Antigenic polypeptides comprising linear immunodominant epitopes of Borrelia outer surface protein A (OspA) or Borrelia outer surface protein C (OspC) are useful as vaccines against Lyme disease, and as diagnostics for detecting Borrelia infections. The OspA and OspC antigenic polypeptides typically comprise a plurality of peptides representing epitope containing regions from multiple distinct phyletic groups. The antigenic polypeptides may also include epitopes from both Borrelia OspA and Borrelia OspC.
1. A recombinant or synthetic fusion protein comprising
at least one linear epitope from one or more linear 2. The recombinant or synthetic fusion protein of (SEQ ID NO: 3) STLTISKNRTKTKQLVFTKE, (SEQ ID NO: 9) NTLTVSADSKKIKDFVFLTD, and (SEQ ID NO: 15) KTLTVSADSKKIKDFVFLTD. (SEQ ID NO: 1) STLTITVNSKKTKDLVFTKE, (SEQ ID NO: 3) STLTISKNRTKTKQLVFTKE, (SEQ ID NO: 9) NTLTVSADSKKIKDFVFLTD, and (SEQ ID NO: 15) KTLTVSADSKKIKDFVFLTD.
This invention was made with government support under contract number R01 AI067746 awarded by the National Institutes of Health. The government has certain rights in the invention. Field of the Invention The invention generally relates to a vaccine and diagnostic for Lyme disease. In particular, the invention provides a Lyme disease vaccine and diagnostic that includes linear Background of the Invention Lyme disease is the most common arthropod-borne disease in North America and Europe, where in some areas up to 3% of the population is infected annually. Lyme disease is caused by the spirochetes The antigen used in first generation Lyme disease vaccines (e.g. LYMErix) was Outer surface protein A (OspA). OspA is only expressed by spirochetes in ticks, thus anti-OspA bactericidal activity occurs in the vector. However, a major drawback to the use of full-length OspA was the potential (whether real or perceived) for adverse events secondary to vaccination, such as the development of arthritis caused by immunological cross-reactivity with human proteins (e.g. LFA-1). This was a major factor in the withdrawal from the market of the original OspA-based LYMErix vaccine. U.S. Pat. No. 6,248,562 (Jun. 19, 2001) to Dunn and Luft describes chimeric U.S. Pat. Nos. 6,872,550 and 6,486,130 (Mar. 29, 2005, and Nov. 26, 2002, respectively) both to Livey, describe constructs for use a vaccines against Lyme disease. U.S. Pat. No. 7,008,625 (Mar. 7, 2006) to Dattwyler et al. discloses chimeric The publication “Recombinant Chimeric Despite the above-referenced technologies, to date the prior art has failed to provide an efficacious vaccine for use in the prevention and/or treatment of Lyme disease. In order to address prior art problems with Lyme disease vaccines, the OspA protein from In addition, in other embodiments of the invention, one or more defined epitope-containing sequences from the Finally, the invention provides vaccine compositions which contain epitopes or epitope regions from both OspA and OspC. It is an object of the invention 1. An isolated recombinant or synthetic peptide or polypeptide comprising at least one linear epitope from In one embodiment, the at least one linear epitope is selected from the group consisting of SEQ ID NO: 1; SEQ ID NO: 2; SEQ ID NO: 3; SEQ ID NO: 4; SEQ ID NO: 5; SEQ ID NO: 6; SEQ ID NO: 7; SEQ ID NO: 8; SEQ ID NO: 9; SEQ ID NO: 10; SEQ ID NO: 11; SEQ ID NO: 12; SEQ ID NO: 13; SEQ ID NO: 14; SEQ ID NO: 15; SEQ ID NO: 16; SEQ ID NO: 17; and SEQ ID NO: 18. The isolated recombinant or synthetic peptide or polypeptide may further comprise one or more amino acid sequences that are epitopes of The invention also provides a method for eliciting an immune response against In some embodiments, the at least one linear epitope has an amino acid sequence selected from the group consisting of SEQ ID NO: 1; SEQ ID NO: 2; SEQ ID NO: 3; SEQ ID NO: 4; SEQ ID NO: 5; SEQ ID NO: 6; SEQ ID NO: 7; SEQ ID NO: 8; SEQ ID NO: 9; SEQ ID NO: 10; SEQ ID NO: 11; SEQ ID NO: 12; SEQ ID NO: 13; SEQ ID NO: 14; SEQ ID NO: 15; SEQ ID NO: 16; SEQ ID NO: 17; and SEQ ID NO: 18. According to some embodiments of the method, the isolated recombinant or synthetic peptide or polypeptide may further comprise one or more amino acid sequences that are epitopes of The invention further provides a method for ascertaining whether an individual has been exposed to or infected with The invention further provides antibodies to a recombinant or synthetic peptide or polypeptide comprising at least one linear epitope from The invention further provides an isolated recombinant or synthetic peptide or polypeptide comprising one or more epitopes from The invention also provides an isolated recombinant or synthetic peptide or polypeptide comprising at least one linear epitope from The present invention is based on the identification and characterization of linear peptide epitopes from The prototype Class I sequence is from The prototype Class II sequence from The prototype Class III sequence from The prototype Class IV sequence from The use of one or more these linear epitopes in vaccine preparations advantageously avoids exposing the vaccine recipient to regions of OspA that have been implicated in putative adverse vaccine effects. The inclusion of a plurality of these linear sequences provides broad coverage against the development of Lyme disease for individuals over a broad geographical area. Or, when used as a diagnostic, the polypeptides of the invention enable detection of exposure to or infection with In order to facilitate the understanding of the present invention, the following definitions are provided:
According to the invention, at least one amino acid sequence from Classes I-IV will be included in a peptide or polypeptide that is administered as a vaccine. In one embodiment of the invention, an antigenic chimeric (or fusion) polypeptide of the invention comprises one or more amino acid sequence from Class I, such as those set forth in, for example, SEQ ID NOS: 1 and 2. Usually, one or more copies of two or more Class I sequences will be included, and each distinct sequence may be present in the polypeptide one or more time, i.e. multiple copies of one or more of the sequences set forth in, for example, SEQ ID NOS: 1 and 2 are included. For example, from about 1 to about 10 of the Class I sequences may be included, and for each separate sequence that is included, that sequence may be present in from about 2 to about 12 (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12) or more copies. Individual copies of the sequence may be separated by linker sequences (described below), although this need not always be the case, i.e. copies of the same or different antigenic regions may be contiguous in the polypeptide chain. In other embodiments, one or more of the amino acid sequences set forth in or represented by the Class II or Class III or Class IV antigenic regions are included in the antigenic polypeptides of the invention. As is the case with the Class I epitopes, one or more of the peptides may be present in the antigenic polypeptide, and, for each distinct sequence that is present, multiple copies (e.g. from about 2 to about 12) may be included. Individual copies of the sequence may be separated by linker sequences, although this need not always be the case. In yet other embodiments, mixtures of one or more copies of one or more Class I, Class II, Class III and/or Class IV antigenic regions are present in the antigenic polypeptides of the invention. In other words, the polypeptide includes a mixture antigenic regions from any of the four classes. Each of the sequences that is included may be present in one copy or, more frequently, as multiple copies. In this type of construct, the individual sequences may be present in any order. For example, one segment or section of the polypeptide may include multiple copies of e.g. SEQ ID NO: 1, while another section of the same polypeptide includes multiple copies of e.g. SEQ ID NO: 2, and so on. Alternatively, the sequences of e.g. SEQ ID NO: 1 and e.g. SEQ ID NO: 2 may alternate along the polypeptide chain so that the sequences are, in effect, interspersed amongst each other within the primary sequence of the polypeptide. Other antigenic sequences of interest are those from other In particular, the general epitope locations of suitable OspC-based sequences include Helix 3, Loop5, Loop6, Helix5 and a C-terminus sequence. Three exemplary constructs, denominated constructs A, B and C, are depicted schematically in In some embodiments, at least two of the OspC epitopes included in the chimeric polypeptide are from different OspC types that are associated with invasive infection. For example, antigenic epitopes representing from about 2 to about 20, and preferably from about 6 to about 10, different OspC types are included in a chimeric protein. When used as a vaccine, such a multivalent (polyvalent) recombinant chimeric protein elicits broad protection against infection with In some embodiments, both the OspC loop 5 and OspC alpha helix 5 regions will be included. For example, an “E, N, I, C, A, B, K, D” construct may contain both the loop 5 and helix 5 regions of each of OspC types E, N, I, C, A, B, K, and D. However, this need not be the case. For example, the loop 5 region of type A and the alpha helix 5 regions of E, N, I, C, B, K, and D may be included; or only the loop 5 region for each OspC type may be included; or only the alpha helix 5 region; or other combinations may be included (e.g. loop 5 region of types E, N, I, and C and the alpha helix 5 region of types A, B, K, and D. Many such combinations will occur to those of skill in the art, and all such variations are intended to be encompassed herein. In other embodiments of the invention, one or more of the sequences represented by OspA Classes I-IV are present in an antigenic polypeptide which also includes antigenic sequences of OspC as described above. In addition, other peptide sequences may be included in the peptides and polypeptides of the invention. Such sequences include but are not limited to antigenic peptide sequences such as linker sequences which in and of themselves are antigenic. Those of skill in the art will recognize that, while in some embodiments of the invention, the amino acid sequences that are chosen for inclusion in the peptides and polypeptides of the invention correspond exactly to the primary amino acid sequence of the original or native sequences of an OspA (or OspC) protein, this need not always be the case. The amino acid sequence of an epitope that is included in the peptides and polypeptides of the invention may be altered somewhat and still be suitable for use in the present invention. For example, certain conservative amino acid substitutions may be made without having a deleterious effect on the ability of the peptides and polypeptides to elicit an immune response. Those of skill in the art will recognize the nature of such conservative substitutions, for example, substitution of a positively charged amino acid for another positively charged amino acid (e.g. K for R or vice versa); substitution of a negatively charged amino acid for another negatively charged amino acid (e.g. D for E or vice versa); substitution of a hydrophobic amino acid for another hydrophobic amino acid (e.g. substitution of A, V, L, I, W, etc. for one another); etc. All such substitutions or alterations of the sequences of the peptides and polypeptides that are disclosed herein are intended to be encompassed by the present invention, so long as the resulting peptides and polypeptides still function to elicit a suitable immune response. In addition, the amino acid sequences that are included in the chimeric proteins of the invention need not encompass a full length native peptide or polypeptide. Those of skill in the art will recognize that truncated versions of amino acid sequences that are known to be or to contain antigenic peptides and/or polypeptides may, for a variety of reasons, be preferable for use in the practice of the invention, so long as the criteria set forth for an epitope is fulfilled by the sequence. Amino acid sequences that are so substituted or otherwise altered may be referred to herein as “based on” or “derived from” the original wild type or native sequence. In general, the OspA or OspC proteins from which the linear epitopes are “derived” or on which the linear epitopes are “based” are the OspA or OspC proteins as they occur in nature. These natural OspA/OspC proteins may alternatively be referred to as native or wildtype proteins. Such changes to the primary sequence may be introduced for any of a variety of reasons, for example, to eliminate or introduce a protease cleavage site, to increase or decrease solubility, to promote or discourage intra- or inter-molecular interactions such as folding, ionic interactions, salt bridges, etc., which might otherwise interfere with the presentation and accessibility of the individual epitopes along the length of a peptide or polypeptide. All such changes are intended to be encompassed by the present invention, so long as the resulting amino acid sequence functions to elicit a protective antibody response in a host to whom it is administered. In general, such substituted sequences will be at least about 50% identical to the corresponding sequence in the native protein, preferably about 60 to 70, or even 70 to 80, or 80 to 90% identical to the wild type sequence, and preferably about 95, 96, 97, 98, 99, or even 100% identical to a native OspA (or OspC) sequence. The reference native OspA or OspC sequence may be from any suitable type of In some embodiments of the invention, the individual linear epitopes in the chimeric vaccinogen are separated from one another by intervening sequences that are more or less neutral in character, i.e. they do not in and of themselves elicit an immune response to In addition, other elements may be present in the chimeric proteins, for example leader sequences or sequences that “tag” the protein to facilitate purification or detection of the protein, examples of which include but are not limited to histidine tags, detection tags (e.g. S-tag, or Flag-tag), other antigenic amino acid sequences such as known T-cell epitope containing sequences and protein stabilizing motifs, etc. In addition, the chimeric proteins may be chemically modified, e.g. by amidation, sulfonylation, lipidation, or other techniques that are known to those of skill in the art. The invention further provides nucleic acid sequences that encode the chimeric proteins of the invention. Such nucleic acids include DNA, RNA, and hybrids thereof, and the like. Further, the invention comprehends vectors which contain or house such coding sequences. Examples of suitable vectors include but are not limited to plasmids, cosmids, viral based vectors, expression vectors, etc. In a preferred embodiment, the vector will be a plasmid expression vector. The chimeric polypeptides of the invention may be produced by any suitable method, many of which are known to those of skill in the art. For example, they may be chemically synthesized, or produced using recombinant DNA technology (e.g. in bacterial cells, in cell culture (mammalian, yeast or insect cells), in plants or plant cells, or by cell-free prokaryotic or eukaryotic-based expression systems, by other in vitro systems, etc.). In some embodiments, the polypeptides are produced using chemical synthesis methods. The present invention also provides compositions for use in eliciting an immune response. The compositions may be utilized as vaccines to prevent or treat The methods involve administering a composition comprising a chimeric recombinant protein in a pharmacologically acceptable carrier to a mammal. The mammal may be a human, but this need not always be the case, as veterinary applications of this technology are also contemplated. The vaccine preparations of the present invention may be administered by any of the many suitable means which are well known to those of skill in the art, including but not limited to by injection, inhalation, orally, intranasally, by ingestion of a food product containing the chimeric protein, etc. In preferred embodiments, the mode of administration is subcutaneous or intramuscular. In addition, the compositions may be administered in conjunction with other treatment modalities such as substances that boost the immune system, various anti-bacterial chemotherapeutic agents, antibiotics, and the like. The present invention provides methods to elicit an immune response to The invention also provides a diagnostic and a method for using the diagnostic to identify individuals who have antibodies to the epitopes contained within the chimeric polypeptides of the invention. A biological sample from an individual (e.g. a human, a deer, or other mammals susceptible to infection by The present invention also encompasses antibodies to the epitopes and/or to the chimeric polypeptides disclosed herein. Such antibodies may be polyclonal, monoclonal or chimeric, and may be generated in any manner known to those of skill in the art. In a preferred embodiment of the invention, the antibodies are bactericidal (borreliacidal), i.e. exposure of Alternatively, appropriate antigen fragments or antigenic sequences or epitopes may be identified by their ability, when included in a chimeric protein, to elicit suitable antibody production to the epitope in a host to which the chimeric protein is administered. Those of skill in the art will recognize that definitions of antibody titer may vary. Herein, “titer” is taken to be the inverse dilution of antiserum that will bind one half of the available binding sites on an ELISA well coated with 100 ng of test protein. In general, suitable antibody production is characterized by an antibody titer in the range of from about 100 to about 100,000, and preferably in the range of from about 10,000 to about 10,000,000. Alternatively, and particularly in diagnostic assays, the “titer” should be about three times the background level of binding. For example, to be considered “positive”, reactivity in a test should be at least three times greater than reactivity detected in serum from uninfected individuals. Preferably, the antibody response is protective, i.e. prevents or lessens the development of symptoms of disease in a vaccinated host that is later exposed to The following Examples are provided to illustrate various embodiments of the invention, but should not be considered as limiting in any way. Materials and Methods Recombinant Protein Production Fragments of the outer surface protein A (OspA) gene were amplified by PCR using high fidelity DNA polymerase (Phusion HF, New England Biolabs), and the amplicons purified by agarose gel electrophoresis and gel extraction. Overhangs were generated by treatment with T4 polymerase to allow ligase-independent annealing to the pET-32 Ek/LIC vector. The annealed vector was transformed into To generate recombinant proteins, BL21(DE3) cells were grown at 37° C. to an OD600of 0.5, then 1 mM IPTG was added to induce protein expression, and the cells were maintained at 37° C. for an additional 3 hours. The pET-32 Ek/LIC vector encodes a 17.1 kDa N-terminal protein tagging sequence which includes a hexahistidine motif that was used to purify the r-proteins by Ni-NTA nickel affinity chromatography, according to the manufacturer's protocol (Qiagen). The purified proteins were quantified by the bicinchoninic acid assay (Pierce). Generation of Murine Infection Serum Mapping of Linear B-Cell Epitopes on OspA To map linear B-cell epitopes, overlapping recombinant subfragments of OspA were separated by 15% SDS-PAGE and blotted to PVDF. The membranes were blocked with 5% NFDM in PBS-T, and probed with mouse infection sera (1:500 dilution). To assess equality of protein loading, one blot was probed with a mouse monoclonal antibody specific to the hexahistidine motif in the expression tag sequence. The blots were then washed and probed with peroxidase-conjugated goat-anti-mouse IgG antiserum (1:20000; Pierce). The blots were washed, incubated with a chemiluminescent substrate (Supersignal West Pico; Pierce), and exposed to film. When reactive OspA fragments were determined, a series of smaller overlapping subfragments was made to further resolve the location of the linear epitope ( OspA Sequence Analysis The full length ospA gene from the Results: Location of OspA Linear Epitopes A western blot-based search for linear B-cell epitopes on OspA revealed several amino acid sequences that were reactive with antibodies generated during murine infection ( OspA Sequence Analysis Comparison of sequences among the three Discussion: The mapping of novel linear B-cell epitopes in OspA represents a significant advance in the development of second-generation Lyme disease vaccines. Previous research has primarily focused on known conformational epitopes, primarily the epitope recognized by the LA-2 monoclonal antibody. Linear OspA epitopes have been described, however, this study is novel in its use of serum derived from mice infected with clonal The large degree of intraspecies conservation at the mapped epitope-containing regions is of particular advantage in development of a peptide or chimeric vaccine. For example, since When administered to test mammals, this chimeric polypeptide construct comprising at least one 221-240 epitope containing region, and usually two or more 221-240 epitope containing regions from of different phyletic types, is found to elicit a robust immune response, and to provide protection from the development of Lyme disease. While the invention has been described in terms of its preferred embodiments, those skilled in the art will recognize that the invention can be practiced with modification within the spirit and scope of the appended claims. Accordingly, the present invention should not be limited to the embodiments as described above, but should further include all modifications and equivalents thereof within the spirit and scope of the description provided herein.STATEMENT OF GOVERNMENT INTEREST
BACKGROUND OF THE INVENTION
SUMMARY OF THE INVENTION
BRIEF DESCRIPTION OF THE DRAWINGS
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS OF THE INVENTION
Sequence variants at the 221-240 epitope containing region. SEQ Accession ID Species number NO Sequence NP045688.1 1 STLTITVNSKKTKDLVFTKE CAB64758.1 2 STLTIIVDSKNKTKLVFTKQ CAA56544.1 3 STLTISKNRTKTKQLVFTKE CAA01705.1 4 STLTISANSKKTKDLVFLTN CAR95557.1 5 STLTITVNNKKTKALVFTKQ ABF29588.1 6 STLTISVNSKKTTQLVFTKQ and CAA44092.1 AAB23810.1 7 STLTISVNSKKTKNIVFTKE and AAT93773.1 CAA82328.1 8 STLTISVNSQKTKNLVFTKE and CAA56546.1 ACD02017.1 9 NTLTVSADSKKIKDFVFLTD ABF29554.1 10 STLTISKNSQKTKQLVFTKE AAO91930.1 11 STLTISAKNKKTKDLVFTKQ AAR96307.1 12 STLKISKNSKKTKQLVFTKE AAO91932.1 13 STLTISAKSKKTKDLVFTKQ ACD02015.1 14 STLTISANNKKTKDLVFTKQ AAR96306.1 15 KTLTVSADSKKIKDFVFLTD AAP94131.1 16 STLTISAKNKKTTDLVFTKQ ABF29567.1 17 STLTISKNSRKTKQLVFTKE AAP94130.1 18 STLTISVNSRKTKNLVFTKE Example sequence variants for other epitope-containing sequences. Accession SEQ ID Epitope region Species number NO: Sequence Amino acids 17-67 NP045688.1 19 CKQNVSSLDEKNSVSVDLPGE MKVLVSKEKNKDGKYDLIATV DKLELKGTS Amino acids 17-67 CAA56545.1 20 CKQNVSSLDEKNSVSVDLPGG MTVLVSKEKDKDGKYSLEATV DKLELKGTS Amino acids 17-67 CAA59724.1 21 CKQNVSSLDEKNSASVDLPGE MKVLVSKEKDKDGKYSLKAT VDKIELKGTS Amino acids 94-144 NP045688.1 22 LGQTTLEVFKEDGKTLVSKKV TSKDKSSTEEKFNEKGEVSEKII TRADGTR Amino acids 94-144 CAA56545.1 23 LSQTKFEIFKEDGKTLVSKKVT LKDKSSTEEKFNEKGETSEKTI VRANGTR Amino acids 94-144 CAA59724.1 23 LSKPTFELFKGDGETLVSRKVS SKDKTSTDEMFNEKGELSAKT MTRENGTK Amino acids 119- NP045688.1 25 KSSTEEKFNEKGEVSEKIITRAD 169 GTRLEYTGIKSDGSGKAKEVL KGYVLEG Amino acids 119- CAA56545.1 26 KSSTEEKFNEKGETSEKTIVRA 169 NGTRLEYTDIKSDGSGKAKEV LKDFTLEG Amino acids 119- CAA59724.1 27 KTSTDEMFNEKGELSAKTMTR 169 ENGTKLEYTEMKSDGTGKAKE VLKNFTLEG Number of SEQ ID Construct amino acids Molecular weight Theoretical pI NO: Construct A, version 1 569 60657.2 6.35 65 Sequence SETFTNKLKEKHTDLGKEGVTDADAKEAILKTNGTKTKGAEELGKLFESVEVLSKAAKEM <----------------------------Type A------------------------- LANSVKELTSSEEFSTKLKDNHAQLGIQGVTDENAKKAILKANAAGKDKGVEELEKLSGS ---------><-----------------------Type B-------------------- LESLSSEDFTKKLEGEHAQLGIENVTDENAKKAILITDAAKDKGAAELEKLFKAVENLAA ----><---------------------Type K------------------------->< KLKGEHTDLGKEGVTDDNAKKAILKTNNDKTKGADELEKLFESVKNLSKAAKEMLTNSSE ---------------------Type I------------------------------><- KFAGKLKNEHASLGKKDATDODAKKAILKTHGNTDKGAKELKDLSDSVESLVSDDETKKL -------------------Type H------------------------><------- QSSHAQLGVAGGATTDEEAKKAILRTNAIKDKGADELEKLEKSVESLAKAAQDALANSVN ---------------------Type N--------------------------------- ELTSKKLKEKHTDLGKKDATDVHAKEAILKTNGTKDKGAAELEKLFESVENLAKAAKEML ---><-----------------------Type C-------------------------- SNSNKAFTDKLKSSHAELGIANGAATDANAKAAILKTNGTKDKGAQELEKLFESVKNLSK --><--------------------------Type M------------------------ AAQETLNNSSESFTKKLSDNQAELGIENATDDNAKKAILKTHNAKDKGAEELVKLSESVA --------><-------------------------------Type D------------- GLLKAAQAILANSVKELTSPVVAESPKKP ----------------------------> Number of SEQ ID Construct amino acids Molecular weight Theoretical pI NO: Construct B, version 1 503 53102.4 7.16 66 Sequence SEKFTTKLKDSHAELGIQSVQDDNAKKAILKTHGTKDKGAKELEELFKSLESLSKAAQAA <------------------------------------PWa-------------------- LTNSVKELTNSDKFTKKLTDSHAQLGAVGGAINDDRAKEAILKTHGTNDKGAKELKELSE ---------><------------------------PLi---------------------- SVESLAKAAQAALANSSEAFTKKLKDSNAQLGMQNGAATDAHAKAAILKTDATKDKGATE ---------------><-------------------------PBes-------------- LGELEKSVESLSKAAQEASVAFTSKLKSSNAQLGVANGNATDDDAKKAILKTNTPNDKGA -----------------><---------------------------Pki----------- KELKELFESVESLAKAAQAALVNSVQELTNSEAFTNRLKGSHAQLGVAAATDDHAKEAIL -----------------------------><-----------------PFiM-------- KSNPTKDKGAKELKDLSESVESLAKAAQEALANSVKELTNSEAFTKKLKDNNAQLGIQNV ---------------------------------------><----------H13------ QDVEAKKAILKTNGDISKSEAFTNKLKEKHAELGVNGGDTTDDNAKAAIFKTHPTKDKGV -----------------><------------------Smar------------------- EDLEKLSESVKSLLKAAQAALSNSAAFTKKLQDGHVOLGKTDVTDDNAKEAILKTNPTKT ----------------------><-------------------------HT22------- KGATELEELFKSVEGLVKAAKEA ----------------------> Number of SEQ ID Construct amino acids Molecular weight Theoretical pI NO: Construct C version 1 512 54372.0 8.14 67 Sequence SEEFTNKLKSGHADLGKQDATDDHAKAAILKTHATTDKGAKEFKDLFESVEGLLKAAQVA <-------------------------------------Pko------------------- LTNSVKELTSKLKGGHAELGLAAATDENAKKAILKINGTKDKGAEELEKLFKSVESLAKA ---------><------------------------------PLj7--------------- AKESLTNSVKELTNTKLRDSHAELGIQNVQDDNAKRAILKTHGNKDKGAKELKELSESLE -------------><------------------PHez----------------------- KLSKAAQAALANSVQELTSSEAFTNKLKEKTQELAVAAGAATDIDAKKAILKTNRDKDLG ------------------><--------------PMit---------------------- ADERGKLFKSVESLSKAAQEASANSVKELTSSEAFTDKLKNEHASLGKKDATDDDAKKAI ------------------------------><-----------------Szid------- LKTNVDKTKGADELIKLSGSLESLSKAAQAILANSEAFTKKLQDSNADLGKHNATDADSK ---------------------------------><--------------VS461------ EAILKTNGTKTKGAKELEELFKSVESLSKAAKEALSNSVKELTSSQDFINKLKGGHAELG -------------------------------------------><--------------- LVAATDANAKAAILKTNGDKTKGADEFEKLEKSVEGLLKAAQEALTNSVKELTSSEAFTK -------HT25------------------------------------------><----- KLQDSNADLGKHDATDADAKKAILKTDATKDK -----------DK15----------------> Number of SEQ ID Construct amino acids Molecular weight Theoretical pI NO: Construct A version 2 431 46088.0 5.85 68 Sequence SETFTNKLKEKHTDLGKEGVTKGAEELGKLFESVEVLSKAAKEMLANSVKELTSSEEFST <-------Lp A---------><--------------Hx A--------------><--- KLKDNHAQLGIQGVTKGVEELEKLSGSLESLSSEDFTKKLEGEHAQLGIENVTAAELEKL ---Lp B--------><------Hx B------><--------Lp K--------><--- FKAVENLAKAAKEMAKLKGEHTDLGKEGVTKGADELEKLFESVKNLSKAAKEMLTNSKES --Hx K--------><------Lp I-----><-----------Hx I---------->< EKFAGKLKNEHASLGKKDATKGAKELKDLSDSVESLVKASDDFTKKLQSSHAQLGVAGGA -------Lp H--------><-------Hx H-------><--------Lp N------- TTADELEKLFKSVESLAKAAQDALANSVNELTSKKLKEKHTDLGKKDATAAELEKLFESV -><------------Hx N-------------><-----Lp C------><--------- ENLAKAAKEMLSNSNKAFTDKLKSSHAELGIANGAATKGAQELEKLFESVKNLSKAAQET -Hx C---------><---------Lp M---------><-----------Hx M----- LNNSVKESESFTKKLSDNQAELGIENATKGAEELVKLSESVAGLLKAAQAILANSVKELT ------><--------Lp D--------><-----------------Hx D--------- SPVVAESPKKP ----------> Number of SEQ ID Construct amino acids Molecular weight Theoretical pI NO: Construct B version 2 381 39928.6 5.79 69 Sequence SEKFTTKLKDSHAELGIQSVQDKGAKELEELFKSLESLSKAAQAALTNSVKELTNSDKFT <-----Lp PWa-----><--------------Hx PWa---------------><---- KKLTDSHAQLGAVGGAINDKGAKELKELSESVESLAKAAQAALANSSEAFTKKLKDSNAQ -----Lp Pli------><-----------Hx Pli---------><------Lp PBes LGMQNGAATDKGATELGELFKSVESLSKAAQEASVAFTSKLKSSNAQLGVANGNATDKGA --------><--------Hx PBes-------><--------Lp Pki-------><--- KELKELFESVESLAKAAQAALVNSVQELTNSEAFTNRLKGSHAQLGVAAATDKGAKELKD -------Hx Pki----------------><------Lp PFim------><-------- LSESVESLAKAAQEALANSVKELTNSEAFTKKLKDNNAQLGIQNVQSEAFTNKLKEKHAE ---Hx PFim--------------><-----Lp H13--------><----Lp Smar--- LGVNGGDTTDKGVEDLEKLSESVKSLLKAAQAALSNSAAFTKKLQDGHVDLGKTDVTTKG --------><---------Hx Smar---------><------Lp HT22------><-- ATELEELFKSVEGLVKAAKEA ------Hx HT22-------> Number of SEQ ID Construct amino acids Molecular weight Theoretical pI NO: Construct C version 2 383 40492.5 6.45 70 Sequence SEEFTNKLKSGHADLGKQDATKGAKEFKOLFESVEGLLKAAQVALTNSVKELTSKLKGGH <-----Lp PKo--------><---------Hx PKo----------------><---Lp AELGLAAATKGAEELEKLFKSVESLAKAAKESLTNSVKELTNTKLRDSHAELGIQNVQKG PLj7----><-------------Hx PLj7-----------><----Lp PHez---><- AKELKELSESLEKLSKAAQAALANSVQELTSSEAFTNKLKEKTQELAVAAGAATLGADER ---------Hx PHez--------------><-------Lp PMit-------><----- GKLFKSVESLSKAAQEASANSVKELTSSEAFTDKLKNEHASLGKKDATKGADELIKLSGS ------Hx PMit-------------><------Lp Szid------><----------- LESLSKAAQAILANSEAFTKKLQDSNADLGKHNATKGAKELEELFKSVESLSKAAKEALS Hx Szid------><------Lp VS461-----><-------------Hx VS461--- NSVKELTSSQDFINKLKGGHAELGLVAATKGADEFEKLFKSVEGLLKAAQEALTNSVKEL -------><------Lp HT25------><------------Hx HT25----------- TSSEAFTKKLQDSNADLGKHDAT -><------Lp DK15------> Number of SEQ ID Construct amino acids Molecular weight Theoretical pI NO: Construct A version 3 432 46201.2 5.85 71 Sequence SETFTNKLKEKHTDLGKEGVTKGAEELGKLFESVEVLSKAAKEMLANSVKELTSKGVEEL <--------Lp A-------><-------------Hx A--------------><----- EKLSGSLESLSNKAFTDKLKSSHAELGIANGAATKKLKEKHTDLGKKDATKGADELEKLF --Hx B----><---------Lp M---------><-----Lp C------><------- ESVKNLSKAAKEMLTNSKEIAAELEKLFKAVENLAKAAKEMAKLKGEHTDLGKEGVTSEE ----Hx I------------><--------Hx K--------><------Lp I-----> FSTKLKDNHAQLGIQGVTKGAKELKDLSDSVESLVKAAAELEKLFESVENLAKAAKEMLS <------Lp B-------><-------Hx H-------><---------Hx C------- NSSEKFAGKLKNEHASLGKKDATSEDFTKKLEGEHAQLGIENVTKGAQELEKLFESVKNL -><--------Lp H--------><--------Lp K--------><--------Hx M- SKAAQETLNNSVKEADELEKLFKSVESLAKAAQDALANSVNELTSSESFTKKLSDNQAEL -------------><------------Hx N-------------><-------Lp D--- GIENATSDDFTKKLQSSHAQLGVAGGATTKGAEELVKLSESVAGLLKAAQAILANSVKEL -----><--------Lp N---------><--------------------Hx D------ TSPVVAESPKKP -----------> Number of SEQ ID Construct amino acids Molecular weight Theoretical pI NO: Construct B version 3 382 40056.8 5.93 72 Sequence SEAFTKKLKDSNAQLGMQNGAATDKGAKELEELFKSLESLSKAAQAALTNSVKELTNKDK <----------Lp PBes----><-------------Hx PWa-------------><-- GAKELKELFESVESLAKAAQAALVNSVQELTNSEKFTTKLKDSHAELGIQSVQSDKFTKK --------Hx PKi-----------------><------Lp PWa-------><------ LTDSHAQLGAVGGAINDKGAKELKELSESVESLAKAAQAALANSDKGAKELKDLSESVES -Lp Pli--------><----------Hx Pli----------><-------------Hx LAKAAQEALANSVKELTNSVAFTSKLKSSNAQLGVANGNATSEAFTKKLKDNNAQLGIQN PFim-------------><------Lp PKi---------><------Lp H13------ VQTKGATELEELFKSVEGLVKAAKEADKGVEDLEKLSESVKSLLKAAQAALSNSAAFTKK -><--------Hx HT22-------><----------Hx Smar--------><------ LQDGHVDLGKTDVTSEAFTNRLKGSHAQLGVAAATDKGATELGELEKSVESLSKAAQEAS Lp HT22------><-----Lp PFim-------><-------Hx PBes-------->< EAFTNKLKEKHAELGVNGGDTT -------Lp Smar-------> Number of SEQ ID Construct amino acids Molecular weight Theoretical pI NO: Construct C version 3 383 40622.6 6.10 73 Sequence SEEFTNKLKSGHADLGKQDATKGAKEFKDLFESVEGLLKAAQVALTNSVKELTSKEKGAE <------Lp PKo-------><-------------Hx PKo-------------><----- ELEKLFKSVESLAKAAKESLTNSVKELTNSEAFTDKLKNEHASLGKKDATTKLRDSHAEL ----Hx PLj7-----------------><-----Lp Szid-------><-------Lp GIQNVQLGADERGKLFKSVESLSKAAQEASANSVKELTSKEKGAKELEELFKSVESLSKA PHez-><------------Hx PMit-------------><----------Hx VS461- AKEALSNSVKELTSSEAFTKKLQDSNADLGKHNATSEAFTKKLQDSNADLGKHDATKGAD -------------><------Lp VS461-----><-------Lp DK15-----><--- EFEKLFKSVEGLLKAAQEALTNSVKELTSELKELSESLEKLSKAAQAALANSVQELTSSE -------Hx HT25--------------><-----------Hx PHez---------><- AFTNKLKEKTQELAVAAGAATKLKGGHAELGLAAATKGADELIKLSGSLESLSKAAQAIL -----Lp PMit--------><---Lp PLj7---><---------Hx Szid------- ANSQDFINKLKGGHAELGLVAAT -><-----Lp HT25-------> EXAMPLES
Example 1
Identification of Linear Immunodominant Epitopes of
Example 2