заявка
№ US 0003682841
МПК H01C7/112

VOLTAGE DEPENDENT RESISTORS IN A BULK TYPE

Правообладатель:
Номер заявки
5093971
Дата подачи заявки
01.12.1970
Опубликовано
08.08.1972
Страна
US
Как управлять
интеллектуальной собственностью
Чертежи 
1
Реферат

Формула изобретения

claim is: 1. A voltage dependent resistor of the bulk type comprising a sintered body consisting essentially of, as a major part, zinc oxide (,ZnO) and, as an additive, 0.05 to 10.0 mole percent of beryllium oxide (BeO) and 0.05 to 10.0 mole percent, in total, of at least one member selected from the group consisting of bismuth oxide (Bi2O3), cobalt oxide (CoO), nianganese oxide (MnO), barium oxide (BaO), strontium oxide (SrO), and lead oxide (PbO), and electrodes in contact with said body. 2. A voltage dependent resistor of the blulk type according to claim 1, wherein said additive consists essentictlly of 1.0 to 8.0 mole percent of beryllium oxide (BeO) and 0.1 to 3.0 mole percent, in total, of at least one member selected from the group consisting of bismuth oxide (Bi2O3), cobalt oxide (CoO), manganese oxide (MnO), 8 Change rate (percent) Load life test Heating cycle test AC An AC An -2.1 -2.5 -2.9 -3.2 -3.0 -3.1 -2.5 -3.8 -4.0 -3.0 -3.9 -3.8 -3.5 -3.6 -3.0 -2.9 -3.8 -2.9 -3.3 -3.4 -2.9 -2.5 -2.9 -3.0 -2.5 -3.8 -2.8 -3.4 ;-1.5 -1.8 -2.0 -1.9 0.5 -0.7 -1.0 -0.9 -1.8 -2.0 -2.1 -1.7 Change rate (percent) Load hfe test Heating cycle test AC An AC An -3.8 -3.5 -4.0 -3.9 -1.9 -2.0 -1.8 -2.1 -3.5 -3.4 -3.4 -3.8 -1.5 -2.0 -1.5 -2.0 -0.5 -1.0 -1.2 -0.9 -2.0 -2.1 -1.6 -2.1 -3 -3.8 .2 -2.9 -3.0 -2.0 -1.8 -1.9 -2.1 -4.0 -3.9 -3.3 -3.2 -3.7 -3.3 -4.0 -3.7 -2.5 -2.1 -3.0 -1.9 -4.1 -3.5 -3.3 -3.8 -2.0 -2.4 -2.1 -3.0 -0.5 -0.5 -1.0 -1.0 -1.9 -2.2 -2.3 -1.9 -4.0 -2.9 -3.7 -3.9 -2.0 -2.4 -1.9 -2.1 -3.8 -4.0 -3.5 -3.8 60 barium oxide (BaO), strontium oxide (SrO) and lead oxide (PbO). 3. A voltage dependent resistor of the bulk type accord. ing to claim 2, wherein said additive further includes' at least one member selected from 'the group consisting of 65 0.1 to 3.0 mole percent of nickel oxide (Nio) and 02 to 1.0 mole percent of boron trioxide (B203)- o. 4. A voltage dependent resistor according to claim: 1, wherein said additive consists essentially Of 1.0 to 8.0 mole 70 percent of beryllium oxide (BeO), 0.1 to 3.0 mole percent of bismuth oxide (Bi2O3), 0-1 to 3.0 mole percent of cobalt oxide (COO), 0.1 to 3.0 mole percent of manganese oxide (MnO), 0.1 to 3.0 mole percent of nickel oxide (NiO), 0.1 to 3.0 mole percent of titanium oxide (TiO2) 75 and 0.02 to 1.0 mole percent of boric oxide (B203)

3,682,841 9 10 S. A voltage dependent resistor according to claim 1, References Cited wherein said additive consists essentially of 1.0 to 8.0 mole UNITED STATES PATENTS percent of beryllium oxide (BeO), 0.1 to 3.0 mole percent of ibismuth oxide (Bi2O3), 0-1 to 3.0 mole percent of 3,503,029 3/1970 Matsuoka et al ------- 252-518 manganese oxide (iMnO), 0.1 to 3.0 mole percent of 5 DOUGLAS J. DRUMMOND, Primary Examiner cobalt oxide (CoO), 0.1 to 3.0 mole percent of nickel oxide (NiO) and 0.02 to 1.0 mole percent of boric oxide (B203). 252-521 U.S. Cl. X.R.

Описание

[1]

0 3.,6829841 Utiited States Patent Office Patented Aug. 8, 1972 2 material, i.e. to the bulk, and the C-value is controlled by changi ng a dimen sion in the directi on in which the curren t flows throug h the varisto rs. The silicon carbid e varisto rs, howev er, have a relativ ely low nvalue rangin g from 3 to 6 and are prepare d by firing in nonoxidizin g atmosph ere, especiall y for the purpose of obtainin g a lower Cvalue. An object of the present invention is to provide a voltage dependent resistor having nonlinearity due to the io bulk thereof and being characte rized by a low Cvalue and high n-value. Another object of the present invention is to provide a method for making a voltage dependent resistor having the non-linearity due to the bulk thereof and being char15 acterize d by a high nvalue, without using nonoxidizin g atmosph ere. These object s are achiev ed by provid ing a voltag e depen dent resisto r of the bulk type compri sing a sintere d body consist ing essenti ally of, as a major part, zinc ox20 ide (ZnO), and, as an additive, 0.05 to 10.0 mole percent of berylliu m oxide (BeO) and 0.05 to 10.0 mole percent, in total, of at least one member selected from the group consistin g of bismuth oxide (Bi2O3), cobalt oxide (CoO), mangan ese oxide (MnO), barium oxide 25 (BaO), str6ntiu m oxide (SrO) and lead oxide (PbO), and electrod es in contact with said body. These and other object s of the inventi on will becom e appar ent upon consid eratio n of the followi ng descri ption taken togeth er with the accom panyin g drawin g in which 30 the single figure is a partly crosssectional view through a voltage depend ent resistor in accorda nce with the inventio n. Befor e proce eding with a detaile d descri ption of the voltag e depen dent resisto rs conte mplate d by the inven35 t;on, their construc tion will be describe d with referen ce to the aforesai d drawing wherein referen ce characte r 10 desi,- nates, as a whole, a voltage depend ent resistor comprisi ng, as its active element, a sintered body having a pair of electrod es 2 and 3 applied to opposite surfaces 40 thereof. Said sintered body I is prepare d in a manner hereinaf ter set forth and is in any form such as circular, square or rectang ular plate form. Wire leads 5 and 6 are attached conducti vely to the electrod es 2 and 3, respecti vely, by a connecti on means 4 such as solder or the like. 45 The sintered body I of the voltage depend ent resistor accordin g to the inventio n conipris es a composit ion consistin g essential ly of, as a major part, zinc oxide (ZnO) and, as an additive, 0.05 to 10.0 mole percent of berylliu m oxide (BeO) and 0.05 to 10.0 mole percent, in total, 50 of at least one member selected from the group consistin g of bismuth oxide (Bi2O3), cobalt oxide (CoO). mangan ese oxide (MnO), barium oxide (BaO), strontiu m oxide (SrO) and lead oxide (PbO) and has the electrod es 2 and 3 in contact with said body. 55 A higher n-value can be obtained when said additive consists essential ly of 1.0 to 8.0 mole percent of berylliu m oxide (BeO) and 0.1 to 3.0 mole percent, in total, of at least one member selected from the group consistin g of bismuth oxide (Bi2O3), cobalt oxide (CoO), man60 ganese oxide (MnO), barium oxide (BaO), strontiu m oxide (SrO) and lead oxide (PbO). Table I shows the optima l compo sitions of said additiv es for produ cing a voltag e depen dent resisto r having hibh nvalue, low Cvalue and bigh stabilit y with respec t 65 to tempe rature, humidi ty and electri c load. The sinte red bod y I can be prep ared by a per se well kno wn cera mic tech niqu e. The starti ng mate rials havi ng the com posit ioiis desc ribe d in the fore goin g desc ripti on are mixe d in a wet mill so as to prod uce hom oge neo us 70 mixtur es. The mixtur es are dried and presse d in a mold into the desire d shape at a pressu re of from 100 kg./ CM.2 to 1000 kg./CM.2. The presse d bodies are sintere d 3,682,841 VOLTAGE DEPENDENT RESISTORS IN A BULK TYPE Mchio Matsuoka, Takeshi Masayama, and Yoshio lida, Osaka-fu, Japan, assignors to Matsushita Electric Indusmal Co., Ltd., Osaka, Japan Filed Dec. 1, 1970, Ser. No. 93,971 Claims priority, application Japan, Dec. 12, 1969, 44/100,447; Dec. 16, 1969, 44/102,203, 441 102,204, 44/102,205, 44/102,206; Dec. 23, 1969, 44/569; Apr. 6, 1970, 45/29,908 Int. Cl. HOlb 1106 U.S. Cl. 252-518 5 Claims ABSTRACT OF TIBE DISCLOSURE A voltage dependent resistor of the bulk type. The resistor has a sintered body consisting essentially of, as a major part, zinc oxide (ZnO) and, as an additive, 0.05 to 10.0 mole percent of beryllium oxide (BeO) and 0.05 to 10.0 mole percent, in total, of at least one member selected from the group consisting of bismuth oxide (Bi2O3), cobalt oxide (CoO) manganese oxide (MnO), barium oxide (BaO), strontium oxide (SrO) and lead oxide (PbO). Electrodes are provided which are in contact with said body. This invention relates to voltage dependent resistors having nonohmic resistance due to the bulk thereof and more particularly to varistors comprising zinc oxide aud beryllium oxide. Various voltage dependent resistors such as silicon carbide varistors, selenium rectifiers and germanium or silicon p-n junction diodes have been widely used for stabilization of voltage or current of electrical circuits. The electrical characteristics of such a voltage dependent resistor are expressed by the relation: 1= (C') n where V is the voltage across the resistor, I is the current flowing through the resistor, C is a constant corresponding to the voltage at a given current and exponent n is a numerical value greater than 1. The value of n is calculated by the following equation: 10910(12II1) n= 10910 (V21VI) where V, and V2 are the voltages at given currents 1, and 12, respectively. 'fhe desired value of C depends upon the kind of application to which the resistor is to be put. It is ordinarfly desirable that the value of n be as large as possible since this exponent determines the extent to which the resistors depart from ohmic characteristics. Voltage dependent resistors comprising sintered bodies of zinc oxide with or without additives and silver paint electrodes applied thereto, have previously been disclosed. The non-linearity of such varistors is attributed to the interface between the sintered body of zinc oxide with or without additives and the silver paint electrode and is controlled mainly by changing the compositions of said sintered body and silver paint electrode. Therefore, it is not easy to control the C-value over a wide range after the sintered body is prepared. Similarly, in varistors comprising germanium or silicon p-n junction diodes, it is difficult to control the C-Value over a wide range because the non-linearity of these varistors is not attributed to the bulk but to the p-n junction. On the other hand, the silicon carbide varistors have nonlinearity due to the contacts among the individual grains of silicon carbide bonded together by a ceramic binding

[2]

3)682)841 3 in air at 1000' C. to 1450' C. for 1 to 3 hours, and then @furnace-cooled to room temperature (about 15 to about 30- C.). The niixture can be preliminarily calcined at 700' to 1000' C. and pulverized for easy fabrication in the subse5 quent pressing step. The mixture to be pressed can be admixed with a suitable binder such as -water, polyvinyl alcohol, etc. It is advantageous that the sintered body have the opposite surfaces thereof lapped by abrasive powder such 10 as siffcon carbide having a particle size of 300 mesh to 1500 mesh. The sintered bodies are provided, on the opposite surfaces thereof, with conventional electrodes by any available and suitable method, for example, with a spray 1,5 metallized film of aluminum and/or copper. Lead wires can be attached to the electrodes in a per @e conventional manner by using conventional solder havmg a low melting point. It is convenient to employ a conductive adhesive comprising powder and resin in an or20 ganic solvent in order to connect the lead wires to the electrodes. Voltage dependent resistors according to this invention have a high stability with respect to temperature and in a load life test, which is carried out at 70' C. at a rat- 25 ing power for 500 hours. The n-value and C-value do not change greatly after the heating cycles and the load life test. It is advantageous for achievement of a high stability with respect to humidity that the resultant voltage dependent resistors be embedded in a humidity proof resin such 30 as epoxy resin and phenol resin in a per se well known manner. The n-value is independent of the thickness of the sintered body, while the C-value varies in proportion to the thickness of the sintered body. The variation in the C-value with thickness of the sintered body indicates that 35 the nonlinearity of the voltage dependent resistor according to this invention is attributed to the bulk of the sintered body itself, not to any barrier between the electrodes and the sintered body. Presently preferred illustrative embodiments of the in40 vention are as follows: EXAMPLE 1 Respective starting materials listed in Table 2 are mixed in a wet mW for 5 hours. The mixture is dried and pressed 45 in a mold into discs 13 mm. in diameter and 2.5 mm. in thickness at a pressure of 340 kg./CM.2. The pressed bodies are sintered in air for I hour at the temperature listed in Table 2, and then fumace-cooled to room temperature (about 15' C. to about 30' C.). The ao sintered discs have the opposite surfaces lapped to the thickness Usted in Table 2 by silicon carbide abrasive having a particle size of 600 mesh. The opposite surfaces of the sintered disc are provided with a spray metallized film of aluminum in a per se weR known technique. Lead wires 55 are attached to the aluminum electrodes by means of conductive suver paint. The electric characteristics of the resulta,nt resistors are shown in Table 2. It will be readfly understood that the C-value changes in proportion to the thickness of the sintered body. 60 EXAMPL,E 2 Respective starting materials according to Table 3 are mixed and pressed in the same manner as that described in Example 1. 65 The pressed bodies are sintered in air at 1350' C. for 1 hour and then furnace-cooled to room temperature (about 15' to about 30' C.). The sintered discs have tlle opposite surfaces tllereof lapped by silicon carbide abrasive having a particle size of 600 mesh. The resulting 70 sintered discs have a size of 10 mm. diameter and 1.5 mm. thickness. The opposite surfaces of the sintered discs are p provided with a s ray metallized film of aluminum by a per se well known technique. Lead wires are attached to the aluminum electrodes by means of conductive silver 75 4 paint. The resultant resistors are tested in accordance with a method widely used in testing electronic components parts. T'he load life test is carried out at 70' C. ambient temperature at I watt rating power for 500 hours. The heating cycle test is carried out by repeating 5 times a cycle in which said resistors are kept at 85' C. ambient temperature for 30 minutes, cooled rapidly to -20' C. and then kept at such temperature for 30 minutes. The electric characteristics of the resultant resistors are shown in Table 3. It will be readily understood that the n-value can be elevated and the C-value at a given currerit of 10 ma. can be lowered remarkably by the addition of beryllium oxide. EXAMPLE 3 Respective starting materials according to Table 4 are pressed, fired, lapped, electrodesattached and then tested in the same manner as that described in Example 2. The electric characteristics of the resultant resistors are shown in Table 4. It can be easily understood that the resistors having the compositions shown in Table 4 have higher n-value, lower Cvalue and more excellent stability. TABLE I [Optimal composition of additive (mole percent)] BeO NiO B203 Other additive 1.0-8.0 0.1-3.0 -------------- Bi2O3; 0.1-3.0. 1.0-8.0 0.1-3.0 -------------- COO, 0.1-3.0. 1.0-8.0 0.1-3.0 -------------- MnO, 0.1-3.0. 1 0-8 0 0.1-3.0 -------------- BaO, 0.1-3.0. 1: 0-8' . 0 o. i-3. o-------------- gro, 0.1-3.o. 1.0-8.0 0.1-3.0 -------------- PbO, 0.1-3.0. 1 0-8 0 -------------- 0.02-1.0 Bi2O3,0.1-3.0. 1'6-i. 0 -------------- 0.02-1.0 CoO, 0.1-3.0. 1.0-8.0 -------------- 0.02-1.0 MnO, 0.1-3.0. 1 o-8 o -------------- 0. o?,-I. 0 Bao, 0.1-3.0. 1'0-8'0 -------------- 0.02-1.0 SrO, 0.1-3.0. 1.0-8.0 -------------- 0.02XI.0 rbO, 0.1-3.0. 1 0-8 0 0.1-3.0 0.02-1.0 ]3i2O3,0-1-3-0. l'o-@. 0 0.1-3.0 0.02-1.0 CoO, 0.1-3.0. 1. o-8. o o. i-3. o o. o2-1. 0 mno, 0.1-3.0. 1.0,-8.0 0.1-3.0 0.02-1.0 BaO, 0.1-3.0. 1.0-8.0 0.1-3.0 0.02-1.0 SrO, 0.1-3.0. 1.0-8.0 0.1-3.0 0.02-1.0 PbO, 0.1-3.0. 1.0-8.0 0.1-3.0 0.02-1.0 Bi2O3, 0.1-3.0; MnO, - 0.1-3.0; 00, 0.1- .0. 1-0-8-0 0.1-3.0 0.02-1.0 Bi2O3,0.1-3.0; MnO, 0.1-3.0; 'CoO, 0.1-3.0; TiO2,0.1-3.0. TABLE 2 Composition of sintered Electric body (mol. percent) Sintering Thick. characteristics Further temp. ness C (at ZnO DoO additives (I C.) (mm.) 10 ma.) n 4.4 95.5 4 Bi2O3,0-5 ------ :Z 1, lio '2: O' I"O 1.4 1.5 7.5 1.3 1,0 1,1 4,3 3.0 148 4.3 95.5 4 CoO, 0.5 -------- 1,150 2.0 99 4.2 1: 5 75 4.4 0.5 50 4.3 150 3.0 119 4' 0 2.0 80 4.0 95.5 4 MnO, 0.5 -------- 11 1.5 59 4.0 1.0 40 3@9 1,350 3.0 51 7.1 95.5 4 Bao, 0.5 -------- 2.0 33 7.0 1.5 25 7.0 1:0 16 6.,9 3.0 41 5.1 95.5 4 SrO, 0.5 --------- 1,350 2:0 27 5.0 1.5 21 5.0 1.0 14 5.0 50 3.0 200 B. 1 1, 3@ 2: 0 140 5.1 95.5 4 PbO, 0.5 ------ 1.5 105 B. 0 1.0 70 5.0 -

[3]

3,682,841 5 TABLE 3 Electric Composition of sintered body (mol. percent) characteristics Change rate (percent) Load life test Heating cycle test 0 (at zno BeO NIO B203 Further additives 10 ma.) AC An AC An 99.90 0.05 ----------------- Bi2O3, 0.05 ----------- 32 4.3 -9.3 -8.4 - 9.0 -8.2 89-95 0.05 ---------------- B!203, 10 ---------- so 4.2 -8.4 -8.4 - 8.1 -8.5 89.95 10 ---------------- Bi2O3, 0.05 ---------- 31 4.1 -8.6 -9.0 -8.5 -8.6 80.0 10 ---------------- B!203, 10 ------------ 28 4.3 -9.0 -9.1 -9.1 - 8. 7 9& 9 1 ---------------- Bi2O3, 0-1 ----------- 14 4.9 -5.3 -6.0 -5. 5 - 5.7 96.0 1- --------- Bj2O3, 3------------- 15 4.9 -5.4 -5.3 -5.4 -5.8 91.9 8-: -------------- Big0s, 0.1 ---------- 14 4. 7 -6.0 -5.3 -6.2 -6.2 89.0 8---------------- Bi2O3, 3------------- 15 4. 8 -6.8 -6. 0 -5.8 -6.1 95.5 4 ---------------- B1203, 0.5 ----------- 6. 5 4.9 -3.2 -4.0 -3.5 -3.8 99.90 0.05 ---------------- COO, 0.05 ----------- 100 4.2 -8.0 -7.8 -8.0 -9.0 89. 95 0.05 ---------------- COO, 10 ------------- 98 4.2 -8.3 -7.9 -8.1 -9.2 89.95 10 ---------------- COO, 0.05 ----------- 98 4.0 -7.8 -8.0 -7.9 -8.5 80.0 10 ---------------- COO, 10 ------------- 99 4.1 -8.1 -8.1 -8.0 -8.8 98.9 1 ---------------- COO, 0.1 ------------ 72 4. 5 -4.2 -4.3 -4.1 -4.2 96.0---------------- CoO, 3-------------- 70 4. 6 -4. 8 -5.1 -4.2 -4.5 91.9 8---------------- COO, 0.1 ------------ 68 4.5 -511 -5.0 -4.8 -4. 5 89.0 8 ---------------- COO 3 -------------- 70 4.4 -4.0 -4.5 -4.1 -3.8 95.5 4 ---------------- COO , 0.5 ------------ 45 4. 7 -2.0 -1.9 -2.1 -2.0 99.90 0.05 ---------------- Mao, 0.05 ----------- 105 4.2 -911 -8.8 -9.2 -8.8 89.95 0.05 ---------------- MnO, 10 ------------- 102 4.1 -8.5 -8.7 -8.8 -9.0 89. 95 10 ---------------- MnO, 0.05 ----------- 104 4. 2 -810 -8.0 -8.8 -9.0 80.0 10 ---------------- MnO, 10 ------------- 105 4.0 -8.8 -8.0 -8.2 -8.5 98.9 1 ---------------- mno, 0.1 ------------ 75 4.5 -4.2 -3.9 -4.3 -5.0 96.0 1 -------------- NnO, 3 ------ -------- 72 4.6 -4.0 -4.0 -5.0 -5.0 91.9 8 ---------------- M-nO, 0.1 ------ ------ 70 4.5 -4.5 -3.8 -4.7 -4.8 89.0 8---------------- MilO, 3-------------- 73 4. 7 -5.0 -4.0 -5. 1 -4.7 95.5 4 ---------------- MnO, 9.5 ------------ 48 5.0 -2.0 -2.1 -2.4 -2.4 99.90 0.05 ---------- ----- BaO, 0.05 ----------- 62 4.2 -8.8 -9.0 -8.0 -9.1 89. 95 0.05 ---------------- BaO, 10 ------------- 60 4.3 -8.7 -9. 0 -8.2 -9.2 89.95 lo ---------------- BaO, 0.05 ----------- 60 4.5 -8.6 -8.8 -8.4 -8.9 80.0 10 ---------------- BaO, 10 ------------- 61 4.2 -9.0 -8.7 -7.9 -9.2 98.9 1 ---------------- BaO, 0.1 ------------ 38 5.7 -4.4 -5.1 -4.0 -5.0 96.0 1---------------- BaO, 3-------------- 37 5.6 -3.9 -5.0 -4.1 - 4.1 91.9 8---------------- BaO 0.1 ------------ 39 5.6 -5.0 -4.8 -3.9 - 5.1 89.0 8---------------- BaO: 3-------------- 40 5.5 -4.8 -4.6 -3.8 - 5.0 95.5 4---------- BaO, 0.5 ------------ 25 7.0 -3.4 -2.8 -3.0 - 2.7 99. 90 0.05 ---------- SrO, 0.05 ------------ 43 4.2 -8.8 -7.8 -9.1 -9.0 89.95 0.05 ---------------- SrO, 10 -------------- 42 4.3 -8.8 -7.9 -8. 0 -9.0 89.95 lo ---------------- SrO, 0.05 ------------ 45 4.1 -7.9 -6.8 -8.5 - 8.7 80.0 10 ---------------- SrO, 10 -------------- 4.6 4.2 -8.0 -7.0 -8.2 -8.5 98.9 1 ---------------- sro, 0.1 ------------- 3.1 4. 5 -4.9 -5.0 -3.8 -4.3 96.0 1---------- ----- SrO, 3 --------------- 29 4.4 -5.0 -4.2 -5.1 - 4.2 91.9 8---------------- SrO, 0.1 ------------- so 4. 4 -5.3 -4.3 -4.0 -5.0 89.0 8---------------- SrO, 3 --------------- 27 4.5 -4.7 -4.5 -4.2 - 4.9 95.5 4---------------- SrO, 0.5 ------------- 21 B. 0 -2.4 -3. 0 -2.1 -2.3 99. go 0.05 rbO, 0.05 ----------- 200 4.2 -&O -9.1 -8.8 -9.0 89.95 0.05 ---------------- PbO, 10 ------------- 202 4. 2 -8.3 -9.2 -8.7 -9.0 89.95 10 ------ PbO, 0.05 ----------- 198 4.1 -9.1 -9.5 -9.0 - 8.8 80.0 10 ------ PbO, 10 ------------- 2GO 4. 2 -9.3 -8.9 -9.1 -9.1 98.9 1 ------- PbO, 0.1 ------------ 150 5.0 -6.7 -6.0 -4.6 -5.3 96.0 1------- PbO, 3-------------- 147 4.8 -5.4 -5.8 -5.3 - 5.4 91.9 8------- PbO, 0.1 ------------ 147 4.9 -6.0 -6.0 -5.1 - 5.6 89.0 8 PbO, 3-------------- 150 5.0 -5.4 -5.7 -4.6 -5.8 95.5 4 ---------------- PbO, 0.5 ------------ 105 5.0 -3.8 -3.9 -3.2 - 3.0 95.0 4 ---------------- BijO3, 0.5 ---------- - 4.1 CoO, 0.5 ------------ 1 20 13 -2.8 -3.1 -3,6 Bi2os, 0.5 ----------- 95.0 4 ---------------- 0.5 ------------ 50 18 -1.9 -2.0 -3.1 - 3.7 95.0 4 ---------------- B! ----------- 21 14 -2.4 -3.4 -3.5 - 4.0 a ----------- 3, 0 ---------- 18 12 -5.0 -4.8 -3.9 - 4.0 95.0 4 ---------------- 05 1 95.0 4 ---------------- 3,0.5 ----------- 65 10 -4.1 -5.0 -4.0 - 3.9 ----------- 1 95.0 4 ---------------- ----------- 70 10 -3.8 -4.2 -5.4 - 4.0 ----------- 95.0 4 ------- 00 ----------- 95 17 -2.1 -3.0 -2.8 - 2.9 --------- BaO ----------- 95.0 4 ---------------- COO ----------- 80 18 -2.4 -2.4 -3.0 - 2.8 IlrO, ----------- 95.0 4 ---------------- I PC BOOO' 00-55 --------- ---- 130 10 -3.0 -4.1 -3.3 - 3.5 95.0 4 ---------------- mno, 0.5 ------------ 75 18 -5.4 -5.0 -4.8 - 4.9 BaO, 0.5 ------------ 95.0 4 ---------------- IMno' 0'5 ------------ 120 12 -4.8 -4.4 -4.0 - 4.8 SrO, 0.5 ------------- 95.0 4 ---------- ----- MnO, 0.5 ------------ 100 11 -5.0 -510 -4.1 -3.9 - PbO, 0.5 ------------ 95.0 4 ---------------- BaO, 0.5 ------------ 50 10 -3.0 -2.4 -2.7 -3.1 SrO, 0.5 ------------ - BaO, 0.5 ------------ 11 -3.1 -2.9 -2.2 -2.5 95.0 4 ------- -------- I PbO, 0.5 ------------ - 110 95. 0 4 -------------- - ISRO, 0.5 ------------- I loo 10 -4.4 -3.8 -3.9 - 4.1 - PbO, 0.5 ------ ----- -2.5 -3.0 -3.4 - 2.8 95.4 4 0.1 -------- Bi2O3, 0.5 --------- -- 6.0 5.2 -1.0 -1.2 -1.4 -1.2 95.0 4 0. 1; -------- Bi2o5, 0.5 --------- -- 5.5 5.1 92.5 4 3 -------- Bi2o3 0.5 --------- --- 6.8 5.3 -2.7 -1.9 -2.0 -2.1 95.48 4 -------- 0.02 Bi2O3, 0-5 ----------- 7.5 6.5 -2.0 -3.4 -3.8 -3.1 95.0 4 -------- 0.5 Bi2O3, 0.5 ------------ 7.0 5.6 -1.4 -1.6 -1.8 -1.4 94.5 4 -------- 1 Bi2O3, 0.5 ----------- 7.4 5.5 -3.0 -3.0 -2.8 -3.0 95.38 4 0.1 0.02 Bi2o3, 0.5 6.3 6.0 -2.5 -2.4 -3.3 -3.0 -1.0 -1.0 -1.1 -1.2 94.5 4 0.5 0.5 Bi2O3, 0.5 ------------ 5.2 6.3 91.5 4 3 1 Bi3O3, 0-5 ----------- 6.8 6.1 -3.0 -2.2 -2.4 -2.1 95.0 4 0.5 -------- COO, 0.5 --------- --- 40 5.0 -2.4 -3.1 -3.3 -3.5 95.0 4 0.5 -------- MnO 0.5 --------- --- 60 5.0 -2.0 -3.4 -3.0 -2.9 95.0 4 0.5 --- - BaO,'0.5 ------------ 22 S. 1 -1.9 -1.8 -3.1 -2.8 95.0 4 o. 5 --- :---- SrO, 0.5 ------------- 12 6.0 -1.8 -2.9 -2.7 -3.0 95.0 4 0. 5 -------- PbO, 0.5 --------- --- 100 6.5 -2.2 -3.1 -2.4 -2.5 95.0 4 -------- 0.5 COO, 0.5 ------------ 40 5.0 -2.4 -3.3 -4.0 -2.8 95.0 4 -------- 0. 5 MnO, 0.5 ------------ 55 4.9 -3. 0 -3.0 -3.0 -3.0 -2.8 -2,9 -2.8 -4.5 95.0 4 o.5 BaO,0.5 ------------ 19 8.0

[4]

3,682,841 7 TABLE 3@Continued Electric Composition of sintered body (mol. percent) characteristics c (at ZnO BoO NiO B203 Fiirther additives 10 ma.) n 95.0 4 -------- 0.5 SrO, 0.5 -------------- 10 6.0 95.0 4 ---- 0. 5 PbO, 0.5 ------------ 90 6.2 94.5 4 1.8- 0.5 COO, 0.5 ------------ 35 5.1 94.5 4 0.5 0.5 mno, 0.5 ------------ 50 5.0 94.5 4 0.5 0. 5 BaO, 0.5 ------------ 17 8.2 94.5 4 0.5 0.5 SrO, 0.5 ------------- 8 6.2 94.5 4 0.5 0.5 PbO, 0.6 ------------ 90 6.5 94.88 4 0.1 0.02 iBilOOs,00 ----- 15 14 Co 94.0 4 0.5 0 Biso3, 0.5 ----------- 12 15 COO, 0.5 ------------ 1 91.0 4 a 1 BltO3, 0.5 16 13 COO, 0.5-:-:--: TABLE 4 Electric Composition of sintered body (mol percent) characteristics Further C (at ZnO BeO B!203 COO MnO additives 10 ma.) 98.58 1 Oll 0.1 0.1 NIO, 0.1 -------- IB203, 0.02--@ ---- 40 16 96.5 1 0.5 0.5 0. 5 NIO, 0.5 -- ------ IB303, 0.5 -- ------ 30 20 86.0 1 3 3 a [NiO, 3 --------- - 42 16 B203, 1 --------- - 95.59 4 0.1 0.1 0.1 0.1 -------- 38 20 B 0.02 ------- 93.5 4 0.5 0.5 0.5 0.5- 25 25 B 0.5 ----- -- 83.0 4 3 3 3 3 ---------- 40 19 B 1 ------ 91.B8 8 0.1 0.1 0.1 0.1 -------- B2 0.02 ------- 50 13 89.5 8 0.5 0.5 0.5 Ni 0.5 -------- 32 18 B20 0-5 -------- 79.0 8 3 3 3 0,3 ---------- 55 14 B203, I ---------- 98.48 1 0.1 0.1 0.1 T 0.1-- ::::::l 30 12 0.02 ------- 96.0 1 0.5 0. 5 0.5 18 18 0.5 -------- 3 ---------- 83.0 1 3 3 3 3---------- 27 11 1 ---------- 0.1 17 14 95.48 4 0.1 0.1 0.1 0.02 ------- 0.5-- 93.0 4 0.5 0. 5 0.5 0.5. - ::::::I 12 20 0.5 -------- 80.0 4 3 3 3 IB2 -------- 16 15 0.1 INi ---- 91.49 8 0.1 0.1 Ti ------ 27 11 B2 ------ N --- 89 T ----- 18 17 0 8 0.5 0.5 0.5 IB - -- ----- I IN 3 ---------- 76.0 8 3 3 3 3 ---- 26 12 B 1 ------ What we

Как компенсировать расходы
на инновационную разработку
Похожие патенты