A wave generator of a strain wave gearing has a plug, a wave generator bearing mounted to an outer peripheral surface of the plug, an input shaft protruding from the center of the plug to a first side running along a center axis, and a bearing arrangement on which a support bearing supporting the input shaft is arranged. Relative to an outer ring end surface of the wave generator bearing that faces the first side, a center-side plug end surface of a plug end surface facing the same direction is in a position withdrawn from the first side toward the opposite direction. The bearing arrangement is provided between the center-side plug end surface and the outer ring end surface encircling the input shaft. The input shaft can be fitted within the width dimension of the wave generator, and a strain wave gearing having a short axial length can be achieved.
1. A wave generator of a strain wave gearing, in which the wave generator is arranged coaxially inside a flexible externally toothed gear, flexes the externally toothed gear into a non-circular configuration to mesh partially with a rigid internally toothed gear, and causes to move meshed position between the externally toothed gear and the internally toothed gear in a circumferential direction, the wave generator of the strain wave gearing comprising:
a rigid plug; a wave generator bearing installed on a non-circular outer peripheral surface of the plug; and a bearing arrangement part; wherein the bearing arrangement part is a section having arranged therein a support bearing for supporting an input shaft connected to the plug from a first side along a central axis relative to the plug; the plug has a plug end surface facing the first side, and a center-side plug end surface portion of the plug end surface is set back toward a second side relative to an outer race end surface of an outer race of the wave generator bearing, the outer race end surface facing the first side and the second side being opposite the first side along the central axis; and the bearing arrangement part is formed in a portion between the outer race end surface and the center-side plug end surface portion, in a direction of the central axis. 2. The wave generator of the strain wave gearing according to an inner race of the wave generator bearing has an inner race end surface facing the first side that is set back toward the second side along the direction of the central axis relative to the outer race end surface. 3. The wave generator of the strain wave gearing according to the plug has a disc-shaped portion and an annular portion integrally formed with the disc-shaped portion in a state of surrounding an outer peripheral edge of the disc-shaped portion, the non-circular outer peripheral surface being formed on an outer peripheral surface of the annular portion; the disc-shaped portion has a center-side disc-shaped portion that spreads out perpendicularly with respect to the central axis, an inclined disc-shaped portion that extends in a direction inclined toward the input side from an outer peripheral edge of the center-side disc-shaped portion, and an outer-peripheral-side disc-shaped portion that spreads out perpendicularly with respect to the central axis from an outer peripheral edge of the inclined disc-shaped portion; the annular portion has a width in the direction of the central axis that is greater than a thickness of the outer-peripheral-side disc-shaped portion, and the annular portion has a central part of an inner peripheral surface in the direction of the central axis, the central part being connected to the outer-peripheral-side disc-shaped portion; and an end surface of the center-side disc-shaped portion facing the first side is the center-side plug end surface portion. 4. A strain wave gearing comprising:
a rigid internally toothed gear; a radially flexible externally toothed gear arranged coaxially inside the internally toothed gear; and the wave generator according to 5. The wave generator of the strain wave gearing according to an input shaft that protrudes from a central part of the plug toward the first side. 6. The wave generator of the strain wave gearing according to the wave generator bearing has an inner race, and an inner race surface of the inner race facing the first side is set back toward the second side along the direction of the central axis relative to the outer race end surface. 7. The wave generator of the strain wave gearing according to the plug has a disc-shaped portion and an annular portion integrally formed with the disc-shaped portion in a state of surrounding an outer peripheral edge of the disc-shaped portion, the non-circular outer peripheral surface being formed on an outer peripheral surface of the annular portion; the disc-shaped portion has a center-side disc-shaped portion that spreads out perpendicularly with respect to the central axis, an inclined disc-shaped portion that extends in a direction inclined toward the input side from an outer peripheral edge of the center-side disc-shaped portion, and an outer-peripheral-side disc-shaped portion that spreads out perpendicularly with respect to the central axis from an outer peripheral edge of the inclined disc-shaped portion; the annular portion has a width in the direction of the central axis that is greater than a thickness of the outer-peripheral-side disc-shaped portion, and the annular portion has a central part of an inner peripheral surface in the direction of the central axis, the central part being connected to the outer-peripheral-side disc-shaped portion; and an end surface of the center-side disc-shaped portion facing the first side is the center-side plug end surface portion. 8. A strain wave gearing characterized in comprising:
a rigid internally toothed gear; a radially flexible externally toothed gear arranged coaxially inside the internally toothed gear; the wave generator according to a support bearing that is arranged in the bearing arrangement part of the wave generator and rotatably supports the input shaft. 9. The strain wave gearing according to a disc-shaped end plate extending toward a center of the internally toothed gear from an internal-toothed-gear end surface of the internally toothed gear facing the first side; and a bearing holder integrally formed on or attached to an inner peripheral edge part of the end plate, the support bearing being installed between the bearing holder and an outer peripheral surface of the input shaft. 10. The strain wave gearing according to the externally toothed gear is either cup-shaped or top-hat-shaped, and the externally toothed gear is arranged so that an open end thereof faces the first side. 11. The strain wave gearing according to a boss formed on an end of the second side of the externally toothed gear; an output member coaxially attached to the boss; and a main bearing for supporting the externally toothed gear in a relatively rotatable state with respect to the internally toothed gear.
The present invention relates to a wave generator provided with a part where a support bearing for supporting an input shaft is arranged, and also relates to a strain wave gearing. A strain wave gearing is composed of three members: a rigid internally toothed gear, a flexible externally toothed gear, and a wave generator. A unitary strain wave gearing with an output flange linked with an externally toothed gear is described in Patent Document 1. A flat-profile strain wave gearing used as a reducing mechanism that is fitted onto a motor shaft of an electric motor is described in Patent Document 2. The motor shaft is linked with the wave generator in the flat-design strain wave gearing, and the motor shaft is rotatably supported by a support bearing. The strain wave gearings disclosed in Patent Document 1 and 2 are typically fitted by the user. The wave generator attached to the motor shaft is assembled on the inside of the externally toothed gear fitted to the inside of the internally toothed gear. Axial positioning of the assembled wave generator and other work is necessary. A unitary strain wave gearing in which the three members are formed integrally in advance is proposed in Patent Document 3. According to Patent Document 3, the input shaft of the wave generator is supported by the internally toothed gear via a support bearing. The internally toothed gear and externally toothed gear are linked together by a linking member so as to allow relative rotation therebetween, and prevent any deviation from the central axis direction. Since the central-axis position of the wave generator is restricted by the support bearing in a unitary strain wave gearing, the wave generator does not need to be axially positioned as a part of the work performed to attach the wave generator to the motor shaft. Patent Document 1: JP-A 2002-339990 Patent Document 2: JP-A 2008-240874 Patent Document 3: JP-A 11-72147 In the strain wave gearing as disclosed in Patent Document 3, the input shaft integrated with the wave generator is supported by a support bearing which is arranged axially adjacent to the wave generator. In order to ensure there is adequate space in which to install the support hearing, the axial length of the strain wave gearing is proportionally increased, making it less convenient when flattening the strain wave gearing. Furthermore, an input shaft such as a motor shaft linked to the wave generator is supported by a support bearing in the strain wave gearings disclosed in Patent Documents 1 and 2 as well. In addition to the strain wave gearing, it is necessary to ensure adequate space to install the support bearing; therefore, the axial length of the device in which the strain wave gearing is assembled is proportionally increased, making it less convenient when flattening the device. An object of the present invention is to provide a wave generator suited to realize a flat strain wave gearing of reduced axial length. Another object of the present invention is to provide a flat strain wave gearing comprising the wave generator. In order to achieve the abovementioned objects, according to the present invention, there is provided a wave generator of a strain wave gearing, in which the wave generator is arranged coaxially inside a flexible externally toothed gear, flexes the externally toothed gear into a non-circular configuration to mesh partially with a rigid internally toothed gear, and causes to move meshed position between the externally toothed gear and the internally toothed gear in a circumferential direction, the wave generator of the strain wave gearing being characterized in comprising: a rigid plug; a wave generator bearing installed on a non-circular outer peripheral surface of the plug; and a bearing arrangement part; the bearing arrangement part being a section having arranged therein a support bearing for supporting an input shaft connected to the plug from a first side along a central axis relative to the plug; a center-side plug end surface portion of a first-side-facing plug end surface of the plug being set back toward a second side relative to a first-side-facing outer race end surface of an outer race of the wave generator bearing, the second side being opposite the first side along the central axis; and the bearing arrangement part being formed in a portion between the outer race end surface and the center-side plug end surface portion, in a direction of the central axis. In the wave generator according to the present invention, the bearing arrangement part is positioned within the width dimension of the wave generator in the central axis direction. Therefore, when a strain wave gearing provided with the wave generator is connected to a motor shaft or other input shaft, and the input shaft is supported by the support bearing, the support bearing will be accommodated within the width dimension of the wave generator in the central axis direction. Devices incorporating the strain wave gearing do not require the space in which the wave generator is to be implemented in the central-axis direction to be supplemented by space for the support bearing to be installed. It is accordingly possible to obtain a flat strain wave gearing of reduced axial length. In addition, according to the present invention, there is provided a wave generator of a strain wave gearing, in which the wave generator is arranged coaxially inside a flexible externally toothed gear, flexes the externally toothed gear into a non-circular configuration to mesh partially with a rigid internally toothed gear, and causes to move meshed position between the externally toothed gear and the internally toothed gear in a circumferential direction, the wave generator of the strain wave gearing being characterized in comprising: a rigid plug; a wave generator bearing installed on a non-circular outer peripheral surface of the plug; an input shaft that protrudes from a central part of the plug toward a first side along a central axis; and a bearing arrangement part in which a support bearing for supporting the input shaft is arranged; a center-side plug end surface portion of a first-side-facing plug end surface of the plug being set back toward a second side relative to a first-side-facing outer race end surface of an outer race of the wave generator bearing, the second side being opposite the first side along the central axis, and the center-side plug end surface portion surrounding the input shaft; and the bearing arrangement part being formed between the outer race end surface, which surrounds the input shaft, and the center-side plug end surface portion, in a direction of the central axis. In the wave generator according to the present invention, the bearing arrangement part is positioned within the width dimension of the wave generator in the direction of the central axis. Therefore, in a strain wave gearing provided with the wave generator, the support bearing is accommodated within the width dimension of the wave generator in the direction of the central axis. It is not necessary for the space in which the wave generator is to be implemented in the direction of the central axis to be supplemented with space in which the support bearing is to be implemented. It is accordingly possible to obtain a flat strain wave gearing provided with a support bearing, the strain wave gearing being of reduced axial length. In the present invention, the first-side-facing inner race end surface of the inner race of the wave generator hearing is preferably set back toward the second side along the direction of the central axis relative to the outer race end surface. The portion of the wave generator extending from the center-side plug end surface portion to the inner race end surface is set back toward the second side relative to the outer race end surface. It is possible to reliably ensure that, between the outer race end surface and the portion extending from the center-side plug end surface portion to the inner race end surface, space for installing a bearing holder for holding the support bearing is provided in addition to the bearing arrangement part in which the support bearing is arranged. In the present invention, it is possible to configure the parts in the following manner to ensure space for the bearing arrangement part within the width dimension of a wave generator. Specifically, the plug comprises a disc-shaped portion and an annular portion integrated with the disc-shaped portion, the annular portion surrounding the outer periphery of the disc-shaped portion, and the non-circular outer peripheral surface being formed on the outer peripheral surface of the annular portion. The disc-shaped portion comprises a center-side disc portion spreading out perpendicularly with respect to the central axis, an inclined disc portion spreading out in a direction inclined from the outer peripheral edge of the center-side disc portion toward the first side, and an outer-peripheral-side disc portion spreading out from the outer peripheral edge of the inclined disc portion perpendicularly with respect to the central axis. The width dimension of the annular portion in the central-axis direction is larger than the thickness of the outer-peripheral-side disc portion, and the central-axis-direction central part of the inner peripheral surface of the disc-shaped portion is connected to the outer-peripheral-side disc portion. In such circumstances, the input shaft protrudes from the central portion of the center-side disc portion, and the first-side end surface of the center-side disc portion is the center-side plug end surface portion. Next, a strain wave gearing of the present invention is characterized in comprising: a rigid internally toothed gear; a radially flexible externally toothed gear arranged coaxially inside the internally toothed gear; the wave generator of the abovementioned configuration; and a support bearing for rotatably supporting the input shaft, the support bearing being arranged in the bearing arrangement part of the wave generator. Here, a bearing holder for holding a support bearing can be integrated into, or attached to, the inside peripheral edge part of a disc-shaped end plate which extends towards the center of the internally toothed gear from a first-side-facing internally toothed end surface of the internally toothed gear. In this case, the support hearing is mounted in the space between the bearing holder and the outer peripheral surface of the input shaft. Next, in the case that the externally toothed gear is either cup-shaped or top-hat-shaped, the externally toothed gear is arranged so that an open end faces the first side. A unit-type strain wave gearing according to the present invention comprises, in addition to the abovementioned configuration, an output member attached coaxially to a boss formed in a second-side end part of the externally toothed gear, and a main bearing for supporting the externally toothed gear so as to allow relative rotation with respect to the internally toothed gear. An embodiment of the strain wave gearing in which the present invention is applied is described below in reference to the drawings. The strain wave gearing as detailed below is an example of a cup-shaped strain wave gearing provided with an input shaft and a support bearing. (Overall Configuration) An annular boss 4 The output flange 8 is rotatably supported by the unit housing 2 with a cross roller bearing 11 that is the main bearing interposed therebetween. The cross roller bearing 11 has an annular outer race 11 In the strain wave gearing 1 of the above configuration, a portion of the externally toothed gear 4 where the external teeth 4 (Configuration of the Parts) The input-side-facing end surface portion of the wave generator 5 has a center-side end surface portion 5 A disc-shaped end plate 13 is integrally formed with an input-side annular internally-toothed-gear end part 3 An outer race 7 The wave generator 5 has a disc-shaped rigid plug 20 and a wave generator bearing 30. An outer peripheral surface 20 The plug 20 has a disc-shaped portion 21 and an annular portion 22 that is integrated in a state of surrounding the outer peripheral edge of the disc-shaped portion 21. The outer peripheral surface of the annular portion 22 serves as the outer peripheral surface 20 The width of the annular portion 22 of the plug 20 in the direction of the central axis 1 The wave generator bearing 30 has a radially flexible outer race 31 and inner race 32, a plurality of balls 33 mounted therebetween, and a retainer 34 for holding the balls 33 at a fixed gap in the circumferential direction. The centers of the outer race 31 and inner race 32 in the direction of the central axis 1 Thus, in cross-section, the plug 20 of the wave generator 5 is configured such that the center-side portion of the plug 20 is set back toward the output side relative to the outer-peripheral-side portion. Therefore, the bearing arrangement part 7A in which the support bearing 7 can be mounted is formed between the center-side-end surface portion 5 Also, according to the present example, the inner race end surface 32 The present invention can likewise be applied to the top-hat-type strain wave gearing shown in FIG. 3 of Patent Document 3, and the flat-type strain wave gearing as taught in Patent Document 2. Furthermore, the present invention can also be applied to strain wave gearings having three members: an internally toothed gear, an externally toothed gear, and a wave generator provided with an input shaft; i.e., to strain wave gearings latterly fitted with a support bearing. Here as well, a support bearing attached when fitted to an input shaft such as a motor shaft is arranged in a bearing arrangement part provided in the wave generator, and accommodated within the width dimension of the wave generator. It is accordingly possible to minimize any increase in the axial length of an apparatus in which a strain wave gearing is incorporated, which is advantageous when making the device flatter. In addition, the present invention can likewise be applied to strain wave gearings latterly fitted with a support bearing and input shaft such as a motor shaft. In such applications there is provided a shaft linking part, such as a shaft hole, for linking an input shaft such as a motor shaft to a plug of a wave generator (refer to FIGS. 1 and 3 in Patent Document 1), and a bearing arrangement part is provided in a portion that surrounds the outer periphery of the shaft linking part such as a shaft hole. Since space allowing the support bearing to be implemented in a motor or other device in which a strain wave gearing is incorporated is equally unnecessary in such instances, it is possible to minimize any increase in the axial length of the device.TECHNICAL FIELD
BACKGROUND ART
PRIOR ART DOCUMENTS
Patent Documents
SUMMARY OF THE INVENTION
Problems to be Solved by the Invention
Means Used to Solve the Problems
BRIEF DESCRIPTION OF THE DRAWINGS
MODE FOR CARRYING OUT THE INVENTION
Other Embodiments