A method for treating a disease comprising administering to a mammal in need thereof an effective dosage of an extract of a plant of the genus Hoodia, wherein the disease is selected from the group consisting of immune-mediated disorders, immune-associated disorders, inflammatory diseases, coronary disease, insulin resistance and liver-related diseases. In a preferred embodiment, the Hoodia is Hoodia parviflora. Also disclosed is a pharmaceutical composition for treating the above diseases comprising an effective dosage of an extract of a plant of the genus Hoodia.
1. A method for treating a liver-related disease, the method comprising:
administering to a mammal suffering from said liver-related disease an effective dosage of a water extract, sap, or powder preparation of a plant of genus wherein: said liver-related disease is an immune-mediated liver disease selected from the group consisting of fatty-infiltration, non-alcoholic fatty liver disease (NAFLD), cirrhosis of the liver, non-alcoholic steatohepatitis (NASH), and immune-mediated hepatitis; and said plant of genus 2. The method of 3. The method of 4. The method of 5. The method of 6. A method for treating a liver-related disease, the method comprising:
administering to a mammal suffering from said liver-related disease an effective dosage of a water extract, sap, or powder preparation of wherein said liver-related disease is an immune-mediated liver disease selected from the group consisting of non-alcoholic fatty liver disease (NAFLD), cirrhosis of the liver, non-alcoholic steatohepatitis (NASH), and immune-mediated hepatitis. 7. A method for treating a liver-related disease, the method comprising:
administering to a mammal suffering from said liver-related disease an effective dosage of a water extract, sap, or powder preparation of wherein said liver-related disease is an immune-mediated liver disease selected from the group consisting of non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), and immune-mediated hepatitis. 8. The method of
This application is a continuation of U.S. patent application Ser. No. 13/133,255, filed Jun. 7, 2011, which is a National Phase Application of PCT International Application No. PCT/IL2009/001152, International Filing Date Dec. 6, 2009, claiming the benefit of U.S. Provisional Patent Application No. 61/193,571, filed Dec. 8, 2008, all of which are hereby incorporated by reference. This invention relates to the use of plant parts and extracts of various species of the WO 98/46243 discloses a process to extract a steroidal glycoside having a specified formula from plants of the Asclepiadaceae family, and in particular from the genus U.S. Pat. No. 7,033,616 discloses pharmaceutical compositions containing an extract obtainable from a plant of the genus U.S. Patent Application No. 2005/0181077 discloses a composition for treating AIDS. The composition comprises a medicament selected from an extract of at least one of a number of plant families including Asclepiadacea, which includes U.S. Patent Application No. 2006/0159773 discloses herbal compositions containing The present invention relates to a method for treating a disease comprising administering to a mammal in need thereof an effective dosage of an extract of a plant of the genus The term “ An extract as used herein includes, but is not limited to, liquid extracts (frozen or liquid), solid extracts or spray-dried extracts, e.g. sap and plant solids. An extract as used herein may be purified, partially purified, concentrated and/or fractionated. In one embodiment, the extract is an isolated compound having the biological properties of the extract, as defined below. In a preferred embodiment, the compound is not the compound named P57, an oxypregnane steroidal glycoside with the chemical name (3β,12β,14β)-3-[(O-6-Deoxy-3-O-methyl-β-D-glucopyranosyl-(1→4)-O-2,6-dideoxy-3-O-methyl-β-D-ribo hexopyranosyl-(1→4)-2,6-dideoxy-3-O-methyl-β-D-ribo-hexopyranosyl)oxy]-14-hydroxy-12-[[(2E)-2-methyl-1-oxo-2-butenyl]oxy]pregn-5-en-20-one. In another embodiment, P57 contributes to the biological properties of the extract, as defined below It has now been discovered that the extracts used in the invention possess a biological property which is capable of strengthening the immune system. This property of the extracts also has at times an anti-inflammatory effect. It has further been found that these biological properties are not due to the compound P57, verified by activity measurements. In the present specification, the term biological properties or biological effect refers in general to the capability to treat a disease as defined below, in particular by strengthening the immune system, and to various biological effects, e.g. as demonstrated in the examples. In one embodiment, the above terms refer to strengthening the metabolic system. The diseases included within the invention include immune-mediated and immune-associated disorders, inflammatory diseases, coronary disease, insulin resistance and liver-related diseases. In a preferred embodiment, the disease is not type II diabetes. In one alternative of this embodiment, the disease is diabetes when the The immune-mediated and/or immune-associated disorders may include autoimmune diseases, rheumatoid arthritis, acute and chronic graft versus host disease, systemic lupus erythmatosus, scleroderma, multiple sclerosis, hyperlipidemia, atherosclerosis, obesity, inflammatory bowel disease and immune mediated hepatitis, and any brain, lung, heart, gastrointestinal system, kidney, skin, muscle and nerve disorders that are mediated at least in part by the immune system, whether adaptive or innate. In addition any brain, lung, heart, gastrointestinal system, kidney, skin, muscle and nerves disorders that are mediated at least in part by the immune system, whether adaptive or innate are included. Examples of coronary related-diseases are atherosclerosis and pathological triglyceride (TG) serum levels (hypertriglyceridemia). The liver-related diseases may include hyperlipidemia, fatty-infiltration, non-alcoholic fatty liver disease (NAFLD), cirrhosis of the liver, hepatitis B, hepatitis C, autoimmune hepatitis, primary biliary cirrhosis (PBC), primary sclerosing cholangitis (PSC), end stage liver disease inflammation of and decrease in liver function, and in general any type of liver disease including immune mediated, viral, metabolic and drug induced. NAFLD includes non alcoholic steatohepatitis (NASH). Examples of autoimmune diseases include multiple sclerosis (MS), autoimmune uveitis, autoimmune uveoretinitis, autoimmune thyroiditis, Hashimoto's disease, insulitis, Sjogren's syndrome, spontaneous abortions, experimental autoimmune myocarditis, rheumatoid arthritis (RA), inflammatory bowel disease (IBD), Crohn's disease, lupus (SLE), psoriasis and diabetes, particularly type I. Additional examples of autoimmune diseases include Acute necrotizing hemorrhagic leukoencephalitis, Addison's disease, Agammaglobulinemia, Allergic asthma, Allergic rhinitis, Alopecia greata, Amyloidosis, Ankylosing spondylitis, Anti-GBM/Anti-TBM nephritis, Antiphospholipid syndrome (APS), Autoimmune aplastic anemia, Autoimmune dysautonomia, Autoimmune hepatitis, Autoimmune hyperlipidemia, Autoimmune immunodeficiency, Autoimmune inner ear disease (AIED), Autoimmune myocarditis, Autoimmune thrombocytopenic purpura (ATP), Axonal & neuronal neuropathies, Bal's disease, Behnet's disease, Bullous pemphigoid, Cardiomyopathy, Castleman disease, Celiac sprue (nontropical), Chagas' disease, Chronic fatigue syndrome, Chronic inflammatory demyelinating polyneuropathy (CIDP), Churg-Strauss syndrome, Cicatricial pemphigoid/benign mucosal pemphigoid, Cogan's syndrome, Cold agglutinin disease, Congenital heart block, Coxsackie myocarditis, CREST disease, Essential mixed cryoglobulinemia, Demyelinating neuropathies, Dermatomyositis, Devic disease, Discoid lupus, Dressler's syndrome, Endometriosis, Eosinophilic fasciitis, Erythema nodosum, Experimental allergic encephalomyelitis, Evan's syndrome, Fibromyalgia, Fibrosing alveolitis, Giant cell arteritis (temporal arteritis), Goodpasture's syndrome, Graves' disease, Guillain-Barr syndrome, Hemolytic anemia, Henoch-Schonlein purpura, Herpes gestationis, Hypogammaglobulinemia, Idiopathic thrombocytopenic purpura (ITP), IgA nephropathy, Immunoregulatory lipoproteins, Inclusion body myositis, Insulin-dependent diabetes (type1), Interstitial cystitis, Juvenile arthritis, Juvenile diabetes, Kawasaki syndrome, Lambert-Eaton syndrome, Leukocytoclastic vasculitis, Lichen planus, Lichen sclerosus, Ligneous conjunctivitis, Linear IgA disease (LAD), Lyme disease, Meniere's disease, Microscopic polyangiitis, Mixed connective tissue disease (MCTD), Mooren's ulcer, Mucha-Habermann disease, Myasthenia gravis, Myositis, Narcolepsy, Neutropenia, Ocular cicatricial pemphigoid, Osteoarthritis, Palindromic rheumatism, Paraneoplastic cerebellar degeneration, Paroxysmal nocturnal hemoglobinuria (PNH), Parsonnage-Turner syndrome, Pars planitis (peripheral uveitis), Pemphigus, Peripheral neuropathy, Perivenous encephalomyelitis, Pernicious anemia, POEMS syndrome, Polyarteritis nodosa, Type I, II, & III autoimmune polyglandular syndromes, Polymyalgia rheumatica, Polymyositis, Postmyocardial infarction syndrome, Postpericardiotomy syndrome, Progesterone dermatitis, Primary biliary cirrhosis, Psoriatic arthritis, Idiopathic pulmonary fibrosis, Pyoderma gangrenosum, Pure red cell aplasia, Raynaud's phenomenon, Reflex sympathetic dystrophy, Reiter's syndrome, Relapsing polychondritis, Restless legs syndrome, Rheumatic fever, Sarcoidosis, Schmidt syndrome, Scleritis, Scleroderma, Sperm & testicular autoimmunity, Stiff person syndrome, Subacute bacterial endocarditis (SBE), Sympathetic ophthalmia, Takayasu's arteritis, Temporal arteritis/Giant cell arteritis, Thrombocytopenic purpura (TTP), Autoimmune thyroid disease, Tolosa-Hunt syndrome, Transverse myelitis & necrotizing myelopathy, Ulcerative colitis, Undifferentiated connective tissue disease (UCTD), Vasculitis, Vesiculobullous dermatosis, Vitiligo and Wegener's granulomatosis. Inflammatory diseases include sepsis, endotoxemia, pancreatitis, uveitis, hepatitis, peritonitis, keratitis, SIRS and injury-induced inflammation. The method of the invention may involve any of the standard means of administration such as intravenous, intramuscular, intraperitoneal, topical, transdermal, buccal, sublingual, oral (po), subcutaneous, etc. In a preferred embodiment, the extracts are administered orally. The present invention also relates to pharmaceutical compositions. A pharmaceutical composition as used herein means a composition comprising an extract of the invention, in admixture with acceptable auxiliaries such as, but not limited to, pharmaceutically acceptable carriers, diluents, adjuvants, excipients, or vehicles, such as preserving agents, fillers, disintegrating agents, wetting agents, emulsifying agents, suspending agents, sweetening agents, flavouring agents, perfuming agents, antibacterial agents, antifungal agents, lubricating agents and dispensing agents, depending on the nature of the mode of administration and dosage forms. The auxiliaries must be “acceptable” in the sense of being compatible with the other ingredients of the composition and not deleterious to the recipients thereof, i.e. pharmaceutically acceptable. “Pharmaceutically acceptable” means it is, within the scope of sound medical judgement, suitable for use in contact with the cells of humans and animals without undue toxicity, irritation, allergic response and the like, and are commensurate with a reasonable benefit/risk ratio. “Pharmaceutically acceptable dosage forms” as used herein include, but are not limited to dosage forms such as tablets, dragees, powders, elixirs, syrups, liquid preparations, including suspensions, sprays, lozenges, emulsions, solutions, granules and capsules, including liposome preparations. The active ingredient may also be presented as a bolus or paste. Techniques and formulations generally may be found in Remington, Pharmaceutical Sciences, Mack Publishing Co., Easton, Pa., latest edition. Extracts of the invention and compositions comprising such extracts may be administered under the supervision of a medical specialist, or may be self-administered. The exact dose and regimen of administration of an extract of the invention or a composition comprising such extract (an effective dosage or an amount effective in bringing about the biological effect) will necessarily be dependent upon the effect to be achieved (e.g. reduction in inflammation) and may vary with the route of administration, and the age and condition of the individual subject to whom the extract is to be administered. A dosage for humans is likely to contain from about 10 to about 10,000 mg (dry weight) per 70 kg body weight per day. The desired dose may be presented as one dose or as multiple sub-doses administered at appropriate intervals. The compositions may be prepared by any method well known in the art of pharmacy. Such methods include the step of bringing in association a The invention further includes a pharmaceutical composition comprising an extract of the invention, in combination with packaging material, including instructions for the use of the composition for a use as hereinbefore described. Extracts of the invention may be administered in conjunction with other ingredients, including, but not limited to folic acid, vitamins, minerals, anti-oxidants, other extracts from plants or fruit, liquid flavors and so forth. Liquid flavors as used herein means any liquid flavor characterized by low viscosity. Vitamins as used herein means any vitamin such as, but not limited to, B1, B2, B3, B6, B12, Folic Acid, Vitamin C, Biotin, Pantothenic acid, K, A, D, E and so forth. Antioxidants as used herein are meant to encompass any antioxidant such as, but not limited to a compound that has antioxidant activity. Minerals as used herein means any mineral such as, but not limited to, Na, K, Cl, Ca, P, Mg, Fe, I, Cu, Zn, Mn, Fl, and so forth. In order to understand the invention and to see how it may be carried out in practice, embodiments will now be described, by way of non-limiting example only, with reference to the accompanying drawings, in which: Preparation of an Extract of The Fresh The administration of the plant lectin, concanavalin A (ConA) to mice induces a severe immune-mediated hepatitis within 20 hours. When injected intravenously to mice, ConA induces activation of T cells in the liver, NKT (natural killer T) cells being the most important. Together with Kupffer cells, NKT cells secrete large amounts of various hepatotoxic cytokines (IFN-γ and TNF-α) which cause severe hepatic inflammation. Induction of ConA Hepatitis. The ConA (MP Biomedicals, USA) was dissolved in 50 mM Tris (pH 7), 150 mM NaCl, and 4 mM CaCl2, and was intravenously injected into C57Bl/6 male mice, 10-12 weeks of age (500 μg per mouse) in a total volume of 250 μl. ConA was injected 20 h before sacrificing the mice. The administration of the ConA, DDW—control (no X2—pure P2— SAP—sap from M1— GT2,GT4—hybrid The mice were sacrificed and their liver enzymes were measured. Evaluation of serum aspartyl transaminase (AST) and alanine aminotransferase (ALT) activities were determined using an automatic analyzer. Serum IFN-γ was measured using an ELISA assay (R&D, USA). The results are summarized in It can be seen that the groups fed with The level of the compound P57 was measured in various It can be seen that the level of P57 in Non-alcoholic fatty liver disease (NAFLD) is fatty inflammation of the liver when this is not due to excessive alcohol use. Non-alcoholic steatohepatitis (NASH) is the most extreme form of NAFLD, which is regarded as a major cause of cirrhosis of the liver of unknown cause. Work with genetically obese, insulin-resistant ob/ob mice demonstrates that hepatocytes become steatotic and die at increased rates. Thus, ob/ob mice develop NASH spontaneously. Insulin resistance, the inability of insulin to appropriately stimulate glucose uptake, is a hallmark of type 2 diabetes mellitus. Hepatic steatosis results from lipid accumulation within hepatocytes due to variable combinations of excess lipid uptake and synthesis and altered lipid secretion. The effect of Leptin deficient ob/ob mice (6-8 mice per group) received daily po administrations (11 ml doses) of water, P2, SAP or GT2 for 4 weeks. The mice were deprived of food for 12 hours and then given glucose. The serum glucose level was measured using Bayer Health Care strips at pre-determined times after administration of the glucose, as indicated in It can be seen that the The liver morphology of these mice is shown in In order to further determine hepatic fat levels, liver triglycerides (TG) were measured. The mice were sacrificed and a liver lysate was prepared. TG in the lysate (Sigma) were measured. The results are shown in It can be seen that all In summary, it may be seen that oral administration of P57 was isolated from A possible mechanism for the hypothalamic Na/K-ATPase activity is that hypothalamic regulation of food intake alters intracellular concentrations of ATP. While ATP may have direct effects on K+ channel activity or Na/K-ATPase, many other phosphorylation-dependent transduction pathways may mediate the subsequent integrative response to energy sensing. The mechanisms that drive progression from fatty liver to steatohepatitis and cirrhosis are unknown. In animal models, obese mice with fatty livers are vulnerable to liver adenosine triphosphate (ATP) depletion and necrosis, suggesting that altered hepatic energy homeostasis may be involved. It has been shown that recovery from hepatic ATP depletion becomes progressively less efficient as body mass increases in healthy controls and is severely impaired in patients with obesity-related nonalcoholic steatohepatitis (Helena Cortez-Pinto, et al. In order to investigate the effect of STAT3 (signal transducer and activator of transcription 3) has been proposed to be the main mediator of acute phase (AP) gene induction downstream of IL-6 and other gp130 cytokines Phosphorylation of STAT3 leads to its activation and is considered important for immune modulation of liver function. Activation of STAT3 plays a role in acute phase response, protection against liver injury, promotion of liver regeneration, glucose homeostasis, and hepatic lipid metabolism. In this experiment, the effect of It may be seen that the rats which were fed The clinical trial was an open labeled dose escalation, safety study. The primary endpoints were based on the effect of treatment at one of the time points. Subjects The following protocol involved 10 men and women above 18 years with biopsy-proven NASH with a score of 4 or above, altered glucose metabolism, including diabetes (non treated, or treated with up to 2 drugs (not including insulin) without any change in medication 2 months prior to enrolment), impaired fasting glucose or impaired glucose tolerance. Study Design: HbA1C was between 5.5 and 14%. Blood was drawn for a complete blood count (CBC) and other laboratory analyses (see attached study plan in table 1). Serum was collected and archived for use in the development of surrogate markers. The subject visited the clinic on days 7, 14, 21, and 30. The Hoodia was taken every day for 30 days. The subjects underwent a physical examination and blood samples were collected for all the disease parameters, as well as for T cell proliferation assay and FACS analysis for CD3, CD4, CD8, NKT, CD4CD25, FoxP3, CD4CCD25LAP. The results regarding the effect on immune function are summarized in Table 2. It may be concluded from the results that oral administration of CROSS-REFERENCE TO RELATED APPLICATIONS
FIELD OF THE INVENTION
BACKGROUND OF THE INVENTION
SUMMARY OF THE INVENTION
BRIEF DESCRIPTION OF THE DRAWINGS
DETAILED DESCRIPTION OF EMBODIMENTS
Example I
Autoimmune Hepatitis
Example II
P57 Content of Different
175, 355 2600, 2820 Example III
Fatty Liver Disease
Control P2 SAP GT2 (water) Example IV
ATP Measurements
Example V
Phosphorylation of STAT3
Example VI
Safety and Efficacy of Oral Administration of
STUDY PLAN Day Screen 1 7 14 21 30 Treatment x x x x x (daily for days 1-30) Informed X Consent Medical History X Medication History X AE Assessment X x x x x x Physical Exam X X X Vital Signs X x x x x x SMA1 X X X X X X CRP X X CBC/differential X x x x x x ESR X X Pregnancy (βHCG) X FACS X x X In vitro cytokines X x X HOMA score X X X Glucose tolerance test X X 1SMA includes: Total protein, albumin, ALT, AST, ALP, GGTP, LDH, total and LDL cholesterol, Triglycerides, uric acid, creatinine, urea (BUN), Na, K, glucose, total bilirubin
Results
CD4 CD25 CD4 CD25 CD4 + Foxp3 CD4 + CD25 + Foxp3 CD8 CD8 + CD25 Overall mean of response (%) 10.3 −121 −100. 8. −7.8 −15.6 −5.3 No. of responders 6 6 7 6 6 10 6 Mean for responders (%) 17.2 −224. −160. −12.3 −33.3 −15.6 51. CD3 CD56 CD3 + CD56 CD3 + CD69 CD3 + CD69 + CD56 CD62 CD4 + CD62 Overall mean of response (%) −5.26 −0.9 8.9 −20.6 42.9 −10.4 −12.2 No. of responders 7 7 6 5 7 8 7 Mean for responders (%) −8.19 15.5 38.6 −74. 67.7 −13.1 −18.8 GLP-1 CD4 + CD25 + HLA-DR IVGTT AUC IL-6 (pg/ml) TNFα (pg/ml) 3 hours 0 Overall mean of response (%) −457. 1645. 8.9 5.9 27.6 27.2 No. of responders 9 7 5 5 4 1 Mean for responders (%) −508. 8.9 −37. −92. 2.08 1.67 Ratio Adiponectin/IL-6 Ratio Adiponectin/TN Fα Overall mean of response (%) 1.3 1.3 No. of responders 8 7 Mean for responders (%) 17.5 25.9