For a disk drive involving a disk; a head; and control circuitry having a servo control system operable to actuate the head, the control circuitry may be configured to determine a magnitude of acceleration readings, the acceleration readings involving at least three degrees of freedom, wherein when a magnitude of the acceleration readings is less than a first threshold, the control circuitry confirms a free fall, wherein when the magnitude is between the first and second threshold, the control circuitry confirms a tilt drop. During the tilt drop and the free fall, the control circuitry is further configured to actuate the head to park and monitor the shock impact.
1. A disk drive comprising:
a disk; a head; and control circuitry comprising a servo control system operable to actuate the head over the disk, the control circuitry configured to: determine a magnitude of acceleration readings, the acceleration readings involving at least three degrees of freedom, confirm a free fall when a magnitude of the acceleration readings is less than a first threshold, and confirm a tilt drop when the magnitude is between the first and a second threshold. 2. The disk drive of 3. The disk drive of monitor the shock impact until the magnitude is within a range of 1 g, and when the magnitude is within the range, disable detection of the tilt drop for a preset period of time and unload the head from the ramp. 4. The disk drive of 5. The disk drive of 6. The disk drive of 7. A control circuitry comprising:
a servo control system operable to actuate a head over a disk; and one or more integrated circuits configured to: determine a magnitude of acceleration readings for a disk drive, the acceleration readings involving at least three degrees of freedom, confirm a free fall when a magnitude of the acceleration readings is less than a first threshold, and confirm a tilt drop when the magnitude is between the first and a second threshold. 8. The control circuitry of 9. The control circuitry of monitor the shock impact until the magnitude is within a range of 1 g, and when the magnitude is within the range, disable detection of the tilt drop for a preset period of time and unload the head from the ramp. 10. The control circuitry of 11. The control circuitry of 12. The control circuitry of 13. A method comprising:
determining a magnitude of acceleration readings for a disk drive, the acceleration readings involving at least three degrees of freedom, confirming a free fall when a magnitude of the acceleration readings is less than a first threshold, and confirming a tilt drop when the magnitude is between the first and a second threshold. 14. The method of 15. The method of monitoring the shock impact until the magnitude is within a range of 1 g, and when the magnitude is within the range, disabling detection of the tilt drop for a preset period of time and unloading the head from the ramp. 16. The method of 17. The method of 18. The method of
This application claims priority to provisional U.S. Patent Application Ser. No. 61/860,858, filed on Jul. 31, 2013, which is hereby incorporated by reference in its entirety. Disk drives comprise a disk media and a head connected to a distal end of an actuator arm which is rotated about a pivot by a voice coil motor (VCM) to position the head radially over the disk. The disk comprises a plurality of radially spaced, concentric tracks for recording user data sectors and embedded servo sectors. The embedded servo sectors comprise head positioning information (e.g., a track address) which is read by the head and processed by a VCM servo controller to control the velocity of the actuator arm as it seeks from track to track. In the related art, there are free fall sensors (FFS) that are operable to detect a free fall event in response to an acceleration occurring in the disk drive due to the disk drive undergoing a free fall. The disk drive may undergo a free fall, for example, when a user drops the device containing the disk drive. During the free fall, a frequency response of the acceleration signal can be measured, and action can be taken depending on the frequency response. When a free fall is detected, the head is moved off the disk and parked in the ramp to protect against damage. As disk drives are implemented in smaller and more mobile devices, such as mobile phones and tablets, the possibility of false positives increases for free fall detection. Such mobile devices may be used more vigorously in gaming, exercise or running situations, in comparison to laptops and desktops. If the head is parked during such situations, then the device may be inadvertently disabled by a false trigger of the free fall detection system, even though the mobile device is not in free fall and is being used legitimately. The quality of the free fall detection therefore needs modification to provide timely triggers to initiate the head parking and to reduce the trigger based on false positives (e.g., gaming motion, walking motion, etc.). Some example embodiments described herein involve apparatuses and methods for a new free fall detection scheme to be used in an acceleration sensor or accelerometer equipped (e.g., three axis accelerometer, gyroscope, etc.) disk drive that is embedded in a mobile device, such as a tablet or mobile phone. In contrast to the related art, example embodiments involve a multi-mode detection scheme that includes free fall, tilt drop, and gaming mode detection to distinguish the different types of motion that could occur in a mobile device environment. In this manner, minor falls or tilts (e.g. <1-2 cm) and movement related to legitimate use (e.g., running, gaming, etc.) can be handled without triggering a false positive. In the free fall mode detection, the mobile device can be configured to detect and confirm weightless free falls. Weightless free falls are a common and dangerous type of fall. To detect and confirm a weightless free fall, an accelerometer that measures at least three degrees of freedom can be utilized, such that magnitude of the acceleration outputs drop to 0 and stay near 0 during the falls. Such free falls can happen at any time during the usage of the device. In the tilt drop mode detection, sensor outputs may vary at different sensor locations, supporting edges, tilt angles, and so on. One example of a tilt drop motion is when the mobile device is initially positioned at a tilted upright angle and then falls off from the position toward the table surface. The mobile device may fall around a supporting edge, wherein free-fall like fast motions may be unlikely before the tilt drop. During a tilt drop or a free fall, the control circuitry can be configured to park the head before the impact to the device occurs. In the gaming mode detection, the mobile device can be configured to detect gaming mode motions, which can involve motions where the user is using the mobile device in a physical activity, such as playing a mobile game, jogging, etc. The three modes of detection can be based on thresholds of the magnitudes of the acceleration outputs, as described with respect to In the example embodiment of Terms such as “first”, “second”, “third”, etc. are used for labeling purposes and are not meant to be limiting to any particular order. For example, in another example implementation by the control circuitry 20, the control circuitry can utilize an additional warning mode before entering the free fall mode 26 when the magnitude of acceleration readings are beyond a first threshold. This first threshold can be configured depending on the desired implementation of the device to account for variance of measurements from the sensors. When this threshold is exceeded, then the control circuitry may proceed to entering the free fall mode 26 if the magnitude readings are below a second threshold. Additionally, a gaming mode may be initiated if the magnitude does not exceed the tilt drop mode or free fall mode thresholds, as described in further detail below. If further detection is needed, then the warning is qualified and the control circuitry can proceed to the free fall detection mode (302-1) to check for a free fall. The check for a free fall can be conducted based on one or more attributes, such as the magnitude of the outputs of the acceleration sensors with respect to a threshold. If a free fall is detected and confirmed over a period of time, then the control circuitry can configure the disk drive to park the head (304). If no free fall is detected or confirmed, the control circuitry can enter a gaming mode (303) wherein the control circuitry checks for tilt drop and free fall while permitting the device to perform normally. If no motion is detected after a period of time (e.g., 0.5 seconds or in accordance with a desired implementation) during the gaming mode, then the control circuitry can revert back to the normal state (300). During the gaming mode (303), the magnitude of the acceleration sensor outputs are monitored to check for free falls (302-1) or enter a tilt drop mode (302-2) if excessive motion is detected. The tilt drop detection can be based on one or more attributes, such as the magnitude of the outputs of the acceleration sensors with respect to another threshold, or if the integration based on the difference between the magnitude and 1 g is positive, as described below. Tilt drop can be detected, for example, if the magnitude exceeds the threshold for the gaming mode and doesn't exceed the threshold for free fall detection, or if the integration based on the difference between the magnitude and 1 g is positive, as described below. If a tilt drop is detected, the control circuitry can be configured to park the head (304). Otherwise, the control circuitry can be configured to revert back to the normal state (300) or the gaming mode state (303), depending on the desired implementation. When a tilt or free fall is detected and confirmed over a period of time (304), the control circuitry is configured to park the head and monitor the ensuing shock impact (305). The period of time can be chosen based on the configuration of the device and the desired implementation, and should be a time period that is sufficient for confirming a fall yet short enough to allow time for the head to park before an impact event. The impact will result in a frequency response by the outputs of the acceleration sensors, which will gradually dissipate to normal. When the impact is normal (e.g., the magnitude of the acceleration readings have reverted to 1 g), then the control circuitry loads the head back to the media (306), whereupon the control circuitry enters the gaming mode (303) before reverting to the normal mode (300). When the mobile device is not undergoing any particular motion, VS will be substantially close to 1 g with some degree of variance for measurement error or nominal movement. During a free fall or a tilt fall, VS will approach 0. During the gaming mode, where the user is conducting operational motions such as playing a game or running, the VS will move up and down around 1 g. VS based thresholds can be implemented regardless of the orientation of the mobile device. Weightless free falls tend to have a stronger sensor signature compared to other general falls. The VS in a free fall drops to 0 rather quickly and stays near 0. Two different thresholds can be utilized in the FFS detection. For example, when VS<Free Fall Threshold, the free fall detection algorithm can be executed; when VS is between the Free Fall Threshold and the General Fall Threshold, the tilt drop detection algorithm can be executed. In an example implementation, the control circuitry can enter the gaming mode when VS>1.15 g. The intensity of the gaming motion can be determined by integrating (VS^2−1) after entering the gaming mode. The control circuitry can then maintain the gaming mode when the integration is >0. Based on the design requirement and the acceleration sensor location, the FFS detection can be made more sensitive to detect the tilt drops. Without the history of the motion, it may be hard to distinguish tilt drops from normal user operational motions. Thus, integration saves the “motion history” to reduce the likelihood of false triggers. Tilt drops tend to fall around a supporting edge and tend not to have large motions before the tilt drops. So when the mobile device is in the gaming mode, the tilt drop detection can be disabled, depending on the desired implementation. Further, because the tilt drops tend to fall around a supporting edge, sensor placement away from the supporting edge may aid in ensuring that the tilt drop can be detected. Free fall detection is not affected by the gaming mode. The gaming mode can be exited if VS is, for example within a range of 0.72 g-1.2 g for 500 ms. Other ranges can be utilized depending on the desired implementation and the type of device. Thus, the gaming mode can significantly reduce false triggers, without sacrificing the protection for real free falls. The integration graphs of Otherwise (N), the flow proceeds to 502, wherein a check is performed to determine if the magnitude is between the first threshold and a second threshold. If so (Y), then the flow proceeds to confirm that the device is undergoing a tilt drop over a period of time determine from the confirmation whether to park the head at 505 or to revert back to monitoring at 500. The confirmation can also involve checking the integration to determine whether the integration is negative. If the magnitude is not between the first and second threshold (N) and motion is detected, then the flow may execute a gaming mode process 507 during which the flow reverts back to 500 to monitor the magnitude of the acceleration readings. During the gaming mode process, the flow at 502 may be disabled while there is motion occurring at the device so that only free fall detection is executed, as explained in When a tilt drop or a free fall is detected, the flow proceeds to 505 to park the head and monitor the impact. When the impact occurs, the frequency response of the magnitude may be measured. When the magnitude measurements stabilize (e.g., return to within a range of 1 g), the flow proceeds to load the head at 506, and execute a gaming mode process at 507. Any suitable control circuitry may be employed to implement the flow diagrams in the example embodiments of the present invention, such as any suitable integrated circuit or circuits. For example, the control circuitry may be implemented within a read channel integrated circuit, or in a component separate from the read channel, such as a disk controller, or certain actions described above may be performed by a read channel and others by a disk controller. In one example embodiment, the read channel and disk controller are implemented as separate integrated circuits, and in an alternative example embodiment they are fabricated into a single integrated circuit or system on a chip (SOC). In addition, the control circuitry may include a suitable preamp circuit implemented as a separate integrated circuit, integrated into the read channel or disk controller circuit, or integrated into an SOC. In one example embodiment, the control circuitry comprises a microprocessor executing instructions, the instructions being operable to cause the microprocessor to perform the actions of the flow diagrams described herein. In some embodiments, certain actions may be omitted, combined, and/or performed in a different order than shown here. The instructions may be stored in any computer-readable medium. In one example embodiment, they may be stored on a non-volatile semiconductor memory external to the microprocessor, or integrated with the microprocessor in a SOC. In another example embodiment, the instructions are stored on the disk media and read into a volatile semiconductor memory when the disk drive is powered on. In yet another example embodiment, the control circuitry comprises suitable logic circuitry, such as state machine circuitry. One example embodiment involves a disk drive comprising: a disk; a head; and control circuitry comprising a servo control system operable to actuate the head, the control circuitry configured to: determine a magnitude of acceleration readings, the acceleration readings involving at least three degrees of freedom, wherein when a magnitude of the acceleration readings is less than a first threshold, the control circuitry detects and confirms a free fall, wherein when the magnitude is between the first and second threshold, the control circuitry detects and confirms a tilt drop. During the tilt drop and the free fall, the control circuitry is further configured to actuate the head to park and monitor the shock impact. When the impact is over (e.g., based on the stabilization of the magnitude, such as the magnitude being within a range of 1 g), the control circuitry is further configured to load the head to media and proceed to a gaming mode. The control circuitry is configured to remain in the gaming mode until a period of time elapses. Another example embodiment involves a control circuitry configured to: determine a magnitude of acceleration readings, the acceleration readings involving at least three degrees of freedom, wherein when a magnitude of the acceleration readings is less than a first threshold, the control circuitry detects and confirms a free fall, wherein when the magnitude is between the first and second threshold, the control circuitry detects and confirms a tilt drop. During the tilt drop and the free fall, the control circuitry is further configured to actuate the head of a disk drive to park and monitor the shock impact. When the impact is over (e.g., based on the stabilization of the magnitude, such as the magnitude being within a range of 1 g), the control circuitry is further configured to load the head to media and proceed to a gaming mode. The control circuitry is configured to remain in the gaming mode until a period of time elapses. Another example embodiment involves a device, comprising: a disk; a head; one or more acceleration sensors, and control circuitry comprising a servo control system operable to actuate the head, the control circuitry configured to: determine a magnitude of acceleration readings from the one or more acceleration sensors, the acceleration readings involving at least three degrees of freedom, wherein when a magnitude of the acceleration readings is less than a first threshold, the control circuitry detects and confirms a free fall, wherein when the magnitude is between the first and second threshold, the control circuitry detects and confirms a tilt drop. During the tilt drop and the free fall, the control circuitry is further configured to actuate the head to park and monitor the shock impact. When the impact is over (e.g., based on the stabilization of the magnitude, such as the magnitude being within a range of 1 g), the control circuitry is further configured to load the head to media and proceed to a gaming mode. The control circuitry is configured to remain in the gaming mode until a period of time elapses. The one or more acceleration sensors may be positioned away from a tilt edge of the device at a distance towards the center of the device such that the one or more acceleration sensors record measurements from all of the at least three degrees of freedom when the device undergoes a tilt drop from the tilt edge. The device may involve a mobile device, such as a tablet or a mobile phone, or may also be a laptop. Another example embodiment involves a method, comprising: determining a magnitude of acceleration readings, the acceleration readings involving at least three degrees of freedom, wherein when a magnitude of the acceleration readings is less than a first threshold, detecting and confirming a free fall, wherein when the magnitude is between the first threshold and a second threshold, detecting and confirming a tilt drop. During the tilt drop and the free fall, the method further includes actuating the head of the disk drive to park and monitoring the shock impact. When the impact is over (e.g., based on the stabilization of the magnitude, such as the magnitude being within a range of 1 g), the method further includes loading the head to media and remaining in a gaming mode until a period of time elapses.CROSS REFERENCE TO RELATED APPLICATION(S)
BACKGROUND
BRIEF DESCRIPTION OF THE DRAWINGS
DETAILED DESCRIPTION OF EXAMPLE EMBODIMENTS