A SAW resonator filter which generates Shear Horizontal type surface acoustic waves includes a piezoelectric substrate, and first and second resonators arranged on the piezoelectric substrate. The first and second resonators include first and second interdigital transducers having electrode fingers, respectively. The first and second interdigital transducers are acoustically coupled to form a filter, and are divided into a plurality of sub-interdigital transducer portions, respectively. By dividing the interdigital transducers to have multiple sub-IDT portions, the effective electromechanical coupling coefficient is reduced, thereby enabling the bandwidth to be made narrower. Further, the improvement in the electrode structure allows for the filter to use a piezoelectric substrate having excellent temperature characteristics, so that it is possible to achieve a SAW resonator filter having a narrow bandwidth and superior temperature characteristics. Moreover, when an edge reflection type SAW resonator filter using SH-type surface acoustic waves is made, it is possible to provide a compact bandpass filter having low insertion loss and excellent selectability.
1. A SAW resonator filter comprising: a piezoelectric substrate; and first and second resonators arranged on the piezoelectric substrate, the first and second resonators including first and second interdigital transducers having electrode fingers, respectively, wherein the first and second interdigital transducers are acoustically coupled to form a filter, and wherein the first and second interdigital transducers are divided into a plurality of sub-interdigital transducer portions, respectively, and the first and second resonators are arranged on the piezoelectric substrate to generate shear horizontal waves that are reflected by edges of the piezoelectric substrate. 2. The SAW resonator filter according to 3. The SAW resonator filter according to 4. The SAW resonator filter according to 5. The SAW resonator filter according to 6. The SAW resonator filter according to 7. The SAW resonator filter according to 8. The SAW resonator filter according to 9. The SAW resonator filter according to 10. The SAW resonator filter according to 11. The SAW resonator filter according to 12. The SAW resonator filter according to 13. A SAW resonator filter comprising: a piezoelectric substrate; and resonators arranged on the piezoelectric substrate, the resonators including a plurality of interdigital transducers having electrode fingers, wherein the interdigital transducers are arranged so as to be acoustically coupled to form a filter, wherein the interdigital transducers are divided into a plurality of sub-interdigital transducer portions, and wherein the sub-interdigital transducer portions are connected in series, and the resonators are arranged on the piezoelectric substrate to generate shear horizontal waves that are reflected by edges of the piezoelectric substrate. 14. A communication apparatus having a duplexer, wherein the duplexer comprises: a piezoelectric substrate; and first and second resonators arranged on the piezoelectric substrate, the first and second resonators including first and second interdigital transducers having electrode fingers, respectively, wherein the first and second interdigital transducers are acoustically coupled to form a filter, and wherein the first and second interdigital transducers are divided into a plurality of sub-interdigital transducer portions, respectively, and the first and second resonators are arranged on the piezoelectric substrate to generate shear horizontal waves that are reflected by edges of the piezoelectric substrate. 15. The communication apparatus according to 16. The communication apparatus according to 17. The communication apparatus according to 18. The communication apparatus according to
1. Field of the Invention This invention relates to a SAW resonator filter and more specifically, the present invention relates to a SAW resonator filter having a narrow bandwidth and having a compact size. 2. Description of the Related Art A SAW (surface acoustic wave) filter is widely used as a bandpass filter in communications devices and other electronic devices. SAW filters include a transverse-type SAW filter, which has two interdigital transducers (IDTs) arranged on a piezoelectric substrate with a predetermined distance therebetween, and a SAW resonator filter having a resonator including an IDT provided on a piezoelectric substrate. An edge reflection type SAW resonator filter using Shear Horizontal (SH) surface acoustic waves such as Love waves and Bleustein-Gulyaev-Shimuzu (BGS) waves and other similar waves, is known as a SAW resonator filter. In an edge reflection type SAW resonator filter, the resonator is provided between two opposite edges of the piezoelectric substrate, and the edges are used to reflect the SH waves. Since reflectors are not needed, a compact filter can be realized. Further, an edge reflection type longitudinally coupled SAW resonator filter, and a transversely coupled SAW resonator filter, which are made by coupling two SAW resonators, is already known (e.g. Japan Unexamined Patent Publication Nos. 9-69751 and 10-261938). Alternatively, There is a great demand for a filter having a narrow bandwidth in order to improve the degree of selection. In the conventional SAW resonator filters 51 and 61, the bandwidth is reduced by methods that include: (1) using piezoelectric substrates 52 and 62 that have small electromechanical coupling coefficients; (2) making the thickness of the electrodes of the IDTs smaller, thereby lowering the effective electromechanical coupling coefficients thereof; or (3) adjusting the distance between the IDTs, and bringing the resonant frequencies of the two resonators closer together; and other similar methods. The problem with the first method is that it is necessary to select a piezoelectric material for the piezoelectric substrate that is suitable for its intended purpose, and it is difficult to obtain a material which has an electromechanical coupling coefficient appropriate for the required bandwidth. Further, it is extremely difficult to find materials that are suitable for the necessary bandwidth and which also have excellent temperature characteristics The problem with the second method is that when the thickness of the electrodes of the IDTs is decreased, vibration energy caused by the piezoelectric effect leads to conversion of the waves to bulk waves and deterioration the desired filter characteristics. Further, there are limits to the amount of narrowing of the bandwidth that can be achieved. The problem with the third method is that when the resonant frequencies of the two resonance modes are brought too close together, the two resonance modes become almost joined, thus increasing insertion loss. To overcome the problems described above, preferred embodiments of the present invention provide a SAW resonator filter having a narrow bandwidth without increasing the insertion loss, having excellent temperature characteristics, and IDTs that have sufficient electrode thickness. A preferred embodiment of the present invention provides a SAW resonator filter which generates SH-type surface acoustic waves and that includes a piezoelectric substrate, and first and second resonators arranged on the piezoelectric substrate, the first and second resonators including first and second interdigital transducers having electrode fingers, respectively, wherein the first and second interdigital transducers are acoustically coupled to form a filter, and wherein the first and second interdigital transducers are divided into a plurality of sub-interdigital transducer portions, respectively. In one preferred embodiment of the present invention, the first and second IDTs are preferably divided to have two to four sub-IDT portions. Also, in other preferred embodiments, the first and second interdigital transducers may either be longitudinally coupled or transversely coupled. Note that by dividing the interdigital transducers to have multiple sub-IDT portions, the effective electromechanical coupling coefficient is reduced, thereby enabling the bandwidth to be made narrower. Further, the improvement in electrode structure allows for the filter to use a piezoelectric substrate having excellent temperature characteristics, so that it is possible to achieve a SAW resonator filter having a narrow bandwidth and superior temperature characteristics. Moreover, when an edge reflection type SAW resonator filter using SH-type surface acoustic waves is made, it is possible to provide a compact band filter having low loss and excellent selectability. In another preferred embodiment of the present invention, a communication apparatus includes a duplexer, wherein the duplexer includes the above-described resonator filter having first and second interdigital transducers that are divided into a plurality of sub-interdigital transducers, respectively. Other elements, features and advantages of the present invention will be described in detail below with reference to preferred embodiments of the present invention and the attached drawings. The present invention will become more fully understood from the detailed description given herein below and the accompanying drawings which are given by way of illustration only, and thus do not limit the present invention and wherein: The piezoelectric substrate 2 has edges 2 The IDTs 3 and 4 are provided on a top surface 2 One of the novel features of the SAW filter of preferred embodiments of the present invention resides in the structure of the IDT that constitutes each resonator. The IDT of each SAW resonator is divided into a plurality of sub-IDTs, which are connected in series and aligned in a direction in which the excited SH-type waves propagate. More specifically, the IDT 3 is preferably divided into sub-IDT portions 3A and 3B so that sub-lDT portions 3A and 3B are arranged along the surface acoustic wave propagation direction. In addition, the sub-IDT portions 3A and 3B are electrically connected in series via a common bus bar 5 that is located between a pair of input terminals IN. The IDT 4 is also divided so that sub-IDT portions 4A and 4B are arranged along the surface acoustic wave propagation direction, and, the sub-IDT portions 4A and 4B are electrically connected in series via a common bus bar 5 that is located between a pair of output terminals OUT. The IDT 3 has a plurality of electrode fingers 3 The electrode fingers 3 In the sub-IDT portion 3A, the electrode fingers 3 Note that the adjacent outermost electrode fingers 4 The electrode fingers 3 The distance between the edge 2 In the SAW resonator filter 1, when an input voltage is applied to the bus bars 3 In the SAW resonator filter 1 of preferred embodiments of the present invention, the IDTs 3 and 4 are preferably divided in two as described above, and therefore the effective electromechanical coupling coefficient is lower than in the conventional transversely coupled SAW resonator filter 61 (see FIG. 20), and consequently the bandwidth can be made narrower. This will be explained with reference to FIG. 2 and FIG. 3. To compare, the conventional transversely coupled SAW resonator filter 61 shown in Furthermore, various SAW resonator filters were made in which the number of divisions of the IDTs 3 and 4 in the SAW resonator filter 1 was greater than 3. In these SAW resonator filters, the relationship between the number of divisions of the IDTs 3 and 4, and the 10 dB attenuation bandwidth (which is a ratio expressed as the % of attenuation relative to the resonant frequency fr), and the relationship between the number of divisions and the insertion loss, was evaluated. The results are shown in FIG. 2 and As is clear from FIG. 2 and Therefore, it can be seen that the number of divisions should preferably be within a range of 2 to 4 in order to avoid a rapid increase in the insertion loss. In the transversely coupled SAW resonator filter 6 shown in That is, in the SAW resonator filter 6, the first IDT 3 has sub-IDT portions 3A and 3B, but while the first sub-IDT portion 3A has multiple electrode fingers 3 Ends of the electrode fingers 3 The electrode fingers 4 As shown in FIG. 4 and Moreover, as shown in In this way, in the transversely coupled SAW resonator filter according to preferred embodiments of the present invention, a SAW resonator filter having a multiple-stage arrangement can be provided by connecting a plurality of transversely coupled SAW resonator filter portions on a single piezoelectric substrate 12. Further, The SAW resonator filter 31 is provided by using a substantially rectangular piezoelectric substrate 32. The piezoelectric substrate 32 is preferably made of the same material as the piezoelectric substrate 2. Similarly, the piezoelectric substrate 32 has opposing edges 32 The IDT 33, which defines a first SAW resonator has multiple electrode fingers 33 In the sub-IDT portion 33A, ends of the electrode fingers 33 In the sub-IDT portion 33B, ends of the electrode fingers 33 As a result of the connection, sub-IDTs 33A and 33B are connected in series between a pair of input terminals IN and aligned along the surface acoustic wave propagation direction. The electrode finger 33 The IDT 34 defining the second resonator is provided along the surface acoustic wave propagation direction with respect to the IDT 33. Like the IDT 33, the IDT 34 has two sub-IDT portions 34A and 34B. The sub-IDT portion 34A is provided on the side of the IDT 33, and has electrode fingers 34 In the sub-IDT portion 34A, ends of the electrode fingers 34 In the sub-IDT portion 34A, the electrode fingers 34 As a result of the connection, sub-IDTs 34A and 34B are connected in series between a pair of output terminals OUT and aligned along the direction of propagation of the surface acoustic wave. Further, the outermost side electrode finger 34 In the longitudinally coupled SAW resonator filter 31 of the present preferred embodiment, the above-mentioned IDTs 33 and 34 are provided between the two opposite edges 32 According to the SAW resonator filter 31 of the present preferred embodiment, in the edge reflection type SAW resonator filter having the IDTs 33 and 34 as described above, since each of the IDTs 33 and 34 is divided so as to have sub-IDT portions 33A and 33B, and sub-IDT portions 34A and 34B respectively, the effective electromechanical coupling coefficient is decreased. Therefore, the frequency differences Δf between the anti-resonant frequency and the resonant frequency of each of the two resonators are both greatly reduced. Consequently, with the longitudinally coupled resonator filter created by the coupling of the two resonators, the bandwidth can be made narrower than in the conventional longitudinally coupled SAW resonator filter 51 shown in FIG. 19. This will be explained based on a detailed test example. As shown in For comparison, a SAW resonator filter 31 of the present preferred embodiment with a center frequency of 41.3 MHz was made using the same piezoelectric substrate as above, the logarithms of the electrode fingers of the IDTs 33 and 34 being, respectively 20 pairs and 15 pairs, the width of the intersections of the electrode fingers being 4 λ in each case, but the IDTs 33 and 34 being divided into two as shown in FIG. 8. In the characteristics of the SAW resonator filter 51 as shown in The SAW resonator filter 41 of the present preferred embodiment differs from the SAW resonator filter 31 of That is, taking the IDT 43 as an example, the IDT 43 has electrode fingers 43 The width of the electrode finger 43 The IDT 44 has electrode fingers 44 In the IDT 44, the electrode finger 44 As described above, in the SAW resonator filter 41, the IDTs 43 and 44 each define SAW resonators, and the IDTs 43 and 44 are divided so as to have three sub-IDT IDT portions 43A to 43C, and 44A to 44C. Consequently, the effective electromechanical coupling coefficient can be reduced even further than in the SAW resonator filter 31 of the previously described preferred embodiment, thus further narrowing the bandwidth. This will be explained based on a detailed test example. Furthermore, the inventors of the present invention made longitudinally coupled SAW resonator filters where the first and second IDTs were divided into four and five portions, while being identical in other respects to the above test example, and measured the frequency amplitude characteristics. The results are shown in FIG. 13 and FIG. 14. As is clear by comparing FIG. 13 and Considering the results of As is clear from Therefore, when forming an edge reflection type longitudinally coupled SAW resonator filter using SH-type surface acoustic waves, the number of divisions of the first and second IDTs should preferably be within a range of two to four, thereby allowing the bandwidth to be very narrow while preventing an increase in the insertion loss. The present invention can be suitably applied to various electronic components or devices utilizing a surface acoustic wave filter in which the unique features of preferred embodiments of the present invention are successfully employed. For example, the present invention may be applied to a duplexer and communication apparatus including the duplexer. The communication apparatus 80 includes a duplexer 70, an antenna 81, a receiver 82 and a transmitter 83. The duplexer 70 preferably includes a SAW filter 71 and a SAW filter 72, where one end of the SAW filter 71 and the SAW filter 72 are connected in parallel to define a first terminal 73. The other ends of the SAW filter 71 and the SAW filter 72 are connected to a second terminal 74 and a third terminal 75. The SAW filter 71 and the SAW filter 72 may be any one of the SAW filters of preferred embodiments of the present invention. The antenna 81, the receiver 82 and the transmitter 83 are connected to the first terminal 73, the second terminal 74 and the third terminal 75 of the duplexer 70. The pass bands of the SAW filters 71 and 72 of the duplexer 70 are selected such that the signals received through the antenna 81 passes through the SAW filter 71 and are blocked by the SAW filter 72 and that the signals to be transmitted from the transmitter 83 passes through the SAW filter 72. While the invention has been particularly shown and described with reference to preferred embodiments thereof, it will be understood by those skilled in the art that the foregoing and other changes in form and details may be made therein without departing from the spirit and scope of the invention.BACKGROUND OF THE INVENTION
SUMMARY OF THE INVENTION
BRIEF DESCRIPTION OF THE ATTACHED DRAWINGS
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS