A honeycomb segment containing outer walls and porous partition walls disposed inside the outer walls has a structure where first cells each open in one end portion on one side and plugged in the other end portion on the other side and second cells each plugged in one end portion on one side and open in the other end portion on the other side are alternately disposed, a cross-sectional area of the first cells in a cross section cut along a plane perpendicular to a longitudinal direction of the cells is larger than that of the second cells, and the first cells and the second cells are alternately disposed in a first direction and in a second direction perpendicular to the first direction in the cross section, and the outer walls are linearly formed so as to have a uniform thickness except for corner portions.
1. A honeycomb segment comprising outer walls and porous partition walls disposed inside the outer walls and separating and forming a plurality of cells functioning as fluid passages,
the honeycomb segment having a structure where first cells each open in one end portion on one side and plugged in the other end portion on the other side and second cells each plugged in one end portion on one side and open in the other end portion on the other side are alternately disposed in such a manner that the fluid flowing in the first cells from the one end portion is permeated through the partition walls to flow out inside the second cells as a permeated fluid and that the permeated fluid can be discharged from the other end portion on the other side where the second cells are open; wherein a cross-sectional area of the first cells in a cross section cut along a plane perpendicular to a longitudinal direction of the cells is larger than that of the second cells, and the first cells and the second cells are alternately disposed in a first direction and in a second direction perpendicular to the first direction in the cross section, a cell structure formed by the first cells and the second cells in an outermost peripheral portion is formed different from that in a central portion, and the second cells in the outermost peripheral portion are formed larger than the second cells in the central portion, and the outer walls are linearly formed so as to have a uniform thickness except for corner portions. 2. The honeycomb segment according to wherein the first cells in the outermost peripheral portion are formed smaller than the first cells in the central portion. 3. The honeycomb segment according to wherein a thickness of the outer wall is within ±15% of a standard thickness except for the corner portions. 4. The honeycomb segment according to wherein a cross-sectional shape of inner peripheral faces of the outer walls in the cross section cut along the plane perpendicular to the longitudinal direction of the cells is square.
The present invention relates to a honeycomb segment. More specifically, the present invention relates to a honeycomb segment capable of inhibiting clogging by particulate matter or the like on the end face on the fluid inflow side and maintaining high strength. In consideration of influences on the environment, there is an increased need for removing particulate matter and harmful substances in exhaust gas from an internal combustion engine, a boiler, and the like. In particular, regulations regarding removal of particulate matter (hereinafter referred to from time to time as “PM”) discharged from a diesel engine tends to be strengthened on a global basis, and use of a honeycomb filter is attracting attention as a trapping filter (hereinafter referred to from time to time as a “DPF”) for removing PM, and various kinds of systems have been proposed. In the aforementioned DPF, generally a plurality of cells functioning as fluid passages and each having a quadrangular cross-sectional shape are separated and formed by porous partition walls, and the cells are alternately plugged in such a manner that the porous partition walls constituting the cells function as a filter. Here, the cross-sectional shape means a shape of a cross section cut along a plane perpendicular to the longitudinal direction of the cells. The DPF allows the exhaust gas or the like containing particulate matter to flow therein from one end portion side and, after the particulate matter is filtrated by the partition walls, discharges purified exhaust gas from the other end portion side. The DPF has a problem of deposition of the particulate matter contained in the exhaust gas in the one end portion (end portion on the exhaust gas inflow side) in accordance with inflow of the exhaust gas to clog cells. This is a phenomenon easily caused in the case that a large amount of particulate matter is contained and in cold climates. Such clogging of cells causes rapid increase in pressure loss in the DPF. In order to inhibit such clogging of cells, there has been proposed a structure where a cross-sectional area of the cells each having an open end portion on the aforementioned gas inflow side (inflow side cell) is different from that of the cells each having an open end portion on the aforementioned other side (outflow side cell). Here, the cross-sectional area means an area of a cross section cut along a plane perpendicular to the longitudinal direction of the cells. However, when the cross-sectional area of the inflow side cells is made different from that of the outflow side cells of the honeycomb filter having the cells having a quadrangular cross-sectional shape, the thickness of the partition walls forming the cells becomes thin in a part of a portion where the partition walls cross each other (hereinafter referred to from time to time as an “intersection portion”) to decrease strength. Therefore, when PM is combusted and removed by performing post injection when PM has deposited in the DPF, thermal stress concentrates in a part of the thin intersection portion to easily cause breakage. Here, the portion where the partition wall cross each other means a portion belonging to both the partition walls crossing each other in a cross section cut along a plane perpendicular to the longitudinal direction of the honeycomb filter. For example, in the aforementioned cross section, when the partition walls linearly extending and having the same thickness cross each other, the intersection portion means the square range where the partition walls cross each other. In addition, there has been proposed a honeycomb filter having the inflow side cells having a larger cross-sectional area and outflow side cells having a smaller cross-sectional area, where the each of cells having a larger cross-sectional area has an octagonal cross-sectional shape obtained by linearly cutting the corners of a square (see, e.g., Patent Document 1). By the octagonal cross-sectional shape of the cells, the partially thin state of the intersection portion is slightly reduced. However, the problem of low strength against thermal stress still remains. Therefore, there is desired a honeycomb filter where both the problem of clogging of the cells and the problem of low strength are solved. Patent Document 1: French Patent Application Laid-Open No. 2789327 Specification The present invention aims to provide a honeycomb segment having an effect in improving bonding strength and alleviating thermal stress caused upon soot combustion by inhibiting clogging of cells to improve trapping performance and by linearly forming the outer walls to have a uniform thickness. It has been found out that the aforementioned problems can be solved by linearly forming the outer walls so as to have a uniform thickness except for the corner portions. That is, according to the present invention, the following honeycomb segment is provided. [1] A honeycomb segment comprising outer walls and porous partition walls disposed inside the outer walls and separating and forming a plurality of cells functioning as fluid passages, the honeycomb segment having a structure where first cells each open in one end portion on one side and plugged in the other end portion on the other side and second cells each plugged in one end portion on one side and open in the other end portion on the other side are alternately disposed in such a manner that the fluid flowing in the first cells from the one end portion is permeated through the partition walls to flow out inside the second cells as a permeated fluid and that the permeated fluid can be discharged from the other end portion on the other side where the second cells are open; wherein a cross-sectional area of the first cells in a cross section cut along a plane perpendicular to a longitudinal direction of the cells is larger than that of the second cells, and the first cells and the second cells are alternately disposed in a first direction and in a second direction perpendicular to the first direction in the cross section, and the outer walls are linearly formed so as to have a uniform thickness except for corner portions. [2] The honeycomb segment according [1], wherein a cell structure formed by the first cells and the second cells in an outermost peripheral portion is formed different from that in a central portion. [3] The honeycomb segment according to [2], wherein the first cells in the outermost peripheral portion are formed smaller than the first cells in the central portion. [4] The honeycomb segment according to [2], wherein the second cells in the outermost peripheral portion are formed larger than the second cells in the central portion. [5] The honeycomb segment according to any one of [1] to [4], wherein a thickness of the outer wall is within ±15% of a standard thickness except for the corner portions. [6] The honeycomb segment according to any one of [1] to [5], wherein a cross-sectional shape of inner peripheral faces of the outer walls in the cross section cut along the plane perpendicular to the longitudinal direction of the cells is square. By linearly forming the outer walls having a uniform thickness, flowability of the material for the outer peripheral portion upon forming a segment becomes uniform to reduce a variance in porosity and pore size of the outer walls. This enables to obtain a uniform anchor effect of the bonding material upon bonding honeycomb segments, thereby improving bonding strength. In addition, by linearly forming the outer walls having a uniform thickness, the bonding width of the bonding material layer upon bonding honeycomb segments becomes constant to reduce a variance in pressure loss and a variance in a thermal stress absorption effect by the bonding material. In addition, a crack inhibition effect can be improved against local thermal stress caused upon soot combustion. 1: honeycomb filter, 2: honeycomb segment, 3: outer wall, 3 Hereinafter, embodiments of the present invention will be described with referring to drawings. The present invention is by no means limited to the following embodiments, and changes, modifications, and improvements may be made as long as they do not deviate from the scope of the invention. Here, as shown in More specifically, the honeycomb segment 2 is formed into a columnar shape having a quadrangular cross section and provided with the outer walls 3 and the porous partition walls 6 separating and forming a plurality of cells 5 functioning as fluid passages. Two kinds of cells 5 The first cells 5 As shown in a cross-sectional view schematically showing in Thus, according to the honeycomb filter 1 of the present embodiment, by making the cross-sectional area of the first cell 5 As a material for the honeycomb segment 2, there is preferably used at least one kind selected from the group consisting of silicon carbide, silicon-silicon carbide based composite material, silicon nitride, cordierite, mullite, alumina, spinel, silicon carbide-cordierite based composite material, silicon-silicon carbide composite material, lithium aluminum silicate, aluminum titanate, and Fe—Cr—Al based metal from the viewpoints of strength and thermal resistance. Of these, silicon carbide or silicon-silicon carbide composite material is preferable. The honeycomb segment 2 can be produced by, for example, adding a binder such as methyl cellulose, hydroxypropoxyl cellulose, hydroxyethyl cellulose, carboxymethyl cellulose, and polyvinyl alcohol, a surfactant, water as a solvent, and the like to a material suitably selected from the aforementioned materials to obtain kneaded clay having plasticity; subjecting the kneaded clay to extrusion forming into the aforementioned shape; drying the kneaded clay by microwaves, hot air, or the like; and sintering the kneaded clay. As the filler 7 used for plugging the cells 5, a material similar to that for the honeycomb segment 2 can be used. The plugging with the filler 7 can be performed by immersing an end face of the honeycomb segment 2 in the slurried filler 7 in the state that the cells 5 to be unplugged in the end face is masked to fill the filler 7 into the open cells 5. Though the filling of the filler 7 may be performed after formation of the honeycomb segment 2 and before firing or after firing, it is preferably performed before firing because only one firing step is required. After manufacturing honeycomb segments 2 as described above, a slurried bonding material layer 9 is applied on the outer peripheral faces of the honeycomb segments 2, the honeycomb segments 2 are combined to give a predetermined solid shape (whole structure of the honeycomb filter 1), pressure is applied for bonding in this combined state, and the structure is dried by heating. Thus, a bonded article where a plurality of honeycomb segments 2 are unitarily bonded together is manufactured. Suitable examples of the material for the bonding material layer 9 used for the present invention include materials constituted of inorganic fibers, an inorganic binder, an organic binder, and inorganic particles. Specifically, examples of the inorganic fibers include oxide fibers of aluminosilicate, alumina, or the like, and other fibers (e.g., SiC fibers). Examples of the inorganic binder include silica sol, alumina sol, and clay. Examples of the organic binder include polyvinyl alcohol (PVA), carboxymethyl cellulose (CMC), and methyl cellulose (MC). Examples of the inorganic particles include ceramics such as silicon carbide, silicon nitride, cordierite, alumina, and mullite. For example, as shown in The outer peripheral coat layer 4 is applied on the outer peripheral face of the bonded article of the honeycomb segments 2 and functions so as to protect the outer peripheral face of the bonded article of the honeycomb segments 2. The thickness of the outer peripheral coat layer 4 is suitably selected from the range of, for example, 0.1 to 1.5 mm. In the honeycomb filter 1 formed as described above, the first cells (inflow cells) 5 By making the inlet cells (larger cells, i.e., the first cells 5 Incidentally, though the first cells 5 Next, another embodiment (Type B) will be described using The third cells 5 By enlarging the outlet cells (small cells, i.e., the second cells 5 Next, another embodiment (Type C) will be described using By making the inlet cells (large cells, i.e., the first cells 5 Next, another embodiment (Type D) will be described using By enlarging the corner portions of the outlet cells (small cells, i.e., the second cells 5 Hereinafter, the present invention will be described in more detail on the basis of Examples. However, the present invention is by no means limited to these Examples. The honeycomb segment of the aforementioned Type A is prepared, and, as shown in The bonding strength ratio with respect to the variance in thickness is shown in As shown in As described above, by forming the outer walls linearly to have a uniform thickness except for the corner portions, the bonding width of the bonding material layer 9 upon bonding honeycomb segments 2 becomes constant to reduce a variance in pressure loss and a variance in a thermal stress absorption effect against local thermal stress caused upon soot combustion. A honeycomb segment of the present invention can be used as a trapping filter for exhaust gas, for example, as a diesel particulate filter (DPF) for trapping and removing particulate matter (particulates) contained in exhaust gas from a diesel engine or the like.TECHNICAL FIELD
BACKGROUND ART
DISCLOSURE OF THE INVENTION
BRIEF DESCRIPTION OF THE DRAWINGS
DESCRIPTION OF REFERENCE NUMERALS
BEST MODE FOR CARRYING OUT THE INVENTION
Example
INDUSTRIAL APPLICABILITY