патент
№ RU 2789714
МПК G01S3/80

СПОСОБ ПРОВЕРКИ ТОЧНОСТИ НАВИГАЦИИ АВТОНОМНОГО НЕОБИТАЕМОГО ПОДВОДНОГО АППАРАТА

Авторы:
Арсентьев Виктор Георгиевич
Номер заявки
2022109823
Дата подачи заявки
11.04.2022
Опубликовано
07.02.2023
Страна
RU
Как управлять
интеллектуальной собственностью
Чертежи 
4
Реферат

[85]

Использование: изобретение относится к области натурных испытаний автономных необитаемых подводных аппаратов и может быть использовано для проверки точности их навигации и траекторных возможностей подводного передвижения, в значительной мере определяющих сферу применения подводных аппаратов и категорию решаемых с их помощью задач. Сущность: в заявленном способе проверки точности навигации автономного необитаемого подводного аппарата за счет наличия возможности оперативного визуального контроля двухмерной траектории его подводного перемещения, транспонированной на поверхность акватории испытательного полигона, в процессе проверки возможных траекторий его передвижения и сокращения времени постобработки траекторных данных при проверке точности навигации в результате осуществления скоординированного движения по двухмерной траектории запрограммированного маршрута акватории испытательного полигона автономного необитаемого подводного аппарата и безэкипажного надводного судна, выполняющего функции навигационного маяка и поверхностного индикатора двухмерной траектории подводного перемещения автономного необитаемого подводного аппарата, с записью на безэкипажном надводном судне его текущих геодезических координат и глубин погружения автономного необитаемого подводного аппарата на маршруте передвижения, используемых при постобработке траекторных данных для построения траектории маршрута автономного необитаемого подводного аппарата в акватории испытательного полигона. Технический результат: расширение функциональных возможностей и повышение эффективности способа одномаяковой навигации при испытаниях автономного необитаемого подводного аппарата на морском полигоне. 5 ил.

Формула изобретения

Способ проверки на морском полигоне точности навигации автономного необитаемого подводного аппарата, оснащенного штатным оборудованием соответствующего функционального состава, заключающийся в организации подводного передвижения автономного необитаемого подводного аппарата по запрограммированному маршруту между двумя реперными точками акватории испытательного полигона с известными геодезическими координатами в присутствии безэкипажного надводного судна, при этом навигацию автономного необитаемого подводного аппарата обеспечивают его гидроакустическим модемом для обмена сообщениями с безэкипажным надводным судном, бортовыми средствами навигации, включающими в себя инерциальную навигационную систему и датчик глубины, для периодической оценки курса, ортогональных составляющих путевой скорости, глубины погружения, используемых для счисления пути в акватории испытательного полигона, безэкипажным надводным судном, выполняющим функцию навигационного маяка, с оснащением его движительно-рулевым комплексом для передвижения в акватории испытательного полигона, приемником сигналов спутниковой навигационной системы для геодезического позиционирования, гидроакустическим модемом для передачи геодезических координат на автономный необитаемый подводный аппарат, которые совместно с курсом, ортогональными составляющими путевой скорости, глубиной погружения автономного необитаемого подводного аппарата используют для коррекции счисления его пути, в выполнении после прибытия автономного необитаемого подводного аппарата в конечную реперную точку маршрута постобработки траекторных данных для оценки точности навигации, состоящей в построении траектории маршрута автономного необитаемого подводного аппарата на испытательном полигоне по данным используемых навигационных средств и определении ее отклонений от траектории запрограммированного маршрута, характеризующих точность навигации автономного необитаемого подводного аппарата, отличающийся тем, что осуществляют скоординированное движение безэкипажного надводного судна и автономного необитаемого подводного аппарата по двухмерной траектории запрограммированного маршрута в акватории испытательного полигона, реализуемое дооснащением автономного необитаемого подводного аппарата гидроакустическим маяком-пингером - источником периодического навигационного сигнала для гидроакустического позиционирования относительно безэкипажного надводного судна, дооснащением безэкипажного надводного судна съемным устройством хранения данных для записи и хранения текущих маршрутных данных, инерциальной навигационной системой для определения курса с ортогональными составляющими путевой скорости движения в акватории испытательного полигона, гидроакустическим фазовым пеленгатором с четырехэлементной антенной диаметрально-ортогональной геометрии, согласованной с курсом безэкипажного надводного судна и имеющей расстояние между парами приемных гидрофонов в горизонтальной плоскости, в два раза превышающее расстояние между парами приемных гидрофонов в вертикальной плоскости, являющееся базовым установочным размером антенны, для гидроакустического позиционирования автономного необитаемого подводного аппарата с периодичностью излучения его маяка-пингера путем определения в системе координат пеленгационной антенны безэкипажного надводного судна пеленга, угла места автономного необитаемого подводного аппарата, горизонтального расстояния по курсу между безэкипажным надводным судном и автономным необитаемым подводным аппаратом без необходимости измерения скорости звука в акватории испытательного полигона, причем частоту гармонического навигационного сигнала маяка-пингера автономного необитаемого подводного аппарата выбирают из условия фазовой однозначности пеленгования, передачей с периодичностью гидроакустического позиционирования автономного необитаемого подводного аппарата посредством гидроакустического модема с автономного необитаемого подводного аппарата на безэкипажное надводное судно сообщений о курсе, ортогональных составляющих путевой скорости движения, глубине погружения автономного необитаемого подводного аппарата, совмещением курсов и выравниванием путевых скоростей безэкипажного надводного судна и автономного необитаемого подводного аппарата посредством системы управления движительно-рулевого комплекса безэкипажного надводного судна на основе сопоставления курсовых, скоростных и траекторных параметров подводного передвижения автономного необитаемого подводного аппарата и надводного передвижения безэкипажного надводного судна в акватории испытательного полигона, передают посредством гидроакустического модема с безэкипажного надводного судна на автономный необитаемый подводный аппарат с периодичностью геодезического позиционирования безэкипажного надводного судна, кратно превышающей периодичность гидроакустического позиционирования автономного необитаемого подводного аппарата, помимо сообщений о геодезических координатах безэкипажного надводного судна сообщения о горизонтальном расстоянии по курсу между безэкипажным надводным судном и автономным необитаемым подводным аппаратом, необходимом наряду с геодезическими координатами безэкипажного надводного судна, курсом, ортогональными составляющими путевой скорости, глубиной погружения автономного необитаемого подводного аппарата для коррекции счисления его пути в акватории испытательного полигона, записывают в процессе скоординированного движения автономного необитаемого подводного аппарата и безэкипажного надводного судна по запрограммированному маршруту с периодичностью геодезического позиционирования безэкипажного надводного судна в съемное устройство хранения данных безэкипажного надводного судна текущие маршрутные данные: геодезические координаты безэкипажного надводного судна и глубины погружения автономного необитаемого подводного аппарата, на основе которых при постобработке траекторных данных выстраивают траекторию маршрута автономного необитаемого подводного аппарата в акватории испытательного полигона.

Описание

[1]

Изобретение относится к области натурных испытаний автономных необитаемых подводных аппаратов с целью проверки точности их навигации и траекторных возможностей подводного передвижения в акватории морского испытательного полигона.

[2]

Необходимая точность навигации автономных необитаемых подводных аппаратов (АНПА) в настоящее время обеспечивается путем комплексирования данных счисления бортовой инерциальной навигационной системы с текущей коррекцией счисленных данных от внешних навигационных систем. Для коррекции используются спутниковые навигационные системы (СНС) на поверхности и гидроакустические - в подводном положении. Последние отличаются конфигурацией гидроакустического оборудования, реализуемого в виде опорных маяков с известными или контролируемыми геодезическими координатами.

[3]

При проектировании, изготовлении и отладке АНПА решаются задачи оценки точности как отдельных элементов навигационных систем, так и навигационных комплексов в целом. Необходимые для этого работы невозможно выполнить в полном объеме в лабораторных условиях, поэтому их значительная часть соотносится с натурными испытаниями на специально оборудованных морских полигонах.

[4]

Известен специализированный полигон [1] института проблем морских технологий ДВО РАН, оборудованный в мелководной бухте, координаты ключевых точек которого определены геодезическими методами. В этих ключевых точках размещены три маяка-ответчика и две управляющие антенны, которые являются абонентами гидроакустической навигационной системы (ГНС) с длинной базой. В ходе испытаний эти устройства реализуют функции постоянно действующих стационарных измерительных дальне-мерных трасс в акватории движения АНПА, выполняющего проверку своих навигационных средств.

[5]

Накопление измеряемых дальномерных данных по трем трассам (антенна - маяки) с оценкой эффективных скоростей распространения сигналов по различным направлениям в акватории позволяет получить достаточно точную оценку координат АНПА. При точной координатной привязке ключевых точек в условиях такого полигона можно выполнять проверку точности навигации различных АНПА.

[6]

Для коррекции счисленных координат АНПА используют данные ГНС с длинной базой. Скорость звука на АНПА определяют в режиме реального времени измерителем параметров среды.

[7]

Запуск АНПА осуществляют на испытательном полигоне в условиях глубин от 6 до 20 м. Программная траектория представляет собой циклическое движение по квадрату со стороной 300 м с двухмерной координатной привязкой. Средняя скорость передвижения АНПА составляет порядка 1 м/с. Коррекцию счисленных координат при движении осуществляют на АНПА по данным ГНС с периодом около 30 с. Оценку точности навигации выполняют в ходе постобработки полученных траекторных данных.

[8]

К недостаткам вышеописанного трехмаякового способа полигонной проверки точности навигации АНПА следует отнести:

[9]

1) необходимость выполнения трудоемких и продолжительных по времени работ, связанных с установкой и привязкой к геодезическим координатам акватории испытательного полигона местоположения подводных маяков-ответчиков и антенн ГНС с длинной базой перед испытаниями АНПА;

[10]

2) достаточно большое время коррекции счисленных координат АНПА по данным ГНС во время движения, что ограничивает скорость и характер траекторий передвижения АНПА в акватории испытательного полигона;

[11]

3) отсутствие возможности оперативного визуального контроля подводных перемещений АНПА, транспонированных на поверхность акватории испытательного полигона, в процессе проверки возможных траекторий его передвижения, обеспечиваемых системой управления движительно-рулевого комплекса;

[12]

4) значительные затраты времени на постобработку полученных на АНПА траекторных данных, снижающие оперативность используемого способа.

[13]

Известен одномаяковый [2] способ навигации АНПА, называемый еще способом синтезированной длинной базы, который может служить способом-прототипом.

[14]

Суть способа состоит в измерении на последовательных интервалах времени наклонного расстояния между мобильным надводным маяком и движущимся в подводном положении АНПА и использовании его для коррекции счисления местоположения АНПА по курсу и скорости, периодически измеряемых бортовыми средствами АНПА.

[15]

Способ имеет ряд разновидностей использования. Применительно к полигонным испытаниям он состоит в том, что АНПА сопровождает безэкипажное надводное судно (БНС), например, мини катер или глайдер, который периодически определяет свое местоположение в акватории полигона с использованием СНС и передает свои текущие координаты на АНПА. Во время гидроакустического модемного обмена сигналами определяют время распространения сигнала от БНС до АНПА и, как следствие, -наклонное расстояние между ними. Зная глубину погружения АНПА, измеряемую с высокой точностью, на АНПА наклонное расстояние пересчитывают в горизонтальное, зависящее от текущего местоположения БНС в акватории полигона. Это расстояние совместно с курсом и скоростью АНПА используют для коррекции пути АНПА.

[16]

Способ одномаяковой полигонной навигации лишен первого, весьма существенного, недостатка трехмаяковой навигации, второй недостаток которой может быть устранен уменьшением интервала времени между измерениями геодезических координат БНС с использованием СНС, но остаются третий и четвертый функционально значимые недостатки способа, снижающие его технико-эксплуатационную эффективность.

[17]

Техническая реализация способа одномаяковой полигонной навигации при проверке точности навигации АНПА основана на следующих базовых процессах.

[18]

АНПА, оснащенный гидроакустическим модемом и бортовыми средствами навигации, включающими в себя инерциальную навигационную систему, датчик глубины и измеритель скорости звука, движется в подводном положении между двумя реперными точками акватории испытательного полигона с известными геодезическими координатами по предварительно запрограммированному маршруту. С помощью указанных средств навигации периодически оценивают курс АНПА, ортогональные составляющие путевой скорости его движения, глубину акватории. Эти данные используют для счисления пути АНПА в акватории испытательного полигона.

[19]

На БНС, оснащенном приемником сигналов СНС и гидроакустическим модемом, передвигающимся в пределах акватории испытательного полигона и являющимся навигационным маяком, периодически по сигналам СНС оценивают геодезические координаты БНС в акватории испытательного полигона и осуществляют модемный обмен гидроакустическими сигналами между БНС и АНПА, в процессе которого на АНПА передают текущие геодезические координаты БНС с измерением на АНПА времени распространения акустического сигнала между БНС и АНПА.

[20]

На АНПА по времени распространения акустического сигнала между БНС и АНПА и предварительно измеренной скорости звука в акватории испытательного полигона определяют наклонное расстояние между БНС и АНПА, затем с учетом измеренной глубины погружения АНПА вычисляют горизонтальное расстояние между БНС и АНПА, которое совместно с курсом, скоростью АНПА и переданными геодезическими координатами БНС используют для коррекции пути АНПА в акватории испытательного полигона.

[21]

После прибытия в конечную точку маршрута и подъема АНПА на поверхность осуществляют постобработку траекторных данных, которая включает в себя две процедуры: обработку данных счисления пути бортовых навигационных средств АНПА для определения траектории его передвижения и оценку отклонений полученного маршрута от исходно запрограммированного, характеризующих точность навигации АНПА.

[22]

Технико-эксплуатационным результатом предлагаемого способа является возможность оперативного визуального контроля с берегового поста или иного места наблюдения двухмерной траектории подводного перемещения АНПА, транспонированной на поверхность акватории испытательного полигона, в процессе проверки возможных траекторий его передвижения и сокращение времени постобработки траекторных данных при проверке точности навигации АНПА.

[23]

Данный технико-эксплуатационный результат достигается за счет того, что в способе проверки на морском полигоне точности навигации АНПА, оснащенного штатным оборудованием соответствующего функционального состава, заключающемся в организации подводного передвижения АНПА по запрограммированному маршруту между двумя реперными точками акватории испытательного полигона с известными геодезическими координатами в присутствии БНС, при этом навигацию АНПА обеспечивают его гидроакустическим модемом для обмена сообщениями с БНС, бортовыми средствами навигации, включающими в себя инерциальную навигационную систему и датчик глубины, для периодической оценки курса, ортогональных составляющих путевой скорости, глубины погружения, используемых для счисления пути в акватории испытательного полигона, БНС, выполняющим функцию навигационного маяка, с оснащением его движительно-рулевым комплексом для передвижения в акватории испытательного полигона, приемником сигналов СНС для геодезического позиционирования, гидроакустическим модемом для передачи геодезических координат на АНПА, которые совместно с курсом, ортогональными составляющими путевой скорости, глубиной погружения АНПА используют для коррекции счисления его пути, в выполнении после прибытия АНПА в конечную реперную точку маршрута постобработки траекторных данных для оценки точности навигации, состоящей в построении траектории маршрута АНПА на испытательном полигоне по данным используемых навигационных средств и определении ее отклонений от траектории запрограммированного маршрута, характеризующих точность навигации АНПА, осуществляют скоординированное движение БНС и АНПА по двухмерной траектории запрограммированного маршрута в акватории испытательного полигона, реализуемое дооснащением АНПА гидроакустическим маяком-пингером - источником периодического навигационного сигнала для гидроакустического позиционирования относительно БНС, дооснащением БНС съемным устройством хранения данных для записи и хранения текущих маршрутных данных, инерциальной навигационной системой для определения курса с ортогональными составляющими путевой скорости движения в акватории испытательного полигона, гидроакустическим фазовым пеленгатором с четырехэлементной антенной диаметрально-ортогональной геометрии, согласованной с курсом БНС и имеющей расстояние между парами приемных гидрофонов в горизонтальной плоскости в два раза превышающее расстояние между парами приемных гидрофонов в вертикальной плоскости, являющееся базовым установочным размером антенны, для гидроакустического позиционирования АНПА с периодичностью излучения его маяка-пингера путем определения в системе координат пеленгационной антенны БНС пеленга, угла места АНПА, горизонтального расстояния по курсу между БНС и АНПА без необходимости измерения скорости звука в акватории испытательного полигона, причем частоту гармонического навигационного сигнала маяка-пингера АНПА выбирают из условия фазовой однозначности пеленгования, передачей с периодичностью гидроакустического позиционирования АНПА посредством гидроакустического модема с АНПА на БНС сообщений о курсе, ортогональных составляющих путевой скорости движения, глубине погружения АНПА, совмещением курсов и выравниванием путевых скоростей БНС и АНПА посредством системы управления движительно-рулевого комплекса БНС на основе сопоставления курсовых, скоростных и траекторных параметров подводного передвижения АНПА и надводного передвижения БНС в акватории испытательного полигона, передают посредством гидроакустического модема с БНС на АНПА с периодичностью геодезического позиционирования БНС, кратно превышающей периодичность гидроакустического позиционирования АНПА, помимо сообщений о геодезических координатах БНС сообщения о горизонтальном расстоянии по курсу между БНС и АНПА, необходимом наряду с геодезическими координатами БНС, курсом, ортогональными составляющими путевой скорости, глубиной погружения АНПА для коррекции счисления его пути в акватории испытательного полигона, записывают в процессе скоординированного движения АНПА и БНС по запрограммированному маршруту с периодичностью геодезического позиционирования БНС в съемное устройство хранения данных БНС текущие маршрутные данные: геодезические координаты БНС и глубины погружения АНПА, на основе которых при постобработке траекторных данных выстраивают траекторию маршрута АНПА в акватории испытательного полигона.

[24]

Существенными отличиями предлагаемого способа являются: использование БНС в качестве поверхностного индикатора подводного перемещения АНПА в акватории испытательного полигона, отсутствие необходимости измерения скорости звука в акватории испытательного полигона при осуществлении навигации АНПА и исключение из постобработки траекторных данных процедуры определения траектории передвижения АНПА в акватории испытательного полигона, связанной с обработкой данных счисления пути бортовых средств навигации, выполняемой после подъема АНПА на поверхность.

[25]

Совокупность существенных признаков предлагаемого способа имеет причинно-следственную связь с достигаемым результатом, из чего можно заключить, что предлагаемый способ является новым, обладает изобретательским уровнем, так как явным образом не следует из известных технических решений, и пригоден для практического применения.

[26]

Предлагаемый способ поясняется чертежами.

[27]

Фиг. 1 иллюстрирует возможное размещение антенн средств навигации и информационного обмена АНПА и БНС, где 5 - АНПА; 6 - БНС; 7 - антенна маяка-пингера; 8 - антенна СНС; 9 - антенны гидроакустического модема; 10 - антенна фазового пеленгатора.

[28]

На фиг. 2 представлен пример возможного скоординированного передвижения АНПА 5 и БНС 6 по запрограммированному маршруту акватории испытательного полигона.

[29]

На фиг. 3 показан схематичный вариант четырехэлементной антенны диаметрально-ортогональной геометрии фазового пеленгатора, устанавливаемой на БНС для гидроакустического позиционирования АНПА, где X, Y, Z - декартова система координат; А - базовый установочный размер антенны; ϕ(t), θ(t) - текущие пеленг и угол места АНПА; 1, 2, 3, 4 - приемные гидрофоны пеленгационной антенны.

[30]

Фиг. 4 поясняет измеряемые курсовые, скоростные и траекторные параметры, используемые в процессе осуществления скоординированного движения БНС и АНПА в акватории испытательного полигона, где 5 - АНПА; 6 - БНС; 8 - антенна СНС; 11 - спутник навигационной системы, например, ГЛОНАСС или GPS; ϕ(t), θ(t) - текущие пеленг и угол места АНПА; D(t) - текущее горизонтальное расстояние по курсу между БНС и АНПА; h1(t) - текущая глубина погружения АНПА; h2 - априорно известная глубина погружения антенны фазового пеленгатора БНС; K(t) - текущий курс БНС; k(t) - текущий курс АНПА; Vx(t), Vy(t) - текущие курсовая и бортовая скорости БНС; νx(t), νy(t) - текущие курсовая и бортовая скорости АНПА.

[31]

На фиг. 5 приведен пример двухмерного отображения возможной траектории передвижения АНПА, в декартовой системе координат XOY акватории испытательного полигона, построенной по результатам постобработки траекторных данных.

[32]

Рассмотрим базовые процессы предлагаемого способа.

[33]

АНПА 5 со штатным движительно-рулевым комплексом, гидроакустическим модемом и бортовыми средствами навигации, включающими в себя инерциальную навигационную систему и датчик глубины, дополнительно оснащают гидроакустическим маяком-пингером - источником периодического навигационного сигнала, а на БНС 6 с движительно-рулевым комплексом, приемником сигналов СНС и гидроакустическим модемом дополнительно устанавливают съемное устройство хранения данных, инерциальную навигационную систему и гидроакустический фазовый пеленгатор с четырехэлементной антенной 10 диаметрально-ортогональной геометрии. Возможное размещение антенны 7 маяка-пингера, антенны 8 СНС, антенн 9 гидроакустического модема, антенны 10 гидроакустического фазового пеленгатора иллюстрируется фиг. 1.

[34]

Осуществляют с помощью вышеуказанных средств управления движением, навигации и информационного обмена скоординированное передвижение АНПА 5 (в подводном положении) и БНС 6 (в надводном положении) по двухмерной траектории запрограммированного маршрута между двумя реперными точками акватории испытательного полигона с известными геодезическими координатами (фиг. 2).

[35]

Навигацию АНПА в сочетании с скоординированным передвижением АНПА и БНС в акватории испытательного полигона реализуют следующим образом.

[36]

На АНПА 5 посредством инерциальной навигационной системы и датчика глубины периодически оценивают текущие навигационные параметры движения АНПА 5 - курс k(t), курсовую νх(t) и бортовую νy(t) скорости, являющиеся ортогональными составляющими путевой скорости ν(t), глубину погружения h1(t), которые используют для счисления его пути по запрограммированному маршруту акватории испытательного полигона и передают с помощью гидроакустического модема на БНС 6.

[37]

На БНС 6 посредством гидроакустического фазового пеленгатора с четырехэлементной антенной 10 диаметрально-ортогональной геометрии периодически осуществляют позиционирование АНПА относительно БНС, в процессе которого оценивают текущие пеленг ϕ(t), угол места θ(t) АНПА, горизонтальное расстояние D(t) по курсу между БНС и АНПА в системе координат его пеленгационной антенны (фиг. 3, фиг. 4).

[38]

Для гидроакустического позиционирования АНПА выбирают способ [3], позволяющий оценивать угловые координаты позиционируемого объекта с погрешностью менее одного градуса. В фазовом пеленгаторе БНС используют антенну диаметрально-ортогональной геометрии 10 [4] с соотношением размеров 2А/А (А - базовый установочный размер антенны на фиг. 3), согласованную с курсом БНС 6 (курс БНС совпадает с осью координат X на фиг. 3) и частотой ƒ гармонического навигационного сигнала маяка-пингера АНПА, которую выбирают из условия фазовой однозначности пеленгования: ƒ≤Cmin/4А, где Cmin - априорно известная минимальная скорость звука в морской воде. При этом текущие пеленг ϕ(t) и угол места θ(t) АНПА определяют по следующим тригонометрическим формулам [5]:

[39]

[40]

[41]

где Δψ12(t), Δψ13(t), Δψ14(t) являются текущими инструментально измеренными разностями фаз колебаний навигационного сигнала маяка-пингера АНПА для соответствующих пар парциальных трактов приема (выходов приемных гидрофонов 1-2, 1-3, 1-4 на фиг. 3) фазового пеленгатора БНС.

[42]

Как видно из соотношений (1) и (2) для оценки угловых координат АНПА 5 не требуется знание скорости звука в акватории испытательного полигона, что позволяет исключить погрешность измерения скорости звука при оценке пеленга и угла места АНПА, повышая точность позиционирования.

[43]

По рассчитанному углу места θ(t) и переданной с АНПА 5 на БНС 6 текущей глубине погружения h1(t) АНПА оценивают текущее горизонтальное расстояние D(t) по курсу между БНС и АНПА (см. фиг. 4):

[44]

[45]

где h2 - априорно известная глубина погружения антенны фазового пеленгатора БНС.

[46]

Периодичность излучения навигационного сигнала маяка-пингера АНПА (периодичность гидроакустического позиционирования АНПА) согласовывают с периодичностью передачи с АНПА на БНС сообщений о курсе k(t), курсовой νx(t) и бортовой νy(t) скоростях, являющихся ортогональными составляющими путевой скорости АНПА глубине погружения h1(t).

[47]

На БНС 6, используя СНС с антенной 8 и спутником 11 навигационной системы (см. фиг. 4), периодически выполняют геодезическое позиционирование БНС в акватории испытательного полигона с оценкой геодезических координат, а с помощью инерциальной навигационной системы оценивают курс K(t), курсовую Vx(t) и бортовую Vy(t) скорости, являющиеся ортогональными составляющими путевой скорости БНС

[48]

С помощью системы управления движительно-рулевого комплекса БНС 6 совмещают курсы k(t)=K(t), ϕ(t)=0 и выравнивают путевые скорости БНС 6 и АНПА 5 ν(t)=V(t) на основе сопоставления курсовых k(t) и K(t), скоростных ν(t) и V(t) и траекторных ϕ(t) и D(t) параметров их передвижения (см. фиг. 4) в акватории испытательного полигона.

[49]

Скоординированное движение АНПА 5 и БНС 6 по двухмерной траектории описывается системой из пяти интегральных уравнений, используемых в итеративном алгоритме системы управления движительно-рулевого комплекса БНС:

[50]

[51]

где T - время усреднения курсовых, скоростных и траекторных параметров движения АНПА 5 и БНС 6; D0 - установочное, минимально допустимое, горизонтальное расстояние по курсу между АНПА и БНС, которое выбирают с учетом мест размещения антенны 7 маяка-пингера АНПА 5 и антенны 10 фазового пеленгатора БНС 6 и поддерживают постоянным D0=D(t) в процессе скоординированного передвижения АНПА 5 и БНС 6 в акватории испытательного полигона.

[52]

В процессе скоординированного движения АНПА 5 и БНС 6 по запрограммированному маршруту с БНС 6 на АНПА 5 посредством гидроакустического модема с периодичностью геодезического позиционирования БНС 6 передают сообщения о геодезических координатах БНС 6 и горизонтальном расстоянии D(t) по курсу между БНС 6 и АНПА 5, которые совместно с ортогональными составляющими путевой скорости ν(t) и курсом k(t) АНПА 5 используют для коррекции счисления его пути в акватории испытательного полигона.

[53]

Периодичность геодезического позиционирования БНС 6 выбирают кратно превышающей периодичность гидроакустического позиционирования АНПА 5 с целью обеспечения завершения процессов итеративного корректирования движения БНС 6 по результатам гидроакустического позиционирования АНПА 5 и совмещения по времени оценок геодезических координат БНС 6 и глубины погружения АНПА 5, которые записывают с периодичностью геодезического позиционирования БНС 6 в съемное устройство хранения данных БНС 6 в процессе скоординированного передвижения АНПА 5 и БНС 6 в акватории испытательного полигона.

[54]

После прибытия АНПА 5 в конечную реперную точку запрограммированного маршрута по траекторным данным скоординированного движения АНПА 5 и БНС 6, записанным в съемное устройство хранения данных БНС 6, выстраивают трехмерную или двухмерную (фиг. 5) траекторию движения АНПА 5 в акватории испытательного полигона, при этом не требуются подъем АНПА 5 на поверхность и достаточно продолжительная процедура обработки данных счисления пути бортовых навигационных средств АНПА 5, что существенно сокращает время постобработки траекторных данных.

[55]

Полученную таким образом траекторию движения АНПА сравнивают с исходной запрограммированной и по их расхождению оценивают точность навигации АНПА при движении в акватории испытательного полигона.

[56]

Следует отметить, что в предлагаемом способе, в отличии от прототипа, для коррекции счисления пути АНПА используют горизонтальное расстояние по курсу между БНС и АНПА, полученное при гидроакустическом позиционировании АНПА и не требующее измерения скорости звука в акватории испытательного полигона.

[57]

В ходе полигонных испытаний по предлагаемому способу появляется возможность оперативного визуального контроля с берегового поста или иного места наблюдения подводных перемещений АНПА, транспонированных на поверхность акватории испытательного полигона в виде двухмерной траектории передвижения БНС, используемого в качестве поверхностного индикатора подводного перемещения АНПА, что облегчает и ускоряет процесс проверки возможных траекторий его передвижения.

[58]

При технической реализации предлагаемого способа для оснащения АНПА и БНС могут быть использованы промышленно выпускаемые устройства, системы и комплексы. Возможно изготовление необходимого специализированного оборудования под конкретные типы АНПА и БНС.

[59]

Так, например, необходимое для реализации предлагаемого способа оснащение АНПА можно осуществить с использованием:

[60]

- маяка-пингера, реализованного на базе усилителя мощности TDA7250 [6], гидроакустического преобразователя фирмы Брюль и Къер типа 8104 [7] и микроконтроллера ADUC841BSZ62-5 [8];

[61]

- гидроакустического модема RedLINE [9] с дальностью связи до 8 км;

[62]

- датчика глубины на основе тензопреобразователя КНС типа [10];

[63]

- малогабаритной бесплатформенной инерциальной навигационной системы БИНС-500НС [11], построенной на базе трех волоконно-оптических гироскопов и трех акселерометров.

[64]

При этом для оснащения БНС мини класса можно использовать:

[65]

- гидроакустический модем RedLINE [9] с дальностью связи до 8 км;

[66]

- малогабаритную бесплатформенную инерциальную навигационную систему БИНС-500НС [11], построенную на базе трех волоконно-оптических гироскопов и трех акселерометров с входящим в комплект приемником СНС;

[67]

- флэш-плеер Transcend МР330 [12] с памятью 8 ГБ в качестве съемного устройства хранения данных;

[68]

- движительно-рулевой комплекс с системой управления и бортовым компьютером безэкипажного катера «Тайфун-680» [13];

[69]

- гидроакустический фазовый пеленгатор с четырехэлементной антенной диаметрально-ортогональной геометрии, состав и техническая реализация оборудования которого представлены в патентах [3, 5].

[70]

Таким образом, предлагаемый способ позволяет расширить функциональные возможности одномаякового способа-прототипа, обеспечивая визуальный контроль подводных перемещений АНПА при проверке траекторных возможностей подводного передвижения, и повысить его эффективность, сокращая время постобработки траекторных данных при проверке точности навигации, позволяя причислить его к категории среднезатратных способов натурных испытаний автономных подводных аппаратов.

[71]

Список использованных источников

[72]

1. Ваулин Ю.В., Лаптев К.З. Оценка точности плавания автономного необитаемого подводного аппарата в заданном районе // Известия ЮФУ. Технические науки, 2015. С. 74-86.

[73]

2. Машошин А.И. Исследование точности одномаяковой навигации автономных необитаемых подводных аппаратов // Подводные исследования и робототехника. 2017. №2. С. 20-27.

[74]

3. Патент РФ 2709100, МПК G01S 1/72. Способ определения местоположения подводного объекта / В.Г. Арсентьев, Г.И. Криволапов, А.Е. Малашенко, Д.Д. Минаев. - Заявка 2018122532, заявлено 19.06.2018, опубликовано 16.12.2019. Бюл. №35.

[75]

4. Арсентьев В.Г., Криволапов Г.И. О влиянии геометрических параметров антенны на характеристики гидроакустического фазового пеленгатора // Вестник СибГУТИ. Новосибирск. 2019. №1. С. 92-101.

[76]

5. Патент РФ 2727331, МПК G01S 15/00. Способ гидроакустического поиска автономного донного подводного объекта / В.Г. Арсентьев, Г.И. Криволапов. - Заявка 2019145191, заявлено 25.12.2019, опубликовано 21.07.2020. Бюл. №21.

[77]

6. Усилитель TDA7250 [Электронный ресурс] // URL: http://www.radiomaster.net/pdf/audio/us_mos.pdf (дата обращения: 20.12.2021).

[78]

7. Гидрофоны: типы 8101-8106 [Электронный ресурс] // URL: http://asm-tm.ru/wp-content/uploads/2014/08/8101-8106-Gidrofony-NEW-PD.pdf (дата обращения: 20.12.2021).

[79]

8. Микроконтроллер ADUC841BSZ62-5 [Электронный ресурс] // URL: https://www.chipdip.ru/product/aduc841bsz62-5 (дата обращения: 20.12.2021).

[80]

9. Гидроакустический модем RedLINE [Электронный ресурс] // URL: https://github.com/ucnl/ucnl.github.io/blob/master/documentation/RU/RedLINE/RedLine_Specification_ru.md (дата обращения: 20.12.2021).

[81]

10. Сенсоры физических величин [Электронный ресурс] // URL: http://www.zaovip.ru/products/kns1/(дата обращения: 20.12.2021).

[82]

11. Бесплатформенная инерциальная навигационная система БИНС-500НС [Электронный ресурс] // URL: https://naukasoft.ru/produkciya/aviacionnoe-oborudovanie/besplatformennaja-inercialnaja-navigacionnaja-sistema-bins-500ns.html (дата обращения: 20.12.2021).

[83]

12. Портативные плееры [Электронный ресурс] // URL: https://headphonesbest.ru/portativnyj-pleer/14941top-15-luchshix-portativnyx-mp3-pleerov.html (дата обращения: 20.12.2021).

[84]

13. Безэкипажный катер «Тайфун-680» [Электронный ресурс] // URL: http://zonwar.ru/news4/news_732_Taifun-680.html (дата обращения: 20.12.2021).

Как компенсировать расходы
на инновационную разработку
Похожие патенты