The present invention relates to rescue agents for use in the treatments of toxin intoxication-for example botulinum intoxication, which can result from food poisoning, an act of bioterrorism, or from accidental overdose in the course of treatment. In some embodiments, the rescue agents comprise at least one of an inactive botulinum toxin and a modified nontoxic nonhemagglutinin. The present invention also provides for glycosylated active and inactive toxins and methods of using same.
1. A method of treating a (a) binding to a cell surface receptor, (b) translocation through an endosomal membrane, (c) binding to the cleavage site of a SNAP-25 protein, (d) binding to the cleavage of a synaptobrevin (VAMP), or (e) binding to the cleavage site of a syntaxin, wherein the glycosylated inactive thereby reducing the ability of the active 2. The method of 3. The method of 4. The method of 5. The method of 6. The method of 7. The method of 8. The method of 9. The method of 10. The method of 11. The method of 12. The method of 13. The method of 14. The method of 15. The method of 16. The method of
The present invention is directed to methods of treating It has been reported that (1) about 75–125 units of BOTOX® per intramuscular injection (multiple muscles) to treat cervical dystonia; (2) 5–10 units of BOTOX® per intramuscular injection to treat glabellar lines (brow furrows) (5 units injected intramuscularly into the procerus muscle and 10 units injected intramuscularly into each corrugator supercilii muscle); (3) about 30–80 units of BOTOX® to treat constipation by intrasphincter injection of the puborectalis muscle; (4) about 1–5 units per muscle of intramuscularly injected BOTOX® to treat blepharospasm by injecting the lateral pre-tarsal orbicularis oculi muscle of the upper lid and the lateral pre-tarsal orbicularis oculi of the lower lid. (5) to treat strabismus, extraocular muscles have been injected intramuscularly with between about 1–5 units of BOTOX®, the amount injected varying based upon both the size of the muscle to be injected and the extent of muscle paralysis desired (i.e. amount of diopter correction desired). (6) to treat upper limb spasticity following stroke by intramuscular injections of BOTOX® into five different upper limb flexor muscles, as follows:
(7) to treat migraine, pericranial injected (injected symmetrically into glabellar, frontalis and temporalis muscles) injection of 25 U of BOTOX® has showed significant benefit as a prophylactic treatment of migraine compared to vehicle as measured by decreased measures of migraine frequency, maximal severity, associated vomiting and acute medication use over the three month period following the 25 U injection. Additionally, intramuscular It is known that The success of In addition to having pharmacologic actions at the peripheral location, A Seven generally immunologically distinct Regardless of serotype, the molecular mechanism of toxin intoxication appears to be similar and to involve at least three steps or stages. In the first step of the process, the toxin binds to the presynaptic membrane of the target neuron through a specific interaction between the heavy chain, H chain, and a cell surface receptor; the receptor is thought to be different for each type of In the second step, the toxin crosses the plasma membrane of the poisoned cell. The toxin is first engulfed by the cell through receptor-mediated endocytosis, and an endosome containing the toxin is formed. The toxin then escapes the endosome into the cytoplasm of the cell. This step is thought to be mediated by the amino end segment of the H chain, HN, which triggers a conformational change of the toxin in response to a pH of about 5.5 or lower. Endosomes are known to possess a proton pump which decreases intra-endosomal pH. The conformational shift exposes hydrophobic residues in the toxin, which permits the toxin to embed itself in the endosomal membrane. The toxin (or at a minimum the light chain) then translocates through the endosomal membrane into the cytoplasm. The last step of the mechanism of Although all the The molecular weight of the In vitro studies have indicated that High quality crystalline As with enzymes generally, the biological activities of the A commercially available To reconstitute vacuum-dried BOTOX®, sterile normal saline without a preservative; (0.9% Sodium Chloride Injection) is used by drawing up the proper amount of diluent in the appropriate size syringe. Since BOTOX® may be denatured by bubbling or similar violent agitation, the diluent is gently injected into the vial. For sterility reasons BOTOX® is preferably administered within four hours after the vial is removed from the freezer and reconstituted. During these four hours, reconstituted BOTOX® can be stored in a refrigerator at about 2° C. to about 8° C. Reconstituted, refrigerated BOTOX® has been reported to retain its potency for at least about two weeks. Botulism or Currently, a pentavalent vaccine that protects against active BoNT serotypes A–E and a separate monovalent vaccine that protects against active BoNT serotype F are available as Investigational New Drugs. However, there are numerous shortcomings associated with the toxoid vaccines. For example, serious adverse response to the antitoxins, such as anaphylaxis, has been reported to occur in 2% of recipients. Other methods of combating Further, as the use of Thus, there is a continued need to have more effective drugs and methods for treating botulism. Additionally, there is a continued need to have safer, more effective botulinum toxins. The present invention provides for such improvements. The present invention provides for effective methods of treating botulinum intoxication. In some embodiments, the methods of treating The present invention also provides for glycosylated The present invention also provides for methods of making di-chain botulinum toxins. In some embodiments, the method comprises expressing a single chain botulinum toxin and a NTNH in a non- Any feature or combination of features described herein are included within the scope of the present invention provided that the features included in any such combination are not mutually inconsistent as will be apparent from the context, this specification, and the knowledge of one of ordinary skill in the art. Additional advantages and aspects of the present invention are apparent in the following detailed description and claims. The term “rescue agent” means any molecule that is effective to compete (directly or indirectly) with an active The term “ The term “ The term “single chain The term “di-chain The term “heavy chain” means the heavy chain of a The term “HN” means a fragment (having a molecular weight of about 50 kDa) derived from the Heavy chain of a The term “HC” means a fragment (about 50 kDa) derived from the Heavy chain of a botulinum toxin which is approximately equivalent to the carboxyl terminal segment of the Heavy chain, or the portion corresponding to that fragment in the intact Heavy chain. It is believed to be immunogenic and to contain the portion of the natural or wild type botulinum toxin involved in high affinity binding to various neurons (including motor neurons), and other types of target cells. The term “light chain” means the light chain of a The term “active The term “inactive The term “reduced antigenicity” means the ability to induce the production of antibody in a mammal is minimal or non-existence. For example, molecules which are glycosylated have reduced antigenicity because they have minimal or no ability to induce an immune response for the production of antibody in a mammal. Also, epitope regions on a molecule are responsible for the induction of antibodies in a mammal. Thus, molecules with epitope regions mutated or deleted have reduced antigenicity because these regions are no longer present on the molecule to stimulate antibody production. For example, an iBoNT comprising a mutated or deleted epitope region within its heavy chain at the carboxy terminal (Hc) has reduced antigenicity (discussed below). In some embodiments, the administration of a glycosylated BoNT into a mammal induces less production of antibody as compared to an administration of an identical BoNT which is not glycosylated, by about 2-fold, preferably 4-fold, more preferably 8-fold or more. The term “targeting moiety” means a molecule that is recognized by and binds to a transporter in the liver and/or kidney, wherein the transporter transports the molecule out of the circulatory system. The term “mammal” as used herein includes, for example, humans, rats, rabbits, mice and dogs. The term “local administration” means direct administration by a non-systemic route at or in the vicinity of the site of an affliction, disorder or perceived pain. The present invention relates to rescue agents for use in the treatments of toxin intoxication—for example In some embodiments, one or more rescue agents may be administered after the exposure to the toxin. In some embodiments, the rescue agents do not rely on the production of antibodies to render therapeutic effects. As such, the rescue agents may be administered shortly before the intoxication and may still be effective to neutralize the deleterious effects of the active In some embodiments, a rescue agent comprises an iBoNT. The iBoNT can be any inactive toxin. In some embodiments, the iBoNT include, but are not limited to, inactivated botulinum toxin types A, B, C1, D, E, F, G and/or fragments thereof. The iBoNT employed in accordance with the present invention has minimal or no ability to interfere with the release of neurotransmitters from a cell or nerve endings. In some embodiments, the iBoNT comprises a heavy chain and a light chain, wherein the light chain is mutated as to have minimal or no ability to interfere with the release of neurotransmitters from a cell or a nerve ending. In some embodiments, the iBoNT is a single chain. In some embodiments, the iBoNT is a di-chain. In some embodiments, iBoNT is iBoNT/A having the amino acid SEQ ID NO:4 ( In some embodiments, the iBoNT has reduced or no antigenicity. Reduction in antigenicity can be accomplished in many ways. Such toxins can comprise, for example, a modified or deleted Hc region. The antigenicity of the Hc region is reported in Atassi et al., Crit. Rev. Immunol., 1999, 19, 219–260, which is incorporated herein by reference in its entirety. Amino acids deemed critical or necessary for the antigenicity can be substituted for or deleted in order to reduce or eliminate antigenicity. Another method of reducing or eliminating antigenicity is through glycosylation, which is discussed in more detail below. Preferably, the iBoNTs compete effectively with the active Nontoxic nonhemagglutinin (NTNH) is a 130-kDa peptide which forms a complex with the In some embodiments, targeting moieties include molecules that are recognized by the ABC transporters. Non-limiting examples of the ABC transporter targeting moieties include verapamil, cyclosporin A, tamoxifen, valspodar, biricodar, tariquidar, zosuquidar, laniquidar, ONT-093, digoxin, digitalis or digitalis glycosides such as digitoxin, alpha-methyldigoxin, beta-acetyldigoxin and ouabain and mixtures thereof. In some embodiments, the NTNH is covalently linked to the targeting moiety using chemical techniques commonly known in the art. For example, see Example 16 and U.S. Pat. No. 6,203,794 to Dolly et al., the disclosure of which is incorporated in its entirety by reference herein. In some embodiments, the NTNH and the targeting moiety are expressed as a fusion protein, using techniques know to one of ordinary skill in the art. HA70 and HA34 are proteins are similar to NTNH in that each may bind to BoNT, as does NTNH. Accordingly, HA70 or HA34 may be linked to a targeting moiety to form a modified HA70 or a modified HA34, respectively. In some embodiments, the modified HA70 and/or modified HA34 may be used as rescue agents in a manner similar to the modified NTNH. In some embodiments, the NTNH may be employed as rescue agents. For example, an NTNH comprising a protease site (native or non-native) that is capable of digesting BoNT may be used as a rescue agent in accordance with the present invention. In some embodiments, the method of treating In some embodiments, both iBoNT and modified NTNH are administered to the mammal. In some embodiments, the modified NTNH specifically binds to active botulinum toxin and does not bind to or has reduced binding to the iBoNT. As such, iBoNT should be different from the active BoNT (deletion of certain regions of iBoNT); active BoNT has a sequence/domain which is only recognized by the modified NTNH; modified active BoNT has a sequence/domain which is only recognized by the modified NTNH (for treating toxin overdose); NTNH has a protease activity that binds to active BoNT and cleave the active BoNT; NTNH has a sequestration domain that sequester BoNT to liver and kidney clearance. The iBoNT, modified NTNH, or a combination thereof may be administered orally or intravenously. In some embodiments, the iBoNT, modified NTNH, or a combination thereof may be administered locally by injection. In some embodiments, iBoNT and/or modified NTNH may be prepared as oral formulations by methods known in the art. See for example, CA 02415712 (2003-01-10) to Frevert, the disclosure of which is incorporated in its entirety herein by reference. An ordinarily skilled medical provider can determine the appropriate dose and frequency of administration(s) of iBoNT and/or modified NTNH to achieve an optimum clinical result. That is, one of ordinary skill in medicine would be able to administer the appropriate amount of the iBoNT and/or NTNH at the appropriate time(s) to effectively prevent or treat BoNT intoxication. In some embodiments, the mammal being treated is additionally subjected to close respiratory monitoring and feeding by enteral tube or parenteral nutrition, intensive care, mechanical ventilation, and/or treatment of secondary infections. Glycosylated Toxins: The present invention is also directed to In a broad embodiment, a g-BoNT is produced biologically. For example, a nucleic acid sequence encoding a toxin may be inserted into a vector, wherein the vector is transfected into a host cell for expression. Accordingly, a nucleic acid sequence encoding an active BoNT and/or iBoNT may be expressed into active g-BoNT and/or g-iBoNT, respectively. In some embodiments, a nucleic acid sequence encoding an active BoNT/A and/or iBoNT/A may be expressed into an active g-BoNT/A and/or g-iBoNT/A, respectively. Non-limiting examples of nucleic acid sequences which encode for iBoNT include those that have mutations at the region encoding for a zinc binding motif in the light chain. For example, a wild type nucleic acid sequence comprising a sequence encoding the zinc binding motif His-Glu-x-x-His (SEQ ID NO: 1) may be mutated to express Gly-Thr-x-x-Asn, (SEQ ID NO: 2), wherein x is any amino acid. See U.S. Pat. No. 6,051,239, the disclosure of which is incorporated in its entirety herein by reference. Any host cell may be used in accordance with this invention, as long as the host cell has the biological machinery to glycosylate the expressed toxin. In some embodiments, the host cell is capable of glycosylating the expressed toxin with at least one of an N-acetylglucosamine, mannose, glucose, galactose, fucose, sialic acid and/or an oligosaccharide comprising two or more of the identified saccharides. In some embodiments, eukaryotic systems may be used to produce g-BoNT, or fragments thereof. For example, yeast may be used to express large amounts of glycoprotein at low cost. However, a major draw back of using yeast is that both N- and O-glycosylation apparatus differs from that of higher eukaryotes. In some embodiments, mammalian cells are used as host for expression genes obtained from higher eukaryotes because the signal for synthesis, processing and secretion of these proteins are usually recognized by the cells. For example, Chinese Hamster Ovary (CHO) cells are very well known for production of eukaryotic proteins or glycoproteins, since these cells can grow either attached to the surface or in suspension and adapt well to growth in the absence of serum. Researchers have developed several CHO mutant cell lines carrying one or more glycosylation mutation/s. Stanley, P., Molecular and Cellular Biology, 9(2):377–383 (1989). These mutant cell lines are called “Lec” for Lectin resistant. Stanley, P. et al., Cell, 6: 121–128 (1975). These cell lines lack one or more of the key enzymes involved in the glycosylation pathway, thus resulting in the production of glycoprotein with carbohydrates of defined structure and minimal heterogeneity. Lec-1 is one such cell line which lacks a key enzyme N-acetyl Glucosaminetransferase-1. The absence of this enzyme results in the inhibition of glycosylation pathway after the carbohydrates trim down to Man(2)GlcNAc(2), leading to production of reduced, but homogeneous glycosylation (Man=manose and GlcNAc=n-acetylglucosamine). In some embodiments, the g-BoNT of the present invention may be expressed in insect cells. For example, baculovirus based expression system makes insect cell lines an ideal system for high-level transient expression of glycoproteins. Proteins that are N-glycosylated in vertebrate cells are also generally glycosylated in insect cells. The first step of N-glycosylation in insect cells is similar to that in vertebrates. Usually, the Man(9)GlcNaC(2) moiety is trimmed to shorter oligosaccharide structures of Man(3)GlcNAc(2) in both insect cells and vertebrates. In vertebrates, these shorter core structures serve as the framework for complex oligosaccharide synthesis, while in insect cells this additional, complex oligosaccharide synthesis does not appear to occur in many cases, thus leading to restricted and less heterogeneous glycosylation. In some embodiments, an insect cell comprising a baculovirus is employed to express a g-BoNT or a g-iBoNT. In some embodiment, an insect cell comprising a baculovirus is employed to express an active g-BoNT/A, an active g-BoNT/A-LC, an active g-BoNT/A-HC, a g-iBoNT/A, a g-iBoNT/A-LC and/or a g-iBoNT/A-HC. Sometimes the natural glycosylation system in insect cells may not meet the requirement of the complex glycosylation for protein therapeutics. In such a case, a special cell line may be used, such as Mimic Sf9 insect cell (available from Invitrogen, Carlsbad, Calif., USA) for high level expression of complex glycoproteins in insect cells. Hollister, J. et al., Biochemistry, 41:15093–15104 (2002); Hollister, J. et al., Glycobiology 11:1–9 (2001); Hollister, J. et al., Glycobiology, 8:473–480 (1998); Jarvis, D. et al., Curr Opin Biotechnol, 9:528–533 (1998); and Seo, N. S. et al., Protein Expr Purif, 22: 234–241. Briefly, mammalian cells require expensive media supplements and expression levels are relatively low when compared to expression in other hosts. Insect cells offer several advantages over mammalian cells—growth at room temperature, lower media costs, and production of high levels of recombinant protein. The disadvantage of using insect cells is that the majority of proteins produced do not exhibit the complex glycosylation seen in mammlian cells. This can affect protein function, structure, antigeniticity and stabililty. The Mimic Sf9 Insect Cell Line contains stably integrated mammalian glycosyltransferases, resulting in the production of biantennary N-glycans. Mimic Sf9 Insect Cells enable expression of proteins that are similar to what would be produced in mammalian cells, making them suitable for producing proteins to of the present invention. In some embodiments, the g-BoNTs are glycosylated at one or more N-glycosylation sites of a In some embodiments, known glycosylation sites may be deleted or mutated to create a desirable glycosylation pattern on the g-BoNT. Various mutation techniques are known and may be employed in accordance with the present invention. For example, site directed mutagenesis can be used to change the N-glycosylation sites. Asn of Asn-X-Ser/Thr (consensus sequence for N-glycosylation site) can be changed to Gln, since Gln is structurally similar to Asnand it posses a single net charge also. Single, double and triple mutants of glycosylation may be generated to study the effect of specific glycosylation inhibition on protein expression and function. For example, site directed mutagenesis is a useful technique which allows one of ordinary skill to specifically mutate a single base pair leading to change in amino acid (e.g., glycosylation site) and study its effect on the function of the enzyme or on activity of the protein. Change in molecular weight of the protein will provide the information about glycosylation at that particular site. If a protein has more than one glycosylation site, it will help in determining which oligosaccharide structure exists on which glycosylation site. These studies help figure out which glycosylation site is most important in activity of a protein and thus could provide some information about the protein's ligand binding site. Some of the studies include, for example, Chiang et al., Archives of Biochemistry and Biophysics, 352(2):207–213 (1998), which reported that glycosylation on either site of thrombane A2 receptor is sufficient for ligand recognition, but glycosylation on both sites is required to maintain binding affinity and specificity. Planquart et al., European Journal of Biochemistry, 262:644–651 (1999), reported that only one of the four glycosylation sites of HGL significantly influences the enzymatic activity and presence of carbohydrates on HGL might protect it from the digestive enzymes in the stomach. Fan et al., European Journal of Biochemistry 246:243–251 (1997), observed that three N-glycosylaton mutants showed reduced half-life and different degrees of inhibition of processing of their N-glycans. Also, they reported that mutants of one particular site abolished the enzymatic activity, eliminated cell-surface expression and prevented the dimerization of the DPPIV protein. In another report, solubility of the protein CIP was found to be linearly dependent on the number of carbohydrate residues attached. See also Tams et al., Biochimica et Biophysica Act 1432:214–221 (1999). In some embodiments, the g-BoNT is glycosylated at one or more O-glycosylation sites. O-glycosylation sites are usually found in helical segments which means they are uncommon in the beta-sheet structure. Currently, there is no known consensus pattern for an O-glycosylation site. Crystal structure of BoNT/A-Allergan shows the potential sites of N-glycosylation on the surface as follows: 173-NLTR (SEQ ID NO: 106), 382-NYTI (SEQ ID NO: 107), 411-NFTK (SEQ ID NO: 108), 417-NFTG (SEQ ID NO: 109), 971-NNSG (SEQ ID NO: 110), 1010-NISD (SEQ ID NO: 111), 1198-NASQ (SEQ ID NO: 112), 1221-NLSQ (SEQ ID NO: 113). In some embodiments, g-BoNT/A (including g-iBoNT/A) is glycosylated at 173-NLTR (SEQ ID NO: 106), 382-NYTI (SEQ ID NO: 107), 411-NFTK (SEQ ID NO: 108), 417-NFTG (SEQ ID NO: 109), 971-NNSG (SEQ ID NO: 110), 1010-NISD (SEQ ID NO: 111), 1198-NASQ (SEQ ID NO: 112) and/or 1221-NLSQ (SEQ ID NO: 113). Potential sites of N-glycosylation for BoNT/E are as follows: 97-NLSG (SEQ ID NO: 114), 138-NGSG (SEQ ID NO: 115), 161-NSSN (SEQ ID NO: 116), 164-NISL (SEQ ID NO: 117), 365-NDSI (SEQ ID NO: 118), and 370-NISE (SEQ ID NO: 119). In some embodiments, g-BoNT/E (including g-iBoNT/E) is glycosylated at 97-NLSG (SEQ ID NO: 114), 138-NGSG (SEQ ID NO: 115), 161-NSSN (SEQ ID NO: 116), 164-NISL (SEQ ID NO: 117), 365-NDSI (SEQ ID NO: 118), and/or 370-NISE (SEQ ID NO: 119). In some embodiments, BEVS-insect cells may glycosylate a protein in endoplasmic reticulum (ER) on its consensus Asn-X-Ser/Thr recognized in an appropriate context by oligosaccharyltransferase found in the ER and Golgi complex. Like most eukaryotic ERs, insect ER enzymes can attach at least a Glc3Man9GlcNAc2(molecular weight of about 2600 dalton). The Glc3Man9GlcNAc2is the core structure that serves as the framework for complex oligosaccharide synthesis involving further GlcNAc, Gal or sialic-acid additions. In some embodiments, a g-BoNT (including g-iBoNT) of the present invention comprises more than one Glc3Man9GlcNAc2, for example five to twenty Glc3Man9GlcNAc2. In some embodiments, the glycosylation constitute more than about 2% of the g-BoNT (including g-iBoNT) by weight. In some embodiments, the glycosylation constitute more than about 5% of the g-BoNT (including g-iBoNT) by weight. In some embodiments, the glycosylation constitute more than about 10% of the g-BoNT (including g-iBoNT) by weight. In some embodiments, the g-BoNT/A or g-iBoNT/A is about 150 kDa, and the glycosylation adds about 20 to 30 kDa to the protein. In some embodiments, the g-BoNT/A or the g-iBoNT/A has about eight to twelve Glc3Man9GlcNAc2(molecular weight of about 2600 dalton). In some embodiments, the g-BoNT/A or g-iBoNT/A is glycosylated with Glc3Man9GlcNAc2at positions 173-NLTR (SEQ ID NO: 106), 382-NYTI (SEQ ID NO: 107), 411-NFTK (SEQ ID NO: 108), 417-NFTG (SEQ ID NO: 109), 971-NNSG (SEQ ID NO: 110), 1010-NISD (SEQ ID NO: 111), 1198-NASQ (SEQ ID NO: 112), 1221-NLSQ (SEQ ID NO: 113). In some embodiments, a toxin may be glycosylated chemically to form a g-BoNT. One of ordinary skill may refer to the following references as a guide to chemically glycosylating a toxin of the present invention: Sofia, M. J., 1:27–34 (1996); Meldal, M., 4:710–718 (1994); Meldal, M., et al., 41:250–260 (1993); Vetter, D., et al., 34: 60–63 (1995); Chan, T.-Y. et al., “Abstracts of Papers”, 211th National Meeting of the American Chemical Society, New Orleans, La., March, 1996; American Chemical Society: Washington, D.C., 1996; MED 198; Allanson, N., et al. “Abstracts of Papers”, 211th National Meeting of the American Chemical Society, New Orleans, La., March, 1996; American Chemical Society: Washington, D.C., 1996; MED 199. In some embodiments, attaching a saccharide unit can be accomplished either by direct glycosylation of the toxin or by construction of a non-glycosidic linkage between the sugar and the toxin subunit. Construction of glycopeptide conjugates on the solid phase is the most developed of conjugate strategies for application to combinatorial constructions. In fact, the construction of several glycopeptide libraries has been reported. Two approaches which have been successful implemented for library generation are the “building blocks” and “convergent” strategies. The “building blocks” approach uses preformed glycosylated amino acids and relies on the formation of the peptide bond between each amino acid. This approach allows diversity to be introduced by varying the nature of the glycosylated amino acid in a fashion similar to the generation of a standard peptide combinatorial library. The construction of glycopeptide libraries employing the building blocks strategy has been reported. Successful demonstrations of the “convergent” approach for the construction of glycopeptides include the attachment of the sugar unit to the peptide through an amide bond construction. These demonstrations have either the peptide or the saccharide attached to the solid support. The alternative approach, requiring site-selective glycosylation of a polymer bound peptide, has not been successfully demonstrated for the formation of peptide conjugates. One of ordinary skill in the art may also employ the emerging chemical GlycoConjugation/GlycoPEGylation technology for making glycoproteins and their mimetics to attach different molecules to BoNTs, again via the glycans. Glycosylation and Clearance: In some embodiments, the g-BoNTs are used to treat various conditions that may be treated with the traditional toxins. For example, a active g-BoNT may be used to treat muscular disorder, autonomic nervous system disorder and pain. Non-limiting examples of neuromuscular disorders that may be treated with a modified neurotoxin include strabismus, blepharospasm, spasmodic torticollis (cervical dystonia), oromandibular dystonia and spasmodic dysphonia (largyngeal dystonia). Non-limiting examples of autonomic nervous system disorders include rhinorrhea, otitis media, excessive salivation, asthma, chronic obstructive pulmonary disease (COPD), excessive stomach acid secretion, spastic colitis and excessive sweating. Non-limiting examples of pain which may be treated in accordance to the present invention include migraine headache pain that is associated with muscle spasm, vascular disturbances, neuralgia, neuropathy and pain associated with inflammation. As with the traditional toxins, the active g-BoNTs would be administered locally, e.g., intramuscularly, to render a localized effect. However, if the locally administered active toxin or active g-BoNT accidentally enters into the circulatory system, the active g-BoNT is advantageous over the active non-glycosylated toxin in that it will clear the circulatory system relatively quickly—minimizing potential systemic toxicity. In some embodiments, the active g-BoNTs clears the circulatory system faster than an identical active non-glycosylated toxin by a factor of 2, preferably 4, more preferably 8 or more. In some embodiments, the active g-BoNT clears the circulatory system faster than an identical active non-glycosylated BoNT by a factor of 2, preferably 4, more preferably 8 or more. In some embodiments, the active g-BoNT type A clears the circulatory system faster than an identical active non-glycosylated BoNT type A by a factor of 2, preferably 4, more preferably 8 or more. Glycosylation Reduces Antigenicity: Without wishing to limit the invention to any theory or mechanism of operation, it is believed that the absence of glycosylation in a protein leads to the formation of aggregates and the aggregates enhance immunogenicity. Thus, it is further believed that the presence of glycosylation reduces aggregation, resulting in reduced immunogenicity. Schellekens, H., Nat Rev Drug-Discov 1, 457–462 (2002), and Schellekens, H., Clin Ther 24, 1720–1740 (2002). Accordingly, g-BoNTs are more advantageous over an identical non-glycosylated toxin for use in the clinic, because repeated use of a non-glycosylated toxin will induce an immune response (which ultimately causes non-responsiveness); wherein the g-BoNT has reduced antigenicity, and the use of which will not substantially induce an immune response. Consequently, g-BoNTs may be employed more frequently and for a longer duration of time. In some embodiments, the administration of a g-BoNT into a mammal induces less production of antibody as compared to an administration of an identical toxin which is not glycosylated, by about 2-fold, preferably 4-fold, more preferably 8-fold or more. In some embodiments, the administration of a active g-BoNT into a mammal induces less production of antibody as compared to an administration of an identical active BoNT which is not glycosylated, by about 2-fold, preferably 4-fold, more preferably 8-fold or more. In some embodiments, the administration of an active g-BoNT/A into a mammal induces less production of antibody as compared to an administration of an identical active BoNT/A which is not glycosylated, by about 2-fold, preferably 4-fold, more preferably 8-fold or more. In some embodiments, an active BoNT and an active g-BoNT are co-administered (sequentially or simultaneously) as therapeutics. For example, an active g-BoNT/A and an active g-BoNT/A may be co-administered (sequentially or simultaneously) to treat any of the conditions mentioned above. Of course, an ordinarily skilled medical provider can determine the appropriate dose and frequency of administration(s) to achieve an optimum clinical result. That is, one of ordinary skill in medicine would be able to administer the appropriate amount of the of active g-BoNT at the appropriate time(s) to effectively treat a condition. The dose of the g-BoNT to be administered depends upon a variety of factors, including the severity of the condition. The dose of the g-BoNTs employed in accordance with this invention may be equivalent to the dose of BOTOX® used in accordance with the present invention described herein. In the various methods of the present invention, a g-BoNT at a dose equivalent to about 0.1 U/kg to about 15 U/kg, of a BOTOX®, e.g., g-BoNTs that are inactive may also be administered to prevent or treat the intoxicating effects of an active toxin. The use of g-iBoNT to neutralize a toxin does not rely on the production of antibodies. This is advantageous because the g-iBoNT will compete and neutralize the toxin immediately, wherein it would take a long time for the inactive toxin to induce antibody production after it is administered to the mammal. For example, in the event that a treating physician accidentally administers too much of a toxin during an office treatment, it would be advantageous to administer g-iBoNT (as an antidote) to neutralize the overdosed toxins immediately. In some embodiments, a g-iBoNT is administered (as an antidote) to prevent or treat the intoxicating effects of an active BoNT. For example, an inactive g-iBoNT/A may be administered, e.g, systemically, to prevent or treat the intoxicating effects of an active BoNT/A. In some embodiments, multiple g-iBoNT types are co-administered to prevent or treat the intoxicating effects of an active BoNT. For example, a combination of inactive g-iBoNT/A, B, C, D, E, F and/or G may be administered, e.g, systemically, to prevent or treat the intoxicating effects of an active BoNT. Primarily, there are three main types of BoNT intoxifications: food borne, infant and wound botulism. And unfortunately, there is a fourth type of BoNT intoxification: bioterrorism. Foodborne botulism occurs when a person ingests pre-formed toxin that leads to illness within a few hours to days. Foodborne botulism is a public health emergency because the contaminated food may still be available to other persons besides the patient. With foodborne botulism, symptoms begin within 6 hours to 2 weeks (most commonly between 12 and 36 hours) after eating toxin-containing food. Symptoms of botulism include double vision, blurred vision, drooping eyelids, slurred speech, difficulty swallowing, dry mouth, muscle weakness that always descends through the body: first shoulders are affected, then upper arms, lower arms, thighs, calves, etc. Paralysis of breathing muscles can cause a person to stop breathing and die, unless assistance with breathing (mechanical ventilation) is provided. Infant botulism occurs in a small number of susceptible infants each year who harbor An ordinarily skilled medical provider can determine the appropriate dose and frequency of administration(s) to achieve an optimum clinical result. That is, one of ordinary skill in medicine would be able to administer the appropriate amount of the g-iBoNT at the appropriate time(s) to effectively prevent or treat BoNT intoxication. Glycosylation Increases Half-life: Without wishing to limit the invention to any theory or mechanism of operation, it is believed that glycosylation of a protein leads to increased half-life, e.g., stability of the compound in the circulatory system. For example, the production of Aranesp™, a clinically proven protein therapeutics, involves the use of oligosacharide. Aranesp™ is an erythropoiesis stimulating protein that stimulates red blood cell (RBC) production, approved in the United States by the Food and Drug Administration (FDA). Aranesp™ is approved for the treatment of chemotherapy-induced anemia in patients with nonmyeloid malignancies (July 2002), and the treatment of anemia associated with chronic renal failure, including patients on dialysis and patients not on dialysis (September 2001). Aranesp™ works by stimulating the production of oxygen-transporting RBCs. Aranesp™ has a half-life approximately three times longer than the existing standard therapy. Epoetin alfa, marketed as EPOGEN®i for anemic dialysis patients and as Procrit®ii for cancer patients receiving chemotherapy and all other indications in the United States. Structurally, Aranesp™ differs from Epoetin alfa in that it has two additional N-linked sialic acid-containing carbohydrate chain. This results in an approximately three fold longer half-life, which leads to greater biological activity and more RBC production over time. The increased potency and longer half-life of Aranesp™ allows for less-frequent dosing compared with Epoetin alfa without compromising efficacy. Less-frequent dosing results in fewer injections for patients. It allows patients and caregivers to spend less time scheduling injection visits, and will free up physicians and nurses to attend to other patients and work activity. As described above, a g-iBoNT may be administered (as a rescue agent) to prevent or treat the intoxicating effects of an active BoNT. For example, an inactive g-iBoNT/A may be administered, e.g, systemically, to prevent or treat the intoxicating effects of an active BoNT/A. Such use of g-iBoNT is additionally advantageous because the g-iBoNT would have an increased half-life as compared to the same iBoNT that is not glycosylated. Accordingly, the g-iBoNT is in the circulatory system longer to compete with the intoxicating active BoNT. In some embodiments, the g-iBoNT is not glycosylated at sites which would facilitate in its clearance from the system, e.g., via the liver or the kidney. In some embodiments, the g-iBoNT has a half-life that is greater than an iBoNT by about 2-fold, preferably about 4-fold, more preferably more than about 8-fold. An ordinarily skilled medical provider can determine the appropriate dose and frequency of administration(s) to achieve an optimum clinical result. That is, one of ordinary skill in medicine would be able to administer the appropriate amount of the g-iBoNT at the appropriate time(s) to effectively prevent or treat BoNT intoxication. Although examples of routes of administration and dosage are provided, the appropriate route of administration and dosage are generally determined on a case by case basis by the attending physician. Such determinations are routine to one of ordinary skill in the art (see for example, The present invention also includes formulations which comprise at least one of the compositions disclosed herein, e.g, iBoNT, modified NTNH, active g-BoNT, g-iBoNT, etc. In some embodiments, the formulations comprise at least one of a iBoNT, modified NTNH, active g-BoNT and g-iBoNT in a pharmacologically acceptable carrier, such as sterile physiological saline, sterile saline with 0.1% gelatin, or sterile saline with 1.0 mg/ml bovine serum albumin. The BoNT (e.g., active g-BoNT, g-iBoNT, and iBoNT) employed in the methods described above may be single chain toxins or di-chain toxins. The present invention also provides for methods of making a di-chain BoNT (e.g., di-chain g-BoNT, di-chain g-iBoNT, or di-chain iBoNT). BoNTs are initially synthesized as single chain toxin, and are then nicked, or cleaved, to form di-chain toxins. Sagane et al. recently reported that NTNH may cleave itself. Biochem Biophys Res Commun. 2002 Mar. 29;292(2):434–40. More particularly, Sagane et al. reported that NTNH, in both isolated form and the neurotoxin/NTNHA complexed form, was prepared protease-free from toxin complexes produced by It is surprisingly discovered herein that NTNH contains a peptidase M27 motif. It is also surprisingly discovered herein that NTNH may facilitate in the nicking of a single chain botulinum toxin to form a di-chain In some embodiments, the di-chain toxin formed may be a iBoNT. In some embodiments, the di-chain toxin formed in accordance with the present invention may be an iBoNT type A, B, C, D, E, F and/or G. In some embodiments, the di-chain toxin formed may be a g-iBoNT. For example, the di-chain toxin formed in accordance with the present invention may be an iBoNT type A, B, C, D, E, F and/or G. In some embodiments, the method comprises the step of expressing a single chain botulinum toxin and a NTNH in a non- In some embodiments, the single chain The single chain toxin expressed may be any single chain Except for The method of using the expressed NTNH to facilitate the nicking of the expressed single chain toxin in a cell is capable of producing di-chains comprising a light chain and a heavy chain with the correct molecular weight. Moreover, this method is very efficient. In some embodiments, more than about 25% of the single chain toxin expressed in the cell is nicked. In some embodiments, more than 50% of the expressed single chain toxin is nicked. In some embodiments, more than 75% of the expressed single chain toxin is nicked. In some embodiments, more than 90%, for example 95%, of the single chain toxin is nicked. The present invention also features a method of making a di-chain In some embodiments, a single chain toxin peptide and a NTNH are placed in a media, whereby the NTNH facilitates the nicking of the single chain toxin. In some embodiments, the media is a physiological solution. For example, the media may comprise the following (millimolar): NaCl (137), KCl (5), CaCl2(1.8), MgSO4(1.0), NaHCO3(24), NaH2PO4(1), D-glucose (11). Any other formulations of physiological solutions are within the scope of the present invention. In some embodiments, the single chain toxin and the NTNH are incubated in the media for about 30 minutes to 90 minutes. In some embodiments, the single chain toxin and the NTNH are incubated in the media at about 25 degree to about 35 degree Celsius. The di-chain toxins formed from the single chain toxins may be purified by conventional techniques. For example, the expressed single chains may comprise fourteen additional amino acids (Arg-Gly-Ser-His-His-His-His-His-His-Gly-Ser-Gly-Thr (SEQ ID NO: 3) at the amino terminus. These additional amino acids will also be part of the di-chain toxin at the amino terminus one of the chains. The 6×His sequence within this fourteen amino acid segment may be used for purification and subsequent detection of synthesized protein. For example, the di-chain having these amino acids may be purified by affinity chromatography on Ni-NTA resin using the 6×His affinity tag. In some embodiments, specifically bound di-chains may be eluted with low pH (elution buffer Ph 4.5) and analyzed on SDS-PAGE. In some embodiments, the di-chain may be purified to a homogeneity of about more than 50%. In some embodiments, the di-chain may be purified to a homogeneity of about more than 75%. In some embodiment, the di-chain may be purified to a homogeneity of about more than 90%, for example 95%. In some embodiments, the NTNH comprise a protease that is capable of cleaving the single chain BoNT to a dichain BoNT. For example, an NTNH of the present invention may comprise a trypsin. In some embodiments, the NTNH is engineered to have endokinase or Tev protease catalytic domain. Such engineered NTNH can nick the BoNT that is engineered to contain the cleavage sites by endokinase or Tev protease. In order that the invention disclosed herein may be more efficiently understood, examples are provided below. It should be understood that these examples are for illustrative purposes only and are not to be construed as limiting the invention in any manner. Throughout these examples, molecular cloning reactions, and other standard recombinant DNA techniques, were carried out according to methods described in Maniatis et al., Molecular Cloning—A Laboratory Manual, 2nd ed., Cold Spring Harbor Press (1989), using commercially available reagents, except where otherwise noted. Methods: pBAC-1 and pBACgus-1 are baculovirus transfer vectors designed for simplified cloning and expression of target genes in insect cells. Both these two transfer vectors encode an optional C-terminal His tag fusion sequence, which is for easy purification of target protein. pBACgus-1 also carries the gus gene encoding beta-glucuronidase that serves as a reporter to verify recombinant virus. Full-length iBoNT/A, LC, iLC were subcloned into pBAC-1 or pBACgus-1 vectors. For construction of inactive LC and inactive BoNT/A, the point mutant H227Y at LC of BoNT/A has been shown to abolish LC activity. Therefore, to make inactive full-length BoNT/A, we have introduced the mutant H227Y by PCR with the site mutagenesis QuickChange XL kit (Stratagene, Calif.). The mutagenic oligonucleotide primers have been designed individually according to the desired mutation. The sense primer is 5′-GTA ACA TTA GCA CAT GAA CTT ATA TAT GCT GGA CAT AGA TTA TAT GGA ATA GCA ATT-3′(SEQ ID NO: 120). The antisense primer is 5′-AAT TGC TAT TCC ATA TAA TCT ATG TCC AGC ATA TAT AAG TTC ATG TGC TAA TGT TAC-3′(SEQ ID NO: 120). The positive clones were selected and confirmed by restriction enzymes digestion and DNA sequencing. Expression of BoNT/A-LC in BEVS (1) Co-transfection of AcNPV with the transfer plasmid for generating recombinant baculovirus in vivo to make baculovirally-expressed BoNT/A-LC. Each transfer vector contains a large tract of AcNPV sequence flanking the subcloning region to facilitate homologous recombination. Co-transfection of the transfer recombinant plasmid and For each transfection, 1.25×106exponentially growing Sf9 cells were seeded. The cells were allowed to attach to the plate for 20-min. During this 20-min incubation, the transfection mixture was prepared. A 500-ng of transfer plasmid LC/A gene, either wild type or mutant, 100-ng of linearized AcNPV, and 5 ul of Eufectin were respectively mixed in a sterile polystyrene tube. This DNA/Eufectin mixture was incubated at RT for 15 min. The medium instead of plasmid DNA was used as a negative control. After the DNA/Eufectin 15-min incubation was completed, 0.45 ml of room temperature medium (no antibiotics or serum) was added to the DNA/Eufectin mixture. The entire 0.5-ml of this mixture was added to the 1 ml of medium covering the cells in the plate. After 1-hour incubation at 27° C., 6 ml of medium containing 5% serum and antibiotics were added and the resultants were incubated at 27° C. for 5 days (1strun). The transfection samples were listed in the Table 1 below. (2) Amplification of recombinant baculoviruses. High titer recombinant virus is critical for expression of a target protein. At the end of the 1strun transfection incubation, the medium containing recombinant viruses was harvested from each 60-mm dish and all the virus-containing media were used to infect fresh naïve cells. Fresh medium was used to replace the virus stock after 1 hour infection and the cells were further incubated at 27° C. for 5–7 days (2ndrun amplification). Above steps were repeated until the titer of recombinant virus was high enough to express a detectable target protein. The virus stock was used for PCR to confirm the presence of the LC/A gene. The high-titered viruses were used to infect the insect Sf21 cells and the cell lysates were used to determine the presence of the LC/A protein. (3) Determination of recombinant baculovirus by a reporter gene assay: beta-Glucuronidase enzymatic activity assay. The transfer vector pBACgus-1 carries the gus gene encoding enzyme beta-Glucuronidase under control of the late basic protein promoter (P6.9), which serves as a reporter to verify recombinant viruses by using the enzymatic reaction with its substrate X-Gluc. About five days post-transfection of each run, a 100 μl sample of the medium from each dish was taken and combined with 5 μl substrate X-Gluc (20 mg/ml). After incubation of a few hours or over-night (lower titer of viruses), recombinant pBACgus-containing viruses expressing beta-Glucuronidase was indicated by the blue staining ( (4) Determination of rBoNT/A-LC expression by SDS-PAGE, Western blotting by anti-LC/A antibody and anti-His-tag (tagged on LC/A gene) monoclonal antibody. a) Expression of rLC/A indicated by SDS-PAGE and Coomassie blue staining. Expression of BoNT/A-LC was assessed by separation using SDS-PAGE of total cell extracts followed with the Coomassie blue staining ( Methods: The 2×105cells (equal numbers of cells for all samples) were resuspended in 100 μl TE buffer (10 mM Tris-HCl, pH 8.0, 1 mM EDTA). 100 μl of 2× lysis buffer with reducing agent and proteinase inhibitors were mixed with the cell suspension. The mixture was heated at 95° C. for 5 min and immediately 20 μl of the above sample was loaded in each lane of the precast gel system (4–12% SDS-PAGE Nupage, Invitrogen). Notice that equal amount of proteins were loaded for all the lanes. Expression of rLC/A was confirmed by SDS-PAGE and Western blotting using specific anti-LC/A polyclonal antibody and specific anti-His-tag (tagged on the C-terminal LC/A gene) monoclonal antibody. The expression of recombinant LC/A was further determined with a specific anti-LC/A polyclonal antibody (pAb) for Western blot analysis. Two duplicating protein blots were probed with either anti-LC polyclonal antibody ( The data clearly demonstrated that we have successfully expressed both wild type and inactive mutant rBoNT/A-LC in BEVS. The experiments also indicated that the expression of recombinant BoNT/A-LC is not toxic to insect cells and BEVS is a feasible system to express an active toxin. Evaluation of the endopeptidase enzymatic activity of rBoNT/A-LC, both wild type and inactive mutant, expressed in BEVS. The endopeptidase enzymatic activity of both wild type and mutant rBoNT/A-LC was determined by GFP-SNAP cleavage assay. In principle, this is an in vitro fluorescence release assay for quantifying the protease activity of Briefly, the high titer of recombinant viruses containing either wild type LC/A or the inactive mutant LC/A from 3rdrun was used to infect the insect Sf21 cells. After 3 days post-infection, cells were harvested. 1.2×106cells from each infection were pelleted and resuspended in 100 μl reaction buffer (50 mM HEPES, pH 7.4; 10 uM ZnCl2; 0.1% (v/v) Tween-20; no DTT; protease inhibitor cocktail). Cells were lysed on ice for 45 min. After spin down the cell debris at 14,000 rpm for 10 min at 4° C., supernatant was collected and analyzed for protein concentration by the BCA assay. For each recombinant LC/A lysate, both 5 μl (3 ug) and 20 μl (12 ug) were diluted in toxin reaction buffer and added to black v-bottom 96-well plates (Whatman) in 25 ul aliquots. Reagents: 2×Toxin Rxn Buffer (100 mM HEPES, pH 7.2; 0.2%(v/v) TWEEN-20; 20 μM ZnCl2; 20 mM DTT). Assay Rinse Buffer (50 mM HEPES, pH 7.4); 8M Guanadine Hydrochloride (Pierce); Co2+ Resin (Talon Superflow Metal Affinity Resin from BD Biosciences); GFP-SNAP25 (134–206) fusion protein substrate Purified. Procedure of LC/A as a positive control: 100 μL R×n of 50 mM Hepes, pH 7.4, 10 mM DTT, 10 uM ZnCl2, 0.1 mg/mL BSA, 60 μg GFP-SNAP-His, 0.0001–1.0 ug/mL rLC/A for 1 hr incubation; terminated by 8M Guanadine Hydrochloride (1 M final concentration); added 100 uL Co2+ resin and incubated 15 min before spin and pass over resin twice. The eluted samples were assayed to measure the fluorescent unit by absorbance of an innovative microplate reader. The endopeptidase enzymatic activity of baculovirally-expressed recombinant LC/A was shown in For high levels of expression of recombinant proteins bearing post-translational modifications such as glycosylated amino acids, insect cells can be infected with recombinant baculovirus encoding a gene of interest—here, a physiologically inactive form of the botulinum toxin A type (iBoNT/A)—and the insect cells grow and secrete the recombinant protein of interest directly into the culture medium. Thus, the recombinant, glycosylated protein can be recovered from the insect cell supernatant, saving time and money in the purification of recombinant proteins. Using recombinant DNA technology, a transfer vector for use with baculovirus to infect Methods of culturing insect cells for infection by baculovirus are well known to those working in this field. Procedures for their cultivation are disclosed in Summers, M. D. et al. 1987, EP Publication No. 127 839, and Smith G. E., U.S. Pat. No. 4,745,051. For the purpose of present invention, Details of the methods employed to isolate the recombinant virus are well known to those skilled in the art. Generally, 2 μg of DNA of the transfer vector carrying the DNA coding for iBoNT/A and 1 μg of AcMNPV viral DNA are cotransfected in a monolayer of The viral supernatant corresponding to the positive clone is subjected to this procedure once more. Usually, three cycles of treatment produce a pure recombinant virus that no longer produces polyhedrin molecules, but only recombinant protein molecules. Once recombinant virus containing DNA encoding the iBoNT/A has been obtained, it is amplified and production is begun, and large quantities of glycosylated, iBoNT/A protein can be recovered from large scale cultures of insect cells. The protein obtained from infected cells is analyzed by electrophoresis in polyacrylamide gels and by Western blotting using polyclonal antibodies and/or His-tag antibodies that recognize specific amino acid sequences within the Furthermore, assays for biological activity of the expressed recombinant proteins, such as enzymatic cleavage assays, can also be conducted. Additionally, one of ordinary skill in the art would be able to adapt this protocol to making active g-BoNT. A second baculoviral construct expressing the NTNH gene can be used to coinfect the system of Example 10, whereby high levels of expression of recombinant Again using recombinant DNA technology, a transfer vector for use with baculovirus to infect Once expressed, the NTNH protein can nick the co-expressed An unfortunate 36 year old woman has a 15 year history of temporomandibular joint disease and chronic pain along the masseter and temporalis muscles. Fifteen years prior to evaluation she noted increased immobility of the jaw associated with pain and jaw opening and closing and tenderness along each side of her face. The left side is originally thought to be worse than the right. She is diagnosed as having temporomandibular joint (TMJ) dysfunction with subluxation of the joint and is treated with surgical orthoplasty meniscusectomy and condyle resection. She continues to have difficulty with opening and closing her jaw after the surgical procedures and for this reason, several years later, a surgical procedure to replace prosthetic joints on both sides is performed. After the surgical procedure progressive spasms and deviation of the jaw ensues. Further surgical revision is performed subsequent to the original operation to correct prosthetic joint loosening. The jaw continues to exhibit considerable pain and immobility after these surgical procedures. The TMJ remained tender as well as the muscle itself. There are tender points over the temporomandibular joint as well as increased tone in the entire muscle. She is diagnosed as having post-surgical myofascial pain syndrome and is injected with 7 U/kg of the active g-BoNT into the masseter and temporalis muscles, preferably the active g-BoNT/A. Several days after the injections she noted substantial improvement in her pain and reports that her jaw feels looser. This gradually improves over a 2 to 3 week period in which she notes increased ability to open the jaw and diminishing pain. The patient states that the pain is better than at any time in the last 4 years. The improved condition persists for up to 27 months after the original injection of the modified neurotoxin. Recent studies have shown that glycosylated proteins can clear a circulatory system more quickly than their non-glycosylated counterparts. For example, Lucore et al., reported that glycosylation of tissue-type plaminogens facilitates clearance. In an exemplary scenario, a 46 year old woman presents a shoulder-hand syndrome type pain, characteristic of a “shoulder-hand syndrome.” The pain is particularly localized at the deltoid region. The patient is treated by a bolus injection of between about 0.05 U/kg to about 2 U/kg of a mixture of BOTOX® and active g-BoNT subcutaneously to the shoulder. The physician accidentally nicked a nearby artery with the injection needle, whereby the mixture of BOTOX® and active g-BoNT is introduced into the circulatory system. A therapeutically effective dose of active g-iBoNT is administered to neutralize the effects of BOTOX® and active g-BoNT. Blood levels of BOTOX® and active g-BoNT are also monitored. Test results show that active g-BoNT clears from the circulatory system more quickly than BOTOX®. The anaerobic, gram positive bacterium Postherpetic neuralgia is one of the most intractable of chronic pain problems. Patients suffering this excruciatingly painful process often are elderly, have debilitating disease, and are not suitable for major interventional procedures. The diagnosis is readily made by the appearance of the healed lesions of herpes and by the patient's history. The pain is intense and emotionally distressing. Postherpetic neuralgia may occur any where, but is most often in the thorax. In an exemplary scenario, a 76 year old man presents a postherpetic type pain. The pain is localized to the abdomen region. The patient is treated by a bolus injection of between about 0.05 U/kg to about 2 U/kg of a BOTOX® intradermally to the abdomen. The treating physician accidentally administers an excessive amount of BOTOX®. Upon realizing the error, the physician administers the same area with a therapeutically effective dose of g-iBoNT. The particular dose as well as the frequency of administrations g-iBoNT depends upon a variety of factors within the skill of the treating physician. Within 1–7 days after BOTOX® and corrective g-iBoNT administration, the patient's pain is substantially alleviated. Aerosol distribution of a BoNT can result in symptoms of botulism. For example. A pentavalent (ABCDE) Thus, in terms of detoxification or post exposure treatments, the toxoid is unfeasible because it induces immunity over several months. Immediate immunity can be provided by passive administration of equinine g-iBoNT can play a significant role in the detoxification of the individuals contaminated with an active BoNT. In a clinical or emergency setting, injection of victims with g-iBoNT could provide enough competitive inhibition with active BoNT to minimize its effects. In some embodiments, g-iBoNT may be formulated in pills to allow safe, quick and easy access for a large patient population. Importantly, g-iBoNT is not expected to induce anaphylaxis because it has reduced antigenicity. In general, the occurrence of immunogenicity is influenced by the properties of the immunogens, its molecular size and solubility, and adjuvants/carriers used in the formulation. Furthermore, host factors including genotype and concomitant disease associated with immune dysregulation, previous exposure to other therapeutic proteins that might cause cross reactivity, may also play a part. The route of administration may modify the host immune reaction. The intravenous, intraperitoneal, oral or aerosol route may favor tolerance, whereas subcutaneous or intradermal administration may mimic an active immunization. Repeated administration of an antigen will increase the likelihood of a strong immune response as compared to one-off treatment. Additionally, there has been some well-controlled studies that show a correlation between glycosylation and immunogenicity. In an exemplary experiment, g-iBoNT/A is administered to two groups of Rhesus monkeys, each group having 4 monkeys. Group A monkeys are given subcutaneous injections and group B monkeys are given intravenous boluses. A control group having two monkeys are given active BoNT (3 units/kg, an equivalent of the g-iBoNT dosages given to monkeys of groups A and B) intravenously. After 24 hours, all monkeys in experimental groups A and B show no sign of distress or impairment of neurological function. The control group monkeys are listless and show classic signs of botulism. After 4 weeks, blood samples are extracted from monkeys of each group, and are analyzed for the presence of antibodies against active BoNT or g-iBoNT. Blood samples from monkeys in groups A and B contain no antibody against the injected g-iBoNT. However, the blood samples from the control group shows trace of antibodies against the active BoNT. The NTNH molecule is 1193 amino acids in length (GenPept Accession AAM75960). In accordance with the invention, an NTNH may be attached to a targeting moiety to form a modified NTNH. The NTNH upon which the targeting moiety is to be attached may be free from other attachments or may already be attached to another targeting moiety. Many approaches are known for linking chemical compounds to protein chains. It is known that most molecules acting as substrates or binding molecules, such as the targeting moiety, have positions that are not sensitive to steric hindrance. In addition, the linkage process should not introduce chirality into the targeting moiety. Further, the linker and the targeting moiety should be attached through a covalent bond. The distance between the NTNH and the targeting moiety may be adjusted by the insertion of spacer components. Preferable spacers have functional groups capable of binding to the linker, targeting moiety and NTNH and serving to conjugate them. Preferred spacer components include: 1) HOOC—(CH2)n—COOH, where n=1–12, suitable for insertion at the amino terminal end of a peptide, to connect it with a linker on a targeting moiety. 2) HO—(CH2)n—COOH, where n>10, suitable for attachment at the amino terminal of a peptide to connect the L chain with a linker on a targeting moiety. 3) (C5H6)n, where n>2, suitable for attachment to join the NTNH with a linker on the targeting moiety. The benzene rings provide a rigid spacer between the targeting moiety and NTNH. Of course, appropriate functional groups, for example as identified by X below, will be present on the benzene rings to link the drug and the NTNH. Various linker types are envisioned. For example, in one type the targeting moiety-linker-NTNH molecule remains intact after introduction into the circulatory system. In some embodiments, a cysteine residue is attached to the end of the NTNH molecule by methods well known in the art. For instance, the gene construct that expresses the NTNH protein can be mutated to express a cysteine residing at the N-terminal portion of the protein. A maleimide linker is then attached to the Cysteine residue by well known means. In some embodiments, the linker is attached directly to the targeting moiety. A targeting moiety-X moiety can have the following groups wherein X may be, without limitation, OH, SH, NH2, CONH, CONH2, COOH, COOR30(where R30is an alkyl group). Of course, the proper group would not be in an active site or be sterically hindering. The following is an example of one reaction which would link the targeting moiety-X to the linker molecule. targeting moiety-X Br—CH2-Linker->targeting moiety-X—CH2-Linker Once the targeting moiety has a linker attached, the following reaction can be used to link the targeting moiety to the NTNH. In this reaction, the NTNH, preferably the NTNH has an accessible lysine group that is used as the attachment point for the targeting moiety. As discussed herein, an extra amino acid, such as lysine, can be readily added to the N-terminal portion of the NTNH gene and used as the attachment point for a targeting moiety. In the following reaction, sodium cyanoborohydride is used to attach the linker to the lysine group on the NTNH molecule. targeting moiety-linker-CHO+NaCNBH3+NTNH-Lys-> targeting moiety-linker-CH2—NH-NTNH Targeting moiety that are envisioned for use in the present invention include those that have a free —XH group and that can bind to liver and/or kidney transporters. Various modifications of the invention, in addition to those described herein, will be apparent to those skilled in the art from the foregoing description. Such modifications are also intended to fall within the scope of the appended claims. Each reference cited in the present application is incorporated herein by reference in its entirety.FIELD OF THE INVENTION
BACKGROUND OF THE INVENTION
Each of the five indicated muscles has been injected at the same treatment session, so that the patient receives from 90 U to 360 U of upper limb flexor muscle BOTOX® by intramuscular injection at each treatment session.
SUMMARY OF THE INVENTION
BRIEF DESCRIPTION OF THE DRAWINGS
DEFINITIONS
DESCRIPTION OF EMBODIMENTS
EXAMPLES
Example 1
Expression of BoNT/A-LC in Insect Cells with Baculovirus Expression System
Example 2
Expression of BoNT/A-LC in Insect Cells with Baculovirus Expression System, wherein BoNT/A-LC is Specifically Recognized by Both anti-BoNT/A-LC pAb and His-tag mAb
Example 3
BoNT/A-LC Expressed in Insect Cells with Baculovirus Expression System, wherein BoNT/A-LC Specifically Cleaves the LC/A Specific Substrate SNAP25 as Shown by GFP-SNAP25 Cleavage Assay
Example 4
Exemplary Methods for Preparing Recombinant Baculovirus Capable of Expressing a Glycosylated, Physiologically Inactive or Active
Example 5
Exemplary Methods for Co-expressing NTNH and Active or iBoNT in Insect Cells
Example 6
Exemplary Methods for Treatment of Pain Associated with Muscle Disorder with Active g-BoNT
Example 7
Use of g-BoNT Shows a Fast Clearance Rate from Circulation
Example 8
Accidental Overdose in the Treatment of Postherpetic Neuralgia—Use of g-iBoNT as an Antidote
Example 9
Detoxification with g-iBoNT
Example 10
g-iBoNT has Reduced Antigenicity
Example 11
Exemplary Methods of Linking a NTNH to a Targeting Moiety