патент
№ RU 2795017
МПК C12Q1/68

Олигонуклеотиды для определения мутации S:Ins214EPE SARS-CoV-2

Авторы:
Саламайкина Светлана Андреевна Черкашина Анна Сергеевна Миронов Константин Олегович
Все (6)
Номер заявки
2022126133
Дата подачи заявки
06.10.2022
Опубликовано
27.04.2023
Страна
RU
Как управлять
интеллектуальной собственностью
Реферат

[84]

Изобретение относится к биотехнологии. Описан набор праймеров и зонда определения мутации S:Ins214EPE SARS-CoV-2, имеющий следующий состав: прямой праймер 214-F - SEQ ID NO: 1; обратный праймер 214pure-R - SEQ ID NO: 2; флуоресцентный зонд 214-Z2 - SEQ ID NO: 3. Синтезированные олигонуклеотиды SEQ ID NO: 1-3 не дают перекрестных реакций с другими протестированными образцами, амлифицируют заданный участок со 100% специфичностью и позволяют определять наличие или отсутствие в образцах биологического материала значимой мишени S:Ins214EPE. 2 з.п. ф-лы, 1 табл., 5 пр.

Формула изобретения

1. Набор праймеров и зонда определения мутации S:Ins214EPE SARS-CoV-2, имеющий следующий состав: прямой праймер 214-F - SEQ ID NO: 1; обратный праймер 214pure-R - SEQ ID NO: 2; флуоресцентный зонд 214-Z2 - SEQ ID NO: 3.

2. Набор праймеров и зонда определения мутации S:Ins214EPE SARS-CoV-2 по п. 1, где для создания прямого и обратного праймеров, флуоресцентного зонда используют фрагменты референсных геномов SARS-CoV-2 дикого типа, Omicron (B.1.1.529).

3. Набор праймеров и зонда определения мутации S:Ins214EPE SARS-CoV-2 по п. 1, где флуоресцентный зонд является олигонуклеотидом, содержащим флуорофор R6G и гаситель флуоресценции BHQ1, позволяющий детектировать амплифицированный фрагмент.

Описание

[1]

Изобретение относится к области биотехнологии, в частности к определению мутации S:Ins214EPE SARS-CoV-2 с использованием полимеразной цепной реакции в режиме реального времени (ПЦР-РВ) и может применяться для идентификации геновариантов SARS-CoV-2 при эпидемиологических исследованиях.

[2]

Коронавирусная инфекция (COVID-19) это инфекционное заболевание, вызванное SARS-CoV-2. Вирус передается от человека к человеку воздушно-капельным путем. Изменения в структуре генома SARS-CoV-2 приводят к возникновению вариантов, которые ВОЗ обозначила как вызывающие интерес (VOIs, Variants of Interest), вызывающие озабоченность (VOCs, Variants of Concern) и линии VOC под мониторингом (VOC lineages under monitoring (VOC-LUM). Определение мутаций в геноме SARS-CoV-2 и их классификация на VOIs и VOCs и VOC-LUM является важным элементом молекулярно-генетического мониторинга штаммов новой коронавирусной инфекции. Мутации, детекция которых необходима, перечислены в докладах Технической консультативной группы по эволюции вируса SARS-CoV-2 (TAG-VE) ВОЗ [https://www.who.int/publications/m on-sars-cov-2-virus-evolution-(tag-ve)].

[3]

Для определения геновариантов вируса и проведения молекулярно-генетического мониторинга SARS-CoV-2 используются методы полногеномного и фрагментного секвенирования, которые являются дорогостоящими и трудоемкими. С целью выявления SARS-CoV-2 Всемирной организацией здравоохранения предложено выделение РНК возбудителя с последующим проведением полимеразной цепной реакции с обратной транскрипцией (ОТ-ПЦР) [https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/laboratory-guidance].

[4]

Известны протоколы исследования направлены на выявление специфических нуклеотидных последовательностей в генах и межгенных промежутках:

[5]

- ORFlab, N [http://ivdc.chinacdc.cn/kyjz/202001/t20200121_211337.html];

[6]

- RdRP, Е, N [https://www.who.int/docs/default-source/coronaviruse/protocol-v2-1.pdf?sfvrsn=a9ef618 с_2];

[7]

- ORF1b-nsp14, N [https://www.who.int/docs/default-source/coronaviruse/peiris-protocol-16-1-20.pdf?sfvrsn=af1aac73_4];

[8]

- S, N [https://www.who.int/docs/default-source/coronaviruse/method-niid-20200123-2.pdf?sfvrsn=fbf75320_7];

[9]

- N [https://www.who.int/docs/default-source/coronaviruse/conventional-rt-pcr-followed-by-sequencing-for-detection-of-ncov-rirl-nat-inst-health-t.pdf?sfvrsn=42271c6d_4];

[10]

- N [https://www.fda.govhttps://searchplatform.rospatent.gov.ru/patsearch/v0.2/media/134922/download, https://www.who.int/docs/default-source/coronaviruse/uscdcrt-pcr-panel-primer-probes.pdf?sfvrsn=fa29cb4b_2];

[11]

- RdRP [https://www.who.int/docs/default-source/coronaviruse/real-time-rt-pcr-assays-for-the-detection-of-sars-cov-2-institut-pasteur-paris.pdf?sfvrsn=3662fcb6_2].

[12]

При этом, проведенный анализ полногеномных нуклеотидных последовательностей SARS-CoV-2 показал частое наличие мутаций (в особенности делеций) в геномах данного коронавируса. В связи с этим основным недостатком приведенных выше аналогов является риск получения ложно отрицательных результатов ОТ-ПЦР, обусловленных блокированием реакции при наличии мутаций в области амплифицируемого участка.

[13]

Из уровня техники известна тест-система для выявления SARS-CoV-2 линии Omicron методом одношаговой полимеразной цепной реакции с обратной транскрипцией [Патент RU 2772362, дата подачи 31.12.2021]. Указанная тест-система включает олигонуклеотидные праймеры и флуоресцентный зонд со следующей структурой: прямой праймер Ins214EPESARS-CoV-2; обратный праймер Ins214EPESARS-CoV-2; флоуресцентный зонд Ins214EPESARS-CoV-2.

[14]

Мультиплексные наборы реагентов для определения геновариантов SARS-CoV-2 методом ПЦР, разработаны несколькими компаниями-производителями. Предложенная компанией ThermoFisher Scientific методика основана на использовании зондов типа TaqMan для определения сразу нескольких мутаций, специфичных для разных геновариантов [Identifying SARS-CoV-2 Variants of Concern through saliva-based RT-qPCR by targeting recurrent mutation sites. Rachel E. Ham, Austin R. Smothers, Rui Che, Keegan J. Sell, Congyue Annie Peng, Delphine Dean. doi: https://doi.org/10.1101/2022.03.02.222717851.

[15]

Наборы, в которых предусмотрена мультиплексная ПЦР-РВ после проведения обратной транскрипции, в том числе одноступенчатая, [1) Одноэтапный анализ RT-PCR Ins214EPE для обнаружения варианта Omicron (В.1.1.529) V.1. Никита Елынин, Кирилл Варченко, Ксения Комиссарова, Дарья Даниленко, Андрей Комиссаров, Дмитрий Лиознов. https://www.protocols.io/view/one-step-rt-pcr-ins214epe-assay-for-omicron-b-1-1-3by14b2e8vo5/v1; 2) Патент RU 2761025, 26.07.2021, 02.12.2021 3) Патент CN113817868, 08.07.2021, 21.12.2021; 4) Патент CN113215312, 28.04.2021, 06.08.2021; 5) Патент CN113005226, 07.02.2021, 22.06.2021; 6) Патент CN113278733, 21.05.2021, 20.08.2021; 7) IN202221016568, 24.03.2022, 08.04.2022; 8) IN202021026013, 19.06.2020, 10.06.2022] отличаются удобством для пользователя. Однако, использование данных наборов не предполагает быстрой возможности замены мишеней для детекции новых геновариантов, содержащих миссенс мутации или замены.

[16]

Детекция дополнительных специфичных для возникающих геновариантов мишеней, так же, как и исключение из анализа мишеней для циркулирующих геновариантов позволяет повысить эффективность лабораторного исследования в целом. В связи с этим существует потребность в разработке олигонуклеотидов для выявления мутации S:Ins214EPE в биологических образцах с подтвержденным наличием РНК SARS-CoV-2: праймеров и флуоресцентно-меченого зонда для проведения ПЦР-РВ.

[17]

Технический результат заявляемого изобретения направлен на выявление мутации S:Ins214EPE в биологических образцах с подтвержденным наличием РНК SARS-CoV-2 с высокой степенью специфичности посредством олигонуклеотидов праймеров и флуоресцентно-меченого зонда, которые позволяют эффективно определять мутацию S:Ins214EPE SARS-CoV-2 с использованием широко доступных методик и доступных материалов.

[18]

Технический результат достигается за счет применения химически-синтезированных олигонуклеотидов для определения наличия мутации S:Ins214EPE SARS-CoV- в биологическом образце с подтвержденным наличием РНК SARS-CoV-2, имеющих следующий олигонуклеотидный состав:

[19]

Прямой праймер 214-F - SEQ ID NO: 1,

[20]

Обратный праймер 214pure-R - SEQ ID NO: 2,

[21]

Флуоресцентный зонд 214-Z2 - SEQ ID NO: 3.

[22]

Праймеры представляют собой последовательности олигонуклеотидов для амплификации фрагмента, содержащего мутацию S:Ins214EPE в биологических образцах с подтвержденным наличием РНК SARS-CoV-2, флуоресцентно-меченый конформационно-блокированный зонд является олигонуклеотидом, содержащим флуорофор и гаситель флуоресценции, позволяющим детектировать амплифицированный фрагмент.

[23]

Заявляемые олигонуклеотиды разработаны на основе известной последовательности гена, кодирующего S-белок SARS-CoV-2, взятых из базы данных NCBI (https://www.ncbi.nlm.nih.gov/), в результате выбран фрагмент для детекции мутации S:Ins214EPE. К выбранному фрагменту были подобраны праймеры и зонд для амплификации 149/155 пар оснований: прямой праймер 214-F - SEQ ID NO:1; обратный праймер 214pure-R - SEQ ID NO:2 и флуоресцентный зонд 214-Z2 - SEQ ID NO:3.

[24]

Заявляемое изобретение является результатом работы в рамках совершенствования молекулярно-генетического мониторинга вариантов SARS-CoV-2, проведенной в ФБУН ЦНИИ Эпидемиологии Роспотребнадзора (Москва, Россия).

[25]

Для подбора целевых последовательностей - мест посадки олигонуклеотидов, используют фрагменты референсных геномов из базы данных NCBI (https://www.ncbi.nlm.nih.gov/), как вируса SARS-CoV-2 дикого типа, так и тех геновариантов, в которых встречается мутация S:ins214EPE (Omicron (В. 1.1.529)). Для поиска консервативных последовательностей применяют современные алгоритмы in silico анализа нуклеотидных последовательностей и программы, находящиеся в открытом доступе, включая AlignX, SnapGene Viewer, MEGA, Unipro UGENE. Составляют перечень мутаций, характерных для геновариантов. Затем подбирают олигонуклеотидные последовательности прямого и обратного праймеров, а также флуоресцентно-меченого зонда. Для детекции образцов, содержащих мутацию S:Ins214EPE, используют канал для детекции флуорофора R6G. Упомянутые олигонуклеотидные последовательности приведены в Таблице 1.

[26]

Анализ заявляемых последовательностей с использованием ресурса Primer BLAST продемонстрировал, что прямой праймер 214-F (SEQ ID NO: 1) и обратный праймер 214pure-R (SEQ ID NO: 2) амплифицируют участок, в котором располагается мутация S:Ins214EPE со 100% специфичностью.

[27]

[28]

В качестве биологического материала используются мазки/отделяемое носоглотки и ротоглотки, с подтвержденным наличием РНК SARS-CoV-2 (например, после проведения анализа на наборе реагентов АмплиСенс® COVID-19-FL).

[29]

Выделение РНК из биологического материала проводят в соответствии с МУ 1.3.2569-09 «Организация работ лабораторий, использующих методы амплификации нуклеиновых кислот при работе с материалом, содержащим микроорганизмы I-IV групп патогенности». Выделение РНК из биологического материала производят с помощью комплекта реагентов в соответствии с инструкцией производителя. Для выделения РНК может быть использован комплект реагентов «РИБО-преп» (ФБУН ЦНИИ Эпидемиологии Роспотребнадзора, Россия) или любой аналогичный набор для выделения РНК. Оптимальная концентрация РНК - 103-105 копий в 10 мкл. Реакцию обратной транскрипции (ОТ) проводят с помощью комплекта реагентов в соответствии с инструкцией производителя. Для проведения реакции ОТ может быть использован комплект реагентов «РЕВЕРТА-L» (ФБУН ЦНИИ Эпидемиологии Роспотребнадзора, Москва, Россия) или любой аналогичный набор. Готовый препарат кДНК может храниться при температуре от 2 до 8°С в течение недели, при температуре от минус 24 до минус 16°С в течение 6 мес.и при температуре не выше минус 68°С в течение года.

[30]

Полимеразная цепная реакция (ПЦР) - это эффективный способ получения in vitro большого числа копий специфических нуклеотидных последовательностей. Их амплификация осуществляется в ходе трехэтапного циклического процесса.

[31]

Процесс ПЦР-амплификации заключается в многократном повторении процессов денатурации, ренатурации и синтеза. Денатурация (95°С) - термическое воздействие на молекулу ДНК с целью получения одноцепочечной структуры. Ренатурация (55-60°С) - праймеры, добавленные в реакцию спариваются с разделенными цепями. Синтез (70-75°С) - синтез второй цепи ДНК. Каждый цикл длится 3-5 мин.

[32]

Анализ данных проводится на основе детекции амплификатором уровня флуоресцентного сигнала испускаемого интеркалирующим красителем. При увеличении числа копий анализируемого участка детектируется экспоненциальный рост флуоресцентного сигнала. В результате наблюдается S-образная кривая в случае наличия специфичного флуоресцентному зонду сигнала, или ее отсутствие, в случае неспецифичной для зонда последовательности. Анализ кривых позволяет судить об отсутствии или наличии мутации в исследуемых образцах.

[33]

ПЦР-РВ проводится с применением заявляемых представленных в Таблице 1 олигонуклеотидов - праймеров и зонда, для детекции мутации S:Ins214EPE SARS-CoV-2.

[34]

ПЦР-РВ проводят при следующих условиях:

[35]

Общий объем реакционной смеси - 25 мкл.

[36]

Компоненты ПЦР смешиваются следующим образом:

[37]

(а) 10 мкл смеси, содержащей:

[38]

- олигонуклеотидные праймеры SEQ ID NO: 1, SEQ ID NO: 2 - по 0,7 мМ;

[39]

- флуоресцентный зонд SEQ ID NO: 3 - 0,2 мМ;

[40]

- dNTPs - 0,44 мМ.

[41]

(b) реактив, содержащий рекомбинантный фермент Taq ДНК-полимеразу, например, 0,5 мкл «Полимераза TaqF» (ФБУН ЦНИИ Эпидемиологии Роспотребнадзора, Москва, Россия) или любой аналогичный коммерческий набор в соответствии с инструкцией производителя.

[42]

(c) ПЦР-буфер, содержащий MgCl2, например, 5,0 мкл ПЦР-буфера «ОТ-ПЦР-смесь-2 FEP/FRT» (ФБУН ЦНИИ Эпидемиологии Роспотребнадзора, Москва, Россия) или любого аналогичного коммерческого набора в соответствии с инструкцией производителя.

[43]

(d) полученная методом обратной транскрипции кДНК 10 мкл. Амплификацию проводят на приборе с возможностью флуоресцентной детекции, например, «Rotor-Gene Q» («Qiagen», Германия) или на любом другом приборе с 2-5 каналами детекции в соответствии с инструкцией производителя.

[44]

Амплификацию проводят по следующей программе: 1 цикл 95°С в течение 15 минут, 45 циклов при температуре 95°С - 10 секунд / 60°С - 20 секунд. Детекция флуоресценции проводится на этапе 60°С по каналу для флуорофора R6G.

[45]

Для анализа результатов задают пороговую линию, соответствующую величине 10% от среднего сигнала флуоресценции образца с наличием мутации S:Ins214EPE. Образцы, для которых кривые флуоресценции пересекают пороговую линию, и, при этом кинетика накопления флуоресцентного сигнала является экспоненциальной, являются положительными, то есть содержат мутацию S:Ins214EPE SARS-CoV-2.

[46]

Реализация заявляемого изобретения поясняется следующими примерами:

[47]

Пример 1. Получение олигонуклеотидов для определения мутации S:Ins214EPE SARS-CoV-2.

[48]

Для подбора целевых последовательностей - мест посадки олигонуклеотидов, используют фрагменты референсных геномов из базы данных NCBI (https://www.ncbi.nlm.nih.gov/), как SARS-CoV-2 дикого типа SARS-CoV-2 из базы, так и тех геновариантов, в которых встречается мутация S:ins214EPE (Omicron (В. 1.1.529, refseq OL672836 (NCBI)). Для поиска мутаций использованы современные алгоритмы in silico анализа нуклеотидных последовательностей и программы, находящиеся в открытом доступе, включая AlignX, Unipro UGENE, олигокалькулятор (Oligo Calculators) Integrated DNA Technologies, Inc. (Oligo Analyzer (idtdna.com)). Составляют перечень мутаций, характерных для геновариантов. Затем к значимым мутациям подбирают олигонуклеотидные последовательности прямого 214-F и обратного 214pure-R праймеров, а также флуоресцентно-меченый зонд 214-Z2.

[49]

Анализ упомянутых последовательностей с использованием ресурса Primer BLAST показал, что прямой 214-F и обратный 214pure-R праймеры амлифицируют участок с мутацией S:Ins214EPE со 100% специфичностью.

[50]

Олигонуклеотиды для определения мутации S:Ins214EPE SARS-CoV-2 прямой праймер 214-F, обратный праймер 214pure-R, флуоресцентный зонд 214-Z2, представлены уникальными последовательностями SEQ ID NO: 1, SEQ ID NO: 2 и SEQ ID NO: 3 соответственно.

[51]

Пример 2. Детекция мутации S:Ins214EPE SARS-CoV-2 методом ПЦР-РВ.

[52]

Определение мутации S:Ins214EPE SARS-CoV-2 проводят методом ПЦР-РВ при следующих условиях:

[53]

Общий объем реакционной смеси - 25 мкл. Компоненты ПЦР смешиваются следующим образом:

[54]

(a) 10 мкл смеси, содержащей:

[55]

- олигонуклеотидные праймеры SEQ ID NO: 1, SEQ ID NO: 2 - по 0,7 мкМ;

[56]

- флоуресцентный зонд SEQ ID NO: 3 - 0,2 мкМ;

[57]

- dNTPs - 0,44 мМ.

[58]

(b) 0,5 мкл реактива «Полимераза TaqF» (ФБУН ЦНИИ Эпидемиологии Роспотребнадзора, Россия), содержащего рекомбинантный фермент Taq ДНК-полимеразу.

[59]

(c) 5,0 мкл ПЦР-буфера «ОТ-ПЦР-смесь-2 FEP/FRT» (ФБУН ЦНИИ Эпидемиологии Роспотребнадзора, Россия), содержащего MgCl2.

[60]

(d) полученная после реакции обратной транскрипции («РЕВЕРТА-L» ФБУН ЦНИИ Эпидемиологии Роспотребнадзора, Россия) кДНК - 10 мкл.

[61]

ПЦР-РВ проводили с флуоресцентной детекцией на приборе с 5 каналами детекции - «Rotor-Gene Q» («Qiagen», Германия).

[62]

Подготовленный описанным способом материал, содержащий уникальные олигонуклеотидные последовательности SEQ ID NO: 1-3 используют для определения мутации S:Ins214EPE SARS-CoV-2 в образцах биологического материала.

[63]

Пример 3. Обнаружение мутации S:Ins214EPE SARS-CoV-2 в образцах биологического материала.

[64]

Для определения мутации S:Ins214EPE SARS-CoV-2 выбрано 95 образцов, с подтвержденным наличием РНК SARS-CoV-2.

[65]

Для исследования использовали клинический материал - мазки/отделяемое носоглотки и ротоглотки, с подтвержденным наличием РНК SARS-CoV-2 набором реагентов АмплиСенс® COVID-19-FL (ФБУН ЦНИИ Эпидемиологии Роспотребнадзора, Москва, Россия). Выделение РНК из биологического материала проводили в соответствии с МУ 1.3.2569-09 «Организация работ лабораторий, использующих методы амплификации нуклеиновых кислот при работе с материалом, содержащим микроорганизмы I-IV групп патогенности». Выделение РНК осуществляли методом нуклеопреципитации с применением набора реагентов «РИБО-преп» (ФБУН ЦНИИ Эпидемиологии Роспотребнадзора, Москва, Россия) в соответствии с инструкцией к набору. Обратную транскрипцию проводили с применением набора реагентов «РЕВЕРТА-L» (ФБУН ЦНИИ Эпидемиологии Роспотребнадзора, Москва, Россия) в соответствии с инструкцией к набору.

[66]

ПЦР-РВ проводили в условиях, описанных в Примере 2, с использованием уникальных олигонуклеотидных последовательностей SEQ ID NO: 1-3.

[67]

Амплификацию проводили на приборе «Real-time CFX96 Touch» («Bio-Rad», США) по следующей программе: 1 цикл 95°С в течение 15 минут, 45 циклов при температуре 95°С - 10 секунд / 60°С - 20 секунд. Детекция флуоресценции проводилась на этапе 60°С по каналу для флуорофора R6G. Для анализа результатов задали пороговую линию, соответствующую величине 10% от среднего сигнала флуоресценции образца с наличием мутации S:Ins214EPE. Для 77 образцов кривая флуоресценции пересекла пороговую линию и, при этом кинетика накопления флуоресцентного сигнала была экспоненциальной, что свидетельствует о том, что данные образцы содержат мутацию S:Ins214EPE SARS-CoV-2.

[68]

Для данных 77 образцов наличие мутации S:Ins214EPE SARS-CoV-2 подтверждено фрагментным секвенированием с использованием метода секвенирования по Сэнгеру. Фрагментное секвенирование выполнялось на генетическом анализаторе ABI 3500xL (Applied Biosystems, США), выравнивание и анализ полученных последовательностей выполнялось с помощью программы AlignX («Thermo Fisher Scientific», США). Отсутствие мутации в 18 образцах без флуоресцентного сигнала также подтверждено фрагментным секвенированием.

[69]

Таким образом, из всей выборки выявлено 77 образцов, содержащих мутацию S:Ins214EPE вируса SARS-CoV-2.

[70]

Пример 4. Обнаружение мутации S:Ins214EPE SARS-CoV-2 в образцах биологического материала.

[71]

Для определения мутации S:Ins214EPE SARS-CoV-2 выбрано 5 образцов, с подтвержденным наличием РНК SARS-CoV-2.

[72]

В работе исследовали пробы клинического материала, мазки/отделяемое носоглотки и ротоглотки, с подтвержденным наличием РНК SARS-CoV-2 набором реагентов АмплиСенс® COVID-19-FL (ФБУН ЦНИИ Эпидемиологии Роспотребнадзора, Москва, Россия). Выделение РНК из биологического материала проводили в соответствии с МУ 1.3.2569-09 «Организация работ лабораторий, использующих методы амплификации нуклеиновых кислот при работе с материалом, содержащим микроорганизмы I-IV групп патогенности». Выделение РНК осуществляли методом нуклеопреципитации с применением набора реагентов «РИБО-преп» (ФБУН ЦНИИ Эпидемиологии Роспотребнадзора, Москва, Россия) в соответствии с инструкцией к набору. Обратную транскрипцию проводили с применением набора реагентов «РЕВЕРТА-L» (ФБУН ЦНИИ Эпидемиологии Роспотребнадзора, Москва, Россия) в соответствии с инструкцией к набору.

[73]

ПЦР-РВ проводили в условиях, описанных в Примере 2, с использованием уникальных олигонуклеотидных последовательностей SEQ ID NO: 1-3.

[74]

Амплификацию проводили на приборе «Rotor-Gene Q» («Qiagen», Германия) по следующей программе: 1 цикл 95°С в течение 15 минут, 45 циклов при температуре 95°С - 10 секунд / 60°С - 20 секунд. Детекция флуоресценции проводилась на этапе 60°С по каналу для флуорофора R6G. Для анализа результатов задали пороговую линию, соответствующую величине 10% от среднего сигнала флуоресценции образца с наличием мутации S:Ins214EPE. Для 4 образцов кривая флуоресценции пересекла пороговую линию и, при этом кинетика накопления флуоресцентного сигнала была экспоненциальной, что свидетельствует о том, что данные образцы содержат мутацию S:Ins214EPE SARS-CoV-2.

[75]

Для данных 4 образцов наличие мутации S:Ins214EPE SARS-CoV-2 подтверждено фрагментным секвенированием с использованием метода секвенирования по Сэнгеру. Фрагментное секвенирование выполнялось на генетическом анализаторе ABI 3500xL (Applied Biosystems, США), выравнивание и анализ полученных последовательностей выполнялось с помощью программы AlignX («Thermo Fisher Scientific», США). Отсутствие мутации в 1 образце без флуоресцентного сигнала также подтверждено фрагментным секвенированием.

[76]

Таким образом, из всей выборки выявлено 4 образца, содержащих мутацию S:Ins214EPE SARS-CoV-2.

[77]

Пример 5. Обнаружение мутации S:Ins214EPE SARS-CoV-2 в образцах биологического материала.

[78]

Для определения мутации S:Ins214EPE SARS-CoV-2 выбрано 6 образцов, с подтвержденным наличием РНК SARS-CoV-2.

[79]

В работе исследовали пробы клинического материала, мазки/отделяемое носоглотки и ротоглотки, с подтвержденным наличием РНК SARS-CoV-2 набором реагентов АмплиСенс® COVID-19-FL (ФБУН ЦНИИ Эпидемиологии Роспотребнадзора, Москва, Россия). Выделение РНК из биологического материала проводили в соответствии с МУ 1.3.2569-09 «Организация работ лабораторий, использующих методы амплификации нуклеиновых кислот при работе с материалом, содержащим микроорганизмы I-IV групп патогенности». Выделение РНК осуществляли методом нуклеопреципитации с применением набора реагентов «РИБО-преп» (ФБУН ЦНИИ Эпидемиологии Роспотребнадзора, Москва, Россия) в соответствии с инструкцией к набору. Обратную транскрипцию проводили с применением набора реагентов «РЕВЕРТА-L» (ФБУН ЦНИИ Эпидемиологии Роспотребнадзора, Москва, Россия) в соответствии с инструкцией к набору.

[80]

ПЦР-РВ проводили в условиях, описанных в Примере 2, с использованием уникальных олигонуклеотидных последовательностей SEQ ID NO: 1-3.

[81]

Амплификацию проводили на приборе «Rotor-Gene Q» («Qiagen», Германия) по следующей программе: 1 цикл 95°С в течение 15 минут, 45 циклов при температуре 95°С - 10 секунд / 60°С - 20 секунд. Детекция флуоресценции проводилась на этапе 60°С по каналу для флуорофора R6G. Для анализа результатов задали пороговую линию, соответствующую величине 10% от среднего сигнала флуоресценции образца с наличием мутации S:Ins214EPE. Кривая флуоресценции не пересекла пороговую линию, что свидетельствовало о том, что в выборке отсутствуют образцы, содержащие мутацию S:Ins214EPE SARS-CoV-2.

[82]

Наличие других мутаций SARS-CoV-2 в данных 6 образцах подтверждено фрагментным секвенированием с использованием метода секвенирования по Сэнгеру. Фрагментное секвенирование выполнялось на генетическом анализаторе ABI 3500xL (Applied Biosystems, США), выравнивание и анализ полученных последовательностей выполнялось с помощью программы AlignX («Thermo Fisher Scientific», США).

[83]

Заявляемое изобретение позволяет выявлять мутацию S:Ins214EPE в биологических образцах с подтвержденным наличием РНК SARS-CoV-2. Синтезированные олигонуклеотиды SEQ ID NO NO: 1-3 не дают перекрестных реакций с другими протестированными образцами, амлифицируют заданный участок со 100% специфичностью и позволяют определять наличие или отсутствие в образцах биологического материала значимой мишени S:Ins214EPE.

Как компенсировать расходы
на инновационную разработку
Похожие патенты