacteriumRuminococcus torques10093
prausnitzii
Blautia sp. M25Ruminococcus bromiiRuminococcus obeum10071
Blautia sp. M25Ruminococcus bromiiRuminococcus sp.10071
5_1_39BFAA
Blautia sp. M25Ruminococcus bromiiRuminococcus torques10075
Blautia sp. M25Ruminococcus obeumRuminococcus sp.10086
5_1_39BFAA
Blautia sp. M25Ruminococcus obeumRuminococcus torques10089
Blautia sp. M25Ruminococcus sp.Ruminococcus torques10089
5_1_39BFAA
ClostridiumClostridiumEscherichia coli0100
hathewayiorbiscindens
ClostridiumClostridiumLachnospiraceae bacterium0100
hathewayiorbiscindens3_1_57FAA_CT1
ClostridiumClostridiumRuminococcus torques0100
hathewayiorbiscindens
ClostridiumEscherichia coliLachnospiraceae bacterium0100
hathewayi3_1_57FAA_CT1
ClostridiumEscherichia coliRuminococcus torques0100
hathewayi
ClostridiumEscherichia coliLachnospiraceae bacterium0100
orbiscindens3_1_57FAA_CT1
ClostridiumEscherichia coliRuminococcus torques0100
orbiscindeas
ClostridiumRuminococcus torquesStreptococcus salivarius0100
orbiscindens
FaecalibacteriumRuminococcus bromiiRuminococcus obeum10075
prausnitzii
FaecalibacteriumRuminococcus bromiiRuminococcus sp.10071
prausnitzii5_1_39BFAA
FaecalibacteriumRuminococcus bromiiRuminococcus torques10075
prausnitzii
FaecalibacteriumRuminococcus obeumRuminococcus sp.10086
prausnitzii5_1_39BFAA
FaecalibacteriumRuminococcus obeumRuminococcus torques10093
prausnitzii
FaecalibacteriumRuminococcus sp.Ruminococcus torques10089
prausnitzii5_1_39BFAA
Ruminococcus bromiiRuminococcus obeumRuminococcus sp.10068
5_1_9BFAA
Ruminococcus bromiiRuminococcus obeumRuminococcus torques10079
Ruminococcus bromiiRuminococcus sp.Ruminococcus torques10071
5_1_39BFAA
Ruminococcus obeumRuminococcus sp.Ruminococcus torques10089
5_1_39BFAA

[0371]

Engrafting OTUs
OTU 1OTU 2OTU 3
Blautia sp. M25Clostridiales sp. SSC/2Coprococcus catus
Blautia sp. M25Clostridiales sp. SSC/2Faecalibacterium prausnitzii
Blautia sp. M25Clostridiales sp. SSC/2Ruminococcus bromii
Blautia sp. M25Clostridiales sp. SSC/2Ruminococcus obeum
Blautia sp. M25Clostridiales sp. SSC/2Ruminococcus sp.
5_1_39BFAA
Blautia sp. M25Clostridiales sp. SSC/2Ruminococcus torques
Blautia sp. M25Coproeoceus catusFaecalibacterium prausnitzii
Blautia sp. M25Coprococcus catusRuminococcus bromii
Blautia sp. M25Coproeoceus catusRuminococcus obeum
Blautia sp. M25Coprococcus catusRuminococcus sp.
5_1_39BFAA
Blautia sp. M25Coprococcus catusRuminococcus torques
Blautia sp. M25Eubacterium halliiFaecalibacterium prausnitzii
Blautia sp. M25Eubacterium halliiRuminococcus bromii
Blautia sp. M25Eubacterium halliiRuminococcus obeum
Blautia sp. M25Eubacterium halliiRuminococcus sp.
5_1_39BFAA
Blautia sp. M25Eubacterium halliiRuminococcus torques
Blautia sp. M25Faecalibacterium prausnitziiGemmiger formicilis
Blautia sp. M25Gemmiger formicilisRuminococcus bromii
Blautia sp. M25Gemmiger formicilisRuminococcus obeum
Blautia sp. M25Gemmiger formicilisRuminococcus sp.
5_1_39BFAA
Blautia sp. M25Gemmiger formicilisRuminococcus torques
Clostridiales sp. SSC/2Coprococcus catusFaecalibacterium prausnitzii
Clostridiales sp. SSC/2Coprococcus catusRuminococcus bromii
Clostridiales sp. SSC/2Coprococcus catusRuminococcus obeum
Clostridiales sp. SSC/2Coprococcus catusRuminococcus sp.
5_1_39BFAA
Clostridiales sp. SSC/2Coprococcus catusRuminococcus torques
Clostridiales sp. SSC/2Faecalibacterium prausnitziiRuminococcus bromii
Clostridiales sp. SSC/2Faecalibacterium prausnitziiRuminococcus obeum
Clostridiales sp. SSC/2Faecalibacterium prausnitziiRuminococcus sp.
5_1_39BFAA
Clostridiales sp. SSC/2Faecalibacterium prausnitziiRuminococcus torques
Clostridiales sp. SSC/2Ruminococcus bromiiRuminococcus obeum
Clostridiales sp. SSC/2Ruminococcus bromiiRuminococcus sp.
5_1_39BFAA
Clostridiales sp. SSC/2Ruminococcus bromiiRuminococcus torques
Clostridiales sp. SSC/2Ruminococcus obeumRuminococcus sp.
5_1_39BFAA
Clostridiales sp. SSC/2Ruminococcus obeumRuminococcus torques
Clostridiales sp. SSC/2Ruminococcus sp.Ruminococcus torques
5_1_39BFAA
Coprococcus catusFaecalibacterium prausnitziiRuminococcus bromii
Coprococcus catusFaecalibacterium prausnitziiRuminococcus obeum
Coprococcus catusFaecalibacterium prausnitziiRuminococcus sp.
5_1_39BFAA
Coprococcus catusFaecalibacterium prausnitziiRuminococcus torques
Coprococcus catusRuminococcus bromiiRuminococcus obeum
Coprococcus catusRuminococcus bromiiRuminococcus sp.
5_1_39BFAA
Coprococcus catusRuminococcus bromiiRuminococcus torques
Coprococcus catusRuminococcus obeumRuminococcus sp.
5_1_39BFAA
Coprococcus catusRuminococcus obeumRuminococcus torques
Coprococcus catusRuminococcus sp.Ruminococcus torques
5_1_39BFAA
Eubacterium halliiFaecalibacterium prausnitziiRuminococcus bromii
Eubacterium halliiFaecalibacterium prausnitziiRuminococcus obeum
Eubacterium halliiFaecalibacterium prausnitziiRuminococcus sp.
5_1_39BFAA
Eubacterium halliiFaecalibacterium prausnitziiRuminococcus torques
Eubacterium halliiRuminococcus bromiiRuminococcus obeum
Eubacterium halliiRuminococcus bromiiRuminococcus sp.
5_1_39BFAA
Eubacterium halliiRuminococcus bromiiRuminococcus torques
Eubacterium halliiRuminococcus obeumRuminococcus sp.
5_1_39BFAA
Eubacterium halliiRuminococcus obeumRuminococcus torques
Eubacterium halliiRuminococcus sp.Ruminococcus torques
5_1_39BFAA
FaecalibacteriumGemmiger formicilisRuminococcus bromii
prausnitzii
FaecalibacteriumGemmiger formicilisRuminococcus obeum
prausnitzii
FaecalibacteriumGemmiger formicilisRuminococcus sp.
prausnitzii5_1_39BFAA
FaecalibacteriumGemmiger formicilisRuminococcus torques
prausnitzii
Gemmiger formicilisRuminococcus bromiiRuminococcus obeum
Gemmiger formicilisRuminococcus bromiiRuminococcus sp.
5_1_39BFAA
Gemmiger formicilisRuminococcus bromiiRuminococcus torques
Gemmiger formicilisRuminococcus obeumRuminococcus sp.
5_1_39BFAA
Gemmiger formicilisRuminococcus obeumRuminococcus torques
Gemmiger formicilisRuminococcus sp.Ruminococcus torques
5_1_39BFAA

[0372]

Augmenting OTUs
Percent of
post-treatment
patients in which
the ternary is
OTU 1OTU 2OTU 3present
AnaerotruncusClostridiumEscherichia75
colihominisorbiscindenscoli
ClostridiumClostridiumEscherichia79
lactatifermentansorbiscindenscoli
ClostridiumClostridiumStreptococcus79
lactatifermentansorbiscindenssalivarius
ClostridiumEscherichiaStreptococcus75
lactatifermentanscolisalivarius
ClostridiumClostridiumEscherichia89
orbiscindenssp. NMLcoli
04A032
ClostridiumClostridiumOscillibacter89
orbiscindenssp. NMLsp. G2
04A032
ClostridiumClostridiumStreptococcus93
orbiscindenssp. NMLsalivarius
04A032
ClostridiumEscherichiaKlebsiella sp.75
orbiscindenscoliSRC_DSD2
ClostridiumEscherichiaOscillibacter89
orbiscindenscolisp. G2
ClostridiumEscherichiaStreptococcus96
orbiscindenscolisalivarius
ClostridiumOscillibacterStreptococcus89
orbiscindenssp. G2salivarius
Clostridium sp.EscherichiaOscillibacter82
NML 04A032colisp. G2
Clostridium sp.EscherichiaStreptococcus86
NML 04A032colisalivarius
Clostridium sp.OscillibacterStreptococcus86
NML 04A032sp. G2salivarius
Escherichia coliOscillibacterStreptococcus82
sp. G2salivarius

[0373]

Ternary OTU combinations in administered spore ecology doses resulting
in augmentation or engraftment of the OTU Clostridiales sp. SM4/1
Percent of
doses in
which the
ternary is
OTU 1OTU 2OTU 3present
ClostridiumEubacterium rectaleFaecalibacterium85
saccharogumiaprausnitzii
ClostridiumEubacterium rectaleRuminococcus85
saccharogumiatorques
ClostridiumFaecalibacteriumRuminococcus85
saccharogumiaprausnitziitorques
Blautia sp. M25ClostridiumEubacterium rectale85
saccharogumia
Blautia sp. M25ClostridiumFaecalibacterium85
saccharogumiaprausnitzii
Blautia sp. M25ClostridiumRuminococcus85
saccharogumiatorques
ClostridiumEubacterium rectaleRuminococcus85
saccharogumiaobeum
ClostridiumEubacterium rectaleRuminococcus sp.85
saccharogumia5_1_39BFAA
ClostridiumFaecalibacteriumRuminococcus85
saccharogumiaprausnitziiobeum
ClostridiumFaecalibacteriumRuminococcus sp.85
saccharogumiaprausnitzii5_1_39BFAA
ClostridiumRuminococcusRuminococcus85
saccharogumiaobeumtorques
ClostridiumRuminococcus sp.Ruminococcus85
saccharogumia5_1_39BFAAtorques
Blautia sp. M25ClostridiumRuminococcus sp.85
saccharogumia5_1_39BFAA
Blautia sp. M25ClostridiumRuminococcus85
saccharogumiaobeum
ClostridiumRuminococcusRuminococcus sp.85
saccharogumiaobeum5_1_39BFAA
ClostridiumFaecalibacteriumRuminococcus85
saccharogumiaprausnitziibromii
Blautia sp. M25ClostridiumRuminococcus85
saccharogumiabromii
ClostridiumEubacterium rectaleRuminococcus85
saccharogumiabromii
ClostridiumRuminococcusRuminococcus85
saccharogumiabromiiobeum
ClostridiumRuminococcusRuminococcus sp.85
saccharogumiabromii5_1_39BFAA
ClostridiumRuminococcusRuminococcus85
saccharogumiabromiitorques
Clostridiales sp.ClostridiumEubacterium rectale80
SSC/2saccharogumia
Clostridiales sp.ClostridiumFaecalibacterium80
SSC/2saccharogumiaprausnitzii
Clostridiales sp.ClostridiumRuminococcus80
SSC/2saccharogumiatorques
Blautia sp. M25Clostridiales sp.Clostridium80
SSC/2saccharogumia
Blautia sp. M25ClostridiumRuminococcus80
saccharogumialactaris
Clostridiales sp.ClostridiumRuminococcus80
SSC/2saccharogumiaobeum
Clostridiales sp.ClostridiumRuminococcus sp.80
SSC/2saccharogumia5_1_39BFAA
ClostridiumClostridiumEubacterium rectale80
lavalensesaccharogumia
ClostridiumClostridiumFaecalibacterium80
lavalensesaccharogumiaprausnitzii
ClostridiumClostridiumRuminococcus80
lavalensesaccharogumiatorques
ClostridiumEubacterium rectaleRuminococcus80
saccharogumialactaris
ClostridiumRuminococcusRuminococcus sp.80
saccharogumialactaris5_1_39BFAA
ClostridiumRuminococcusRuminococcus80
saccharogumialactaristorques
Blautia sp. M25ClostridiumClostridium80
lavalensesaccharogumia
ClostridiumClostridiumEubacterium rectale80
asparagiformesaccharogumia
ClostridiumClostridiumFaecalibacterium80
asparagiformesaccharogumiaprausnitzii
ClostridiumClostridiumRuminococcus80
asparagiformesaccharogumiatorques
ClostridiumClostridiumRuminococcus80
lavalensesaccharogumiaobeum
ClostridiumClostridiumRuminococcus sp.80
lavalensesaccharogumia5_1_39BFAA
ClostridiumEubacterium rectaleGemmiger80
saccharogumiaformicilis
ClostridiumFaecalibacteriumRuminococcus80
saccharogumiaprausnitziilactaris
ClostridiumGemmigerRuminococcus80
saccharogumiaformicilistorques
ClostridiumRuminococcusRuminococcus80
saccharogumialactarisobeum
ClostridiumFaecalibacteriumGemmiger80
saccharogumiaprausnitziiformicilis
Blautia sp. M25ClostridiumClostridium80
asparagiformesaccharogumia
Blautia sp. M25ClostridiumGemmiger80
saccharogumiaformicilis
ClostridiumClostridiumRuminococcus80
asparagiformesaccharogumiaobeum
ClostridiumClostridiumRuminococcus sp.80
asparagiformesaccharogumia5_1_39BFAA
ClostridiumCoprococcus comesEubacterium rectale80
saccharogumia
ClostridiumCoprococcus comesFaecalibacterium80
saccharogumiaprausnitzii
ClostridiumCoprococcus comesRuminococcus80
saccharogumiaobeum
ClostridiumCoprococcus comesRuminococcus80
saccharogumiatorques
ClostridiumDoreaEubacterium rectale80
saccharogumiaformicigenerans
ClostridiumDoreaFaecalibacterium80
saccharogumiaformicigeneransprausnitzii
ClostridiumDoreaRuminococcus80
saccharogumiaformicigeneransobeum
ClostridiumDoreaRuminococcus80
saccharogumiaformicigeneranstorques
ClostridiumGemmigerRuminococcus80
saccharogumiaformicilisobeum
ClostridiumGemmigerRuminococcus sp.80
saccharogumiaformicilis5_1_39BFAA
ClostridiumClostridiumClostridium80
asparagiformelavalensesaccharogumia
Blautia sp. M25ClostridiumCoprococcus comes80
saccharogumia
Blautia sp. M25ClostridiumDorea80
saccharogumiaformicigenerans
Blautia sp. M25ClostridiumEubacterium hallii80
saccharogumia
Clostridiales sp.ClostridiumRuminococcus80
SSC/2saccharogumiabromii
ClostridiumClostridiumRuminococcus80
asparagiformesaccharogumiabromii
ClostridiumClostridiumRuminococcus80
asparagiformesaccharogumialactaris
ClostridiumClostridiumDorea80
lavalensesaccharogumiaformicigenerans
ClostridiumClostridiumRuminococcus80
lavalensesaccharogumiabromii
ClostridiumClostridiumRuminococcus80
lavalensesaccharogumialactaris
ClostridiumCoprococcus comesRuminococcus sp.80
saccharogumia5_1_39BFAA
ClostridiumDoreaRuminococcus80
saccharogumiaformicigeneranslactaris
ClostridiumDoreaRuminococcus sp.80
saccharogumiaformicigenerans5_1_39BFAA
ClostridiumEubacterium halliiEubacterium rectale80
saccharogumia
ClostridiumEubacterium halliiFaecalibacterium80
saccharogumiaprausnitzii
ClostridiumEubacterium halliiRuminococcus80
saccharogumialactaris
ClostridiumEubacterium halliiRuminococcus80
saccharogumiaobeum
ClostridiumEubacterium halliiRuminococcus sp.80
saccharogumia5_1_39BFAA
ClostridiumEubacterium halliiRuminococcus80
saccharogumiatorques
ClostridiumRuminococcusRuminococcus80
saccharogumiabromiilactaris
ClostridiumClostridiumCoprococcus comes80
asparagiformesaccharogumia
ClostridiumClostridiumEubacterium hallii80
asparagiformesaccharogumia
ClostridiumClostridiumCoprococcus comes80
lavalensesaccharogumia
ClostridiumCoprococcus comesRuminococcus80
saccharogumiabromii
ClostridiumCoprococcus comesRuminococcus80
saccharogumialactaris
ClostridiumGemmigerRuminococcus80
saccharogumiaformicilisbromii
Blautia sp. M25ClostridiumCoprococcus catus80
saccharogumia
Blautia sp. M25ClostridiumDorea longicatena80
saccharogumia
ClostridiumClostridiumDorea80
asparagiformesaccharogumiaformicigenerans
ClostridiumClostridiumDorea longicatena80
asparagiformesaccharogumia
ClostridiumClostridiumDorea longicatena80
lavalensesaccharogumia
ClostridiumClostridiumEubacterium hallii80
lavalensesaccharogumia
ClostridiumCoprococcus catusEubacterium rectale80
saccharogumia
ClostridiumCoprococcus catusFaecalibacterium80
saccharogumiaprausnitzii
ClostridiumCoprococcus catusRuminococcus sp.80
saccharogumia5_1_39BFAA
ClostridiumCoprococcus catusRuminococcus80
saccharogumiatorques
ClostridiumCoprococcus comesDorea80
saccharogumiaformicigenerans
ClostridiumCoprococcus comesEubacterium hallii80
saccharogumia
ClostridiumDoreaEubacterium hallii80
saccharogumiaformicigenerans
ClostridiumDoreaRuminococcus80
saccharogumiaformicigeneransbromii
ClostridiumDorea longicatenaEubacterium rectale80
saccharogumia
ClostridiumDorea longicatenaFaecalibacterium80
saccharogumiaprausnitzii
ClostridiumDorea longicatenaRuminococcus80
saccharogumiaobeum
ClostridiumDorea longicatenaRuminococcus sp.80
saccharogumia5_1_39BFAA
ClostridiumDorea longicatenaRuminococcus80
saccharogumiatorques
ClostridiumEubacterium halliiRuminococcus80
saccharogumiabromii
Clostridiales sp.ClostridiumCoprococcus catus80
SSC/2saccharogumia
ClostridiumCoprococcus catusRuminococcus80
saccharogumiaobeum
ClostridiumDorea longicatenaEubacterium hallii80
saccharogumia
ClostridiumDorea longicatenaRuminococcus80
saccharogumiabromii
ClostridiumDorea longicatenaRuminococcus80
saccharogumialactaris
ClostridiumDoreaDorea longicatena80
saccharogumiaformicigenerans
ClostridiumCoprococcus catusRuminococcus80
saccharogumiabromii
ClostridiumCoprococcus comesDorea longicatena80
saccharogumia
Blautia sp. M25ClostridiumFaecalibacterium75
algidixylanolyticumprausnitzii
ClostridiumFaecalibacteriumRuminococcus75
algidixylanolyticumprausnitziiobeum
ClostridiumFaecalibacteriumRuminococcus75
algidixylanolyticumprausnitziitorques
Blautia sp. M25ClostridiumRuminococcus75
algidixylanolyticumobeum
Blautia sp. M25ClostridiumRuminococcus75
algidixylanolyticumtorques
ClostridiumFaecalibacteriumRuminococcus sp.75
algidixylanolyticumprausnitzii5_1_39BFAA
ClostridiumRuminococcusRuminococcus75
algidixylanolyticumobeumtorques
Blautia sp. M25ClostridiumRuminococcus sp.75
algidixylanolyticum5_1_39BFAA
ClostridiumRuminococcus sp.Ruminococcus75
algidixylanolyticum5_1_39BFAAtorques
ClostridiumRuminococcusRuminococcus sp.75
algidixylanolyticumobeum5_1_39BFAA
Clostridiales sp.ClostridiumRuminococcus75
SSC/2algidixylanolyticumtorques
Clostridiales sp.ClostridiumFaecalibacterium75
SSC/2algidixylanolyticumprausnitzii
Clostridiales sp.ClostridiumRuminococcus75
SSC/2algidixylanolyticumobeum
Clostridiales sp.ClostridiumRuminococcus sp.75
SSC/2algidixylanolyticum5_1_39BFAA
ClostridiumRuminococcusRuminococcus75
algidixylanolyticumbromiitorques
Blautia sp. M25Clostridiales sp.Clostridium75
SSC/2algidixylanolyticum
Blautia sp. M25ClostridiumRuminococcus75
algidixylanolyticumbromii
ClostridiumFaecalibacteriumRuminococcus75
algidixylanolyticumprausnitziibromii
ClostridiumRuminococcusRuminococcus75
algidixylanolyticumbromiiobeum
ClostridiumRuminococcusRuminococcus sp.75
algidixylanolyticumbromii5_1_39BFAA
Clostridiales sp.ClostridiumRuminococcus75
SSC/2algidixylanolyticumbromii
ClostridiumCoprococcus catusFaecalibacterium75
algidixylanolyticumprausnitzii
ClostridiumCoprococcus catusRuminococcus sp.75
algidixylanolyticum5_1_39BFAA
Blautia sp. M25ClostridiumCoprococcus catus75
algidixylanolyticum
ClostridiumCoprococcus catusRuminococcus75
algidixylanolyticumobeum
ClostridiumCoprococcus catusRuminococcus75
algidixylanolyticumtorques
Clostridiales sp.ClostridiumRuminococcus75
SSC/2saccharogumialactaris
Clostridiales sp.ClostridiumCoprococcus catus75
SSC/2algidixylanolyticum
Clostridiales sp.ClostridiumGemmiger75
SSC/2saccharogumiaformicilis
Clostridiales sp.ClostridiumClostridium75
SSC/2lavalensesaccharogumia
Clostridiales sp.ClostridiumDorea75
SSC/2saccharogumiaformicigenerans
ClostridiumCoprococcus catusRuminococcus75
algidixylanolyticumbromii
ClostridiumClostridiumGemmiger75
lavalensesaccharogumiaformicilis
ClostridiumGemmigerRuminococcus75
saccharogumiaformicilislactaris
Clostridiales sp.ClostridiumClostridium75
SSC/2asparagiformesaccharogumia
Clostridiales sp.ClostridiumCoprococcus comes75
SSC/2saccharogumia
Clostridiales sp.ClostridiumEubacterium hallii75
SSC/2saccharogumia
ClostridiumDoreaGemmiger75
saccharogumiaformicigeneransformicilis
ClostridiumClostridiumGemmiger75
asparagiformesaccharogumiaformicilis
ClostridiumCoprococcus comesGemmiger75
saccharogumiaformicilis
ClostridiumClostridiumCoprococcus catus75
asparagiformesaccharogumia
ClostridiumClostridiumCoprococcus catus75
lavalensesaccharogumia
ClostridiumEubacterium halliiGemmiger75
saccharogumiaformicilis
Blautia sp. M25ClostridiumEubacterium75
saccharogumiaramulus
Clostridiales sp.ClostridiumDorea longicatena75
SSC/2saccharogumia
Clostridiales sp.ClostridiumEubacterium75
SSC/2saccharogumiaramulus
ClostridiumCoprococcus catusRuminococcus75
saccharogumialactaris
ClostridiumEubacteriumEubacterium rectale75
saccharogumiaramulus
ClostridiumEubacteriumFaecalibacterium75
saccharogumiaramulusprausnitzii
ClostridiumEubacteriumRuminococcus75
saccharogumiaramulusobeum
ClostridiumEubacteriumRuminococcus sp.75
saccharogumiaramulus5_1_39BFAA
ClostridiumEubacteriumRuminococcus75
saccharogumiaramulustorques
ClostridiumClostridiumEubacterium75
asparagiformesaccharogumiaramulus
ClostridiumCoprococcus catusDorea longicatena75
saccharogumia
ClostridiumCoprococcus catusEubacterium hallii75
saccharogumia
ClostridiumCoprococcus catusGemmiger75
saccharogumiaformicilis
ClostridiumCoprococcus comesEubacterium75
saccharogumiaramulus
ClostridiumDorea longicatenaGemmiger75
saccharogumiaformicilis
ClostridiumEubacterium halliiEubacterium75
saccharogumiaramulus
ClostridiumEubacteriumRuminococcus75
saccharogumiaramuluslactaris
ClostridiumClostridiumEubacterium75
lavalensesaccharogumiaramulus
ClostridiumCoprococcus catusCoprococcus comes75
saccharogumia
ClostridiumCoprococcus catusDorea75
saccharogumiaformicigenerans
ClostridiumDoreaEubacterium75
saccharogumiaformicigeneransramulus
ClostridiumEubacteriumRuminococcus75
saccharogumiaramulusbromii
ClostridiumCoprococcus catusEubacterium75
saccharogumiaramulus
ClostridiumDorea longicatenaEubacterium75
saccharogumiaramulus

[0374]

Ternary OTU combinations in administered spore
ecology doses that result in augmentation or engraftment
of the OTU Clostridiales sp. SSC/2.
Percent of
doses in
which the
ternary is
OTU 1OTU 2OTU 3present
FaecalibacteriumRuminococcusTuricibacter85
prausnitziiobeumsanguinis
FaecalibacteriumRuminococcusTuricibacter85
prausnitziitorquessanguinis
Blautia sp. M25FaecalibacteriumTuricibacter85
prausnitziisanguinis
Blautia sp. M25RuminococcusTuricibacter85
torquessanguinis
FaecalibacteriumRuminococcus sp.Turicibacter85
prausnitzii5_1_39BFAAsanguinis
RuminococcusRuminococcusTuricibacter85
obeumtorquessanguinis
RuminococcusRuminococcus sp.Turicibacter85
obeum5_1_39BFAAsanguinis
Ruminococcus sp.RuminococcusTuricibacter85
5_1_39BFAAtorquessanguinis
Blautia sp. M25RuminococcusTuricibacter85
obeumsanguinis
FaecalibacteriumRuminococcusTuricibacter85
prausnitziibromiisanguinis
RuminococcusRuminococcusTuricibacter85
bromiiobeumsanguinis
RuminococcusRuminococcusTuricibacter85
bromiitorquessanguinis
Blautia sp. M25Ruminococcus sp.Turicibacter85
5_1_39BFAAsanguinis
RuminococcusRuminococcus sp.Turicibacter85
bromii5_1_39BFAAsanguinis
Blautia sp. M25RuminococcusTuricibacter85
bromiisanguinis
Clostridiales sp.FaecalibacteriumTuricibacter80
SSC/2prausnitziisanguinis
Clostridiales sp.RuminococcusTuricibacter80
SSC/2obeumsanguinis
Clostridiales sp.Ruminococcus sp.Turicibacter80
SSC/25_1_39BFAAsanguinis
Clostridiales sp.RuminococcusTuricibacter80
SSC/2torquessanguinis
Blautia sp. M25Clostridiales sp.Turicibacter80
SSC/2sanguinis
Blautia sp. M25GemmigerTuricibacter80
formicilissanguinis
GemmigerRuminococcusTuricibacter80
formicilisobeumsanguinis
GemmigerRuminococcus sp.Turicibacter80
formicilis5_1_39BFAAsanguinis
GemmigerRuminococcusTuricibacter80
formicilistorquessanguinis
FaecalibacteriumGemmigerTuricibacter80
prausnitziiformicilissanguinis
Clostridiales sp.RuminococcusTuricibacter80
SSC/2bromiisanguinis
EubacteriumFaecalibacteriumTuricibacter80
halliiprausnitziisanguinis
EubacteriumRuminococcusTuricibacter80
halliiobeumsanguinis
EubacteriumRuminococcus sp.Turicibacter80
hallii5_1_39BFAAsanguinis
EubacteriumRuminococcusTuricibacter80
halliitorquessanguinis
GemmigerRuminococcusTuricibacter80
formicilisbromiisanguinis
Blautia sp. M25EubacteriumTuricibacter80
halliisanguinis
EubacteriumRuminococcusTuricibacter80
halliibromiisanguinis
Blautia sp. M25CoprococcusTuricibacter80
catussanguinis
CoprococcusFaecalibacteriumTuricibacter80
catusprausnitziisanguinis
CoprococcusRuminococcusTuricibacter80
catusobeumsanguinis
CoprococcusRuminococcus sp.Turicibacter80
catus5_1_39BFAAsanguinis
CoprococcusRuminococcusTuricibacter80
catustorquessanguinis
Clostridiales sp.CoprococcusTuricibacter80
SSC/2catussanguinis
CoprococcusRuminococcusTuricibacter80
catusbromiisanguinis
ClostridiumFaecalibacteriumRuminococcus75
bartlettiiprausnitziiobeum
ClostridiumFaecalibacteriumRuminococcus75
bartlettiiprausnitziitorques
Blautia sp. M25ClostridiumFaecalibacterium75
bartlettiiprausnitzii
ClostridiumRuminococcusRuminococcus75
bartlettiiobeumtorques
ClostridiumRuminococcus sp.Ruminococcus75
bartlettii5_1_39BFAAtorques
Blautia sp. M25ClostridiumRuminococcus75
bartlettiitorques
ClostridiumFaecalibacteriumRuminococcus sp.75
bartlettiiprausnitzii5_1_39BFAA
Blautia sp. M25ClostridiumRuminococcus75
bartlettiiobeum
ClostridiumRuminococcusRuminococcus sp.75
bartlettiiobeum5_1_39BFAA
Blautia sp. M25ClostridiumRuminococcus sp.75
bartlettii5_1_39BFAA
ClostridiumRuminococcusRuminococcus75
bartlettiibromiitorques
ClostridiumFaecalibacteriumRuminococcus75
bartlettiiprausnitziibromii
ClostridiumRuminococcusRuminococcus75
bartlettiibromiiobeum
Blautia sp. M25ClostridiumRuminococcus75
bartlettiibromii
ClostridiumRuminococcusRuminococcus sp.75
bartlettiibromii5_1_39BFAA
EubacteriumFaecalibacteriumTuricibacter75
rectaleprausnitziisanguinis
EubacteriumRuminococcusTuricibacter75
rectaleobeumsanguinis
EubacteriumRuminococcus sp.Turicibacter75
rectale5_1_39BFAAsanguinis
EubacteriumRuminococcusTuricibacter75
rectaletorquessanguinis
Blautia sp. M25EubacteriumTuricibacter75
rectalesanguinis
ClostridiumFaecalibacteriumTuricibacter75
asparagiformeprausnitziisanguinis
ClostridiumRuminococcusTuricibacter75
asparagiformeobeumsanguinis
ClostridiumRuminococcus sp.Turicibacter75
asparagiforme5_1_39BFAAsanguinis
EubacteriumRuminococcusTuricibacter75
rectalebromiisanguinis
ClostridiumRuminococcusTuricibacter75
asparagiformetorquessanguinis
Blautia sp. M25ClostridiumTuricibacter75
asparagiformesanguinis
Clostridiales sp.EubacteriumTuricibacter75
SSC/2halliisanguinis
Clostridiales sp.GemmigerTuricibacter75
SSC/2formicilissanguinis
ClostridiumRuminococcusTuricibacter75
asparagiformebromiisanguinis
Clostridium sp.RuminococcusTuricibacter75
SS2/1torquessanguinis
ClostridiumEubacteriumTuricibacter75
asparagiformehalliisanguinis
Clostridium sp.FaecalibacteriumTuricibacter75
SS2/1prausnitziisanguinis
Clostridium sp.RuminococcusTuricibacter75
SS2/1obeumsanguinis
Clostridium sp.Ruminococcus sp.Turicibacter75
SS2/15_1_39BFAAsanguinis
EubacteriumGemmigerTuricibacter75
halliiformicilissanguinis
Clostridiales sp.Clostridium sp.Turicibacter75
SSC/2SS2/1sanguinis
Blautia sp. M25Clostridium sp.Turicibacter75
SS2/1sanguinis
Clostridium sp.RuminococcusTuricibacter75
SS2/1bromiisanguinis
Clostridium sp.CoprococcusTuricibacter75
SS2/1catussanguinis
CollinsellaFaecalibacteriumTuricibacter75
aerofaciensprausnitziisanguinis
CollinsellaRuminococcusTuricibacter75
aerofaciensbromiisanguinis
CollinsellaRuminococcusTuricibacter75
aerofaciensobeumsanguinis
CollinsellaRuminococcusTuricibacter75
aerofacienstorquessanguinis
CoprococcusEubacteriumTuricibacter75
catushalliisanguinis
CoprococcusGemmigerTuricibacter75
catusformicilissanguinis
Blautia sp. M25CollinsellaTuricibacter75
aerofacienssanguinis
CollinsellaEubacteriumTuricibacter75
aerofacienshalliisanguinis
CollinsellaRuminococcus sp.Turicibacter75
aerofaciens5_1_39BFAAsanguinis

[0375]

Ternary OTU combinations in administered spore ecology
doses that result in augmentation or engraftment of
the OTU Clostridium sp. NML 04A032.
Percent of
doses in
which the
ternary is
OTU 1OTU 2OTU 3present
ClostridiumFaecalibacteriumRuminococcus80
asparagiformeprausnitziichampanellensis
ClostridiumRuminococcusRuminococcus80
asparagiformechampanellensistorques
ClostridiumRuminococcusRuminococcus80
asparagiformechampanellensisobeum
Blautia sp. M25ClostridiumRuminococcus80
asparagiformechampanellensis
ClostridiumRuminococcusRuminococcus sp.80
asparagiformechampanellensis5_1_39BFAA
ClostridiumRuminococcusRuminococcus80
asparagiformebromiichampanellensis
ClostridiumEubacteriumRuminococcus80
asparagiformehalliichampanellensis
ClostridialesEubacteriumFaecalibacterium75
bacteriumrectaleprausnitzii
1_7_47FAA
ClostridialesEubacteriumRuminococcus75
bacteriumrectaleobeum
1_7_47FAA
ClostridialesEubacteriumRuminococcus75
bacteriumrectaletorques
1_7_47FAA
Blautia sp. M25ClostridialesEubacterium75
bacteriumrectale
1_7_47FAA
ClostridialesEubacteriumRuminococcus sp.75
bacteriumrectale5_1_39BFAA
1_7_47FAA
EubacteriumFaecalibacteriumRuminococcus75
rectaleprausnitziichampanellensis
FaecalibacteriumRuminococcusRuminococcus75
prausnitziichampanellensislactaris
ClostridialesClostridiumFaecalibacterium75
bacteriumasparagiformeprausnitzii
1_7_47FAA
ClostridialesClostridiumRuminococcus75
bacteriumasparagiformetorques
1_7_47FAA
Blautia sp. M25RuminococcusRuminococcus75
champanellensislactaris
EubacteriumRuminococcusRuminococcus75
rectalechampanellensisobeum
EubacteriumRuminococcusRuminococcus75
rectalechampanellensistorques
RuminococcusRuminococcusRuminococcus75
champanellensislactarisobeum
ClostridialesClostridiumRuminococcus75
bacteriumasparagiformeobeum
1_7_47FAA
RuminococcusRuminococcusRuminococcus75
champanellensislactaristorques
Blautia sp. M25EubacteriumRuminococcus75
rectalechampanellensis
ClostridiumFaecalibacteriumRuminococcus75
lavalenseprausnitziichampanellensis
EubacteriumRuminococcusRuminococcus75
rectalechampanellensislactaris
ClostridialesClostridiumRuminococcus sp.75
bacteriumasparagiforme5_1_39BFAA
1_7_47FAA
ClostridialesEubacteriumRuminococcus75
bacteriumrectalebromii
1_7_47FAA
ClostridiumRuminococcusRuminococcus75
lavalensechampanellensisobeum
ClostridiumRuminococcusRuminococcus75
lavalensechampanellensistorques
EubacteriumRuminococcusRuminococcus sp.75
rectalechampanellensis5_1_39BFAA
RuminococcusRuminococcusRuminococcus75
bromiichampanellensislactaris
RuminococcusRuminococcusRuminococcus sp.75
champanellensislactaris5_1_39BFAA
Blautia sp. M25ClostridialesClostridium75
bacteriumasparagiforme
1_7_47FAA
ClostridiumEubacteriumRuminococcus75
lavalenserectalechampanellensis
ClostridiumRuminococcusRuminococcus75
lavalensechampanellensislactaris
ClostridiumRuminococcusRuminococcus sp.75
lavalensechampanellensis5_1_39BFAA
Blautia sp. M25ClostridiumRuminococcus75
lavalensechampanellensis
ClostridiumEubacteriumRuminococcus75
asparagiformerectalechampanellensis
ClostridiumRuminococcusRuminococcus75
lavalensebromiichampanellensis
EubacteriumRuminococcusRuminococcus75
rectalebromiichampanellensis
ClostridialesClostridiumRuminococcus75
bacteriumasparagiformebromii
1_7_47FAA
ClostridiumRuminococcusRuminococcus75
asparagiformechampanellensislactaris
ClostridialesClostridiumEubacterium75
bacteriumasparagiformehallii
1_7_47FAA
ClostridiumClostridiumRuminococcus75
asparagiformelavalensechampanellensis
CoprococcusEubacteriumRuminococcus75
comesrectalechampanellensis
CoprococcusFaecalibacteriumRuminococcus75
comesprausnitziichampanellensis
CoprococcusRuminococcusRuminococcus75
comeschampanellensisobeum
CoprococcusRuminococcusRuminococcus75
comeschampanellensistorques
DoreaEubacteriumRuminococcus75
formicigeneransrectalechampanellensis
DoreaFaecalibacteriumRuminococcus75
formicigeneransprausnitziichampanellensis
DoreaRuminococcusRuminococcus75
formicigeneranschampanellensisobeum
DoreaRuminococcusRuminococcus75
formicigeneranschampanellensistorques
DoreaRuminococcusRuminococcus75
longicatenachampanellensisobeum
Blautia sp. M25CoprococcusRuminococcus75
comeschampanellensis
Blautia sp. M25DoreaRuminococcus75
longicatenachampanellensis
DoreaRuminococcusRuminococcus75
formicigeneranschampanellensislactaris
DoreaFaecalibacteriumRuminococcus75
longicatenaprausnitziichampanellensis
DoreaRuminococcusRuminococcus75
longicatenachampanellensistorques
EubacteriumEubacteriumRuminococcus75
halliirectalechampanellensis
EubacteriumRuminococcusRuminococcus75
halliichampanellensislactaris
Blautia sp. M25DoreaRuminococcus75
formicigeneranschampanellensis
ClostridiumDoreaRuminococcus75
asparagiformelongicatenachampanellensis
ClostridiumGemmigerRuminococcus75
asparagiformeformicilischampanellensis
ClostridiumDoreaRuminococcus75
lavalenseformicigeneranschampanellensis
DoreaRuminococcusRuminococcus sp.75
formicigeneranschampanellensis5_1_39BFAA
DoreaEubacteriumRuminococcus75
longicatenarectalechampanellensis
DoreaRuminococcusRuminococcus75
longicatenachampanellensislactaris
Clostridiales sp.ClostridiumRuminococcus75
SSC/2asparagiformechampanellensis
ClostridiumCoprococcusRuminococcus75
asparagiformecomeschampanellensis
ClostridiumDoreaRuminococcus75
asparagiformeformicigeneranschampanellensis
ClostridiumDoreaRuminococcus75
lavalenselongicatenachampanellensis
CoprococcusRuminococcusRuminococcus75
comesbromiichampanellensis
CoprococcusRuminococcusRuminococcus75
comeschampanellensislactaris
CoprococcusRuminococcusRuminococcus sp.75
comeschampanellensis5_1_39BFAA
DoreaRuminococcusRuminococcus75
longicatenabromiichampanellensis
DoreaRuminococcusRuminococcus sp.75
longicatenachampanellensis5_1_39BFAA
ClostridiumCoprococcusRuminococcus75
asparagiformecatuschampanellensis
ClostridiumEubacteriumRuminococcus75
lavalensehalliichampanellensis
DoreaEubacteriumRuminococcus75
formicigeneranshalliichampanellensis
DoreaDoreaRuminococcus75
formicigeneranslongicatenachampanellensis
ClostridiumCoprococcusRuminococcus75
lavalensecomeschampanellensis
CoprococcusDoreaRuminococcus75
comesformicigeneranschampanellensis
CoprococcusEubacteriumRuminococcus75
comeshalliichampanellensis
DoreaRuminococcusRuminococcus75
formicigeneransbromiichampanellensis
CoprococcusDoreaRuminococcus75
comeslongicatenachampanellensis
DoreaEubacteriumRuminococcus75
longicatenahalliichampanellensis
ClostridiumCollinsellaRuminococcus75
asparagiformeaerofacienschampanellensis

[0376]

Ternary OTU combinations in administered spore ecology doses that
result in augmentation or engraftment of the OTUs Clostridium sp.
NML 04A032, Ruminococcus lactaris, and Ruminococcus torques.
Percent of
doses in
which the
ternary is
OTU 1OTU 2OTU 3present
Clostridiales sp.FaecalibacteriumRuminococcus75
SM4/1prausnitziiobeum
Clostridiales sp.FaecalibacteriumRuminococcus75
SM4/1prausnitziitorques
Clostridiales sp.RuminococcusRuminococcus75
SM4/1obeumtorques
Blautia sp.Clostridiales sp.Faecalibacterium75
M25SM4/1prausnitzii
Clostridiales sp.Ruminococcus sp.Ruminococcus75
SM4/15_1_39BFAAtorques
Blautia sp.Clostridiales sp.Ruminococcus75
M25SM4/1torques
Clostridiales sp.FaecalibacteriumRuminococcus sp.75
SM4/1prausnitzii5_1_39BFAA
Blautia sp.Clostridiales sp.Ruminococcus75
M25SM4/1obeum
Blautia sp.Clostridiales sp.Ruminococcus sp.75
M25SM4/15_1_39BFAA
Clostridiales sp.RuminococcusRuminococcus sp.75
SM4/1obeum5_1_39BFAA
Clostridiales sp.ClostridiumFaecalibacterium75
SM4/1asparagiformeprausnitzii
Clostridiales sp.ClostridiumRuminococcus75
SM4/1asparagiformetorques
Clostridiales sp.ClostridiumRuminococcus75
SM4/1asparagiformeobeum
Blautia sp.Clostridiales sp.Ruminococcus75
M25SM4/1bromii
Clostridiales sp.FaecalibacteriumRuminococcus75
SM4/1prausnitziibromii
Clostridiales sp.RuminococcusRuminococcus75
SM4/1bromiiobeum
Clostridiales sp.RuminococcusRuminococcus sp.75
SM4/1bromii5_1_39BFAA
Clostridiales sp.RuminococcusRuminococcus75
SM4/1bromiitorques
Blautia sp.Clostridiales sp.Clostridium75
M25SM4/1asparagiforme
Clostridiales sp.ClostridiumRuminococcus sp.75
SM4/1asparagiforme5_1_39BFAA
Clostridiales sp.EubacteriumFaecalibacterium75
SM4/1halliiprausnitzii
Clostridiales sp.EubacteriumRuminococcus75
SM4/1halliiobeum
Clostridiales sp.EubacteriumRuminococcus75
SM4/1halliitorques
Blautia sp.Clostridiales sp.Eubacterium75
M25SM4/1hallii
Clostridiales sp.EubacteriumRuminococcus sp.75
SM4/1hallii5_1_39BFAA
Clostridiales sp.ClostridiumRuminococcus75
SM4/1asparagiformebromii
Clostridiales sp.ClostridiumEubacterium75
SM4/1asparagiformehallii
Clostridiales sp.EubacteriumRuminococcus75
SM4/1halliibromii

[0377]

Ternary OTU combinations in administered spore ecology doses that
result in augmentation or engraftment of the OTUs Eubacterium
rectale, Faecalibacterium prausnitzii, Oscillibacter
sp. G2, Ruminococcus lactaris, and Ruminococcus torques.
Percent of
doses in
which the
ternary is
OTU 1OTU 2OTU 3present
ClostridiumFaecalibacteriumRuminococcus75
bifermentansprausnitziiobeum
ClostridiumRuminococcusRuminococcus75
bifermentansobeumtorques
ClostridiumRuminococcusRuminococcus sp.75
bifermentansobeum5_1_39BFAA
Blautia sp.ClostridiumFaecalibacterium75
M25bifermentansprausnitzii
Blautia sp.ClostridiumRuminococcus75
M25bifermentanstorques
ClostridiumFaecalibacteriumRuminococcus sp.75
bifermentansprausnitzii5_1_39BFAA
ClostridiumFaecalibacteriumRuminococcus75
bifermentansprausnitziitorques
ClostridiumRuminococcus sp.Ruminococcus75
bifermentans5_1_39BFAAtorques
Blautia sp.ClostridiumRuminococcus75
M25bifermentansobeum
Blautia sp.ClostridiumRuminococcus sp.75
M25bifermentans5_1_39BFAA
ClostridiumRuminococcusRuminococcus75
bifermentansbromiiobeum
Blautia sp.ClostridiumGemmiger75
M25bifermentansformicilis
ClostridiumFaecalibacteriumRuminococcus75
bifermentansprausnitziibromii
ClostridiumGemmigerRuminococcus75
bifermentansformicilisobeum
ClostridiumGemmigerRuminococcus sp.75
bifermentansformicilis5_1_39BFAA
ClostridiumRuminococcusRuminococcus75
bifermentansbromiitorques
ClostridiumFaecalibacteriumGemmiger75
bifermentansprausnitziiformicilis
Blautia sp.ClostridiumRuminococcus75
M25bifermentansbromii
ClostridiumGemmigerRuminococcus75
bifermentansformicilistorques
ClostridiumRuminococcusRuminococcus sp.75
bifermentansbromii5_1_39BFAA
ClostridiumGemmigerRuminococcus75
bifermentansformicilisbromii

[0378]

Selected OTUs that may be present in the tables, specification, or in the
art with their alternate names, e.g., the current name used per NCBI.
Reference 1 is Kaur et al., “Hungatella effluvii gen. nov., sp.
nov., an obligately anaerobic bacterium isolated from an effluent
treatment plant, and reclassification of Clostridium hathewayi
as Hungatella hathewayi gen. nov., comb. nov.”, Int J Sys
Evol Microbiol, March 2014, vol. 64, pp. 710-718. Reference 2 is
Gerritsen et al., “Characterization of Romboutsia ilealis gen.
nov., sp. nov., isolated from the gastro-intestinal tract of a rat, and
proposal for the reclassification of five closely related members of
the genus Clostridium into the genera Romboutsia
gen. nov., Intestinibacter gen, nov., Terrisporobacter
gen. nov. and Asaccharospora gen. nov.”, Int J
Sys Evol Microbiol, May 2014, vol. 64, pp. 1600-1616.
Alternate OTU
OTU namenameReference
ClostridiumHungatella1
hathewayihathewayi
ClostridiumRomboutsia2
lituseburenselituseburense
ClostridiumIntestinibacter2
bartlettiibartlettii
ClostridiumTerrisporobacter2
glycolicumglycolicus
ClostridiumTerrisporobacter2
mayombeimayombei
ClostridiumAsaccharospora2
irregulareirregularis

Как компенсировать расходы
на инновационную разработку
Похожие патенты