патент
№ RU 2773845
МПК C08J5/16

Способ получения композиционных материалов на основе вторичного полиэтилентерефталата и хелатных комплексов эрбия

Авторы:
Пожидаева Светлана Александровна Шишка Василий Григорьевич Стрельников Виктор Владимирович
Все (6)
Правообладатель:
Все (6)
Номер заявки
2020133126
Дата подачи заявки
07.10.2020
Опубликовано
14.06.2022
Страна
RU
Как управлять
интеллектуальной собственностью
Чертежи 
2
Реферат

[43]

Изобретение относится к области переработки отходов полимеров, в частности, получению композиционных материалов с применением вторичного сырья - полиэтилентерефталата и может быть использовано в различных отраслях промышленности в качестве конструкционных материалов. Способ получения композиционных материалов на основе вторичного полиэтилентерефталата и хелатного комплекса эрбия включает сортировку, очистку, измельчение, сушку и термическую обработку в экструдере. При этом очистку вторичного полиэтилентерефталата проводят в два приема: в щелочном растворе и после измельчения во флотационных ваннах с ПАВ и растворителями, затем выдерживают в сушильном шкафу при температуре 70-80°С в течение 4-5 часов и обрабатывают раствором хелатного комплекса эрбия в ксилоле при температуре 18÷25°С, с последующей переработкой композиции при температуре 210÷220°С и следующем соотношении введенных в экструдер компонентов, г: полиэтилентерефталат (ПЭТФ) - 170-180, полиизобутилен (ПИБ) - 10-18, фторопласт-32 литьевой (Ф-32Л) – 3, полифенил-метилсилоксан-4 (ПФМС-4) – 3, хелатный комплекс Er - 0,001-0,01. Предлагаемый способ позволяет получить материал, отличающийся высокой пластичностью и улучшенными физико-механическими свойствами: коэффициентом трения, износостойкостью, твердостью. 4 ил., 1 табл., 5 пр.

Формула изобретения

Способ получения композиционных материалов на основе вторичного полиэтилентерефталата и хелатного комплекса эрбия, включающий сортировку, очистку, измельчение, сушку и термическую обработку в экструдере, отличающийся тем, что очистку вторичного полиэтилентерефталата проводят в два приема: в щелочном растворе и после измельчения во флотационных ваннах с ПАВ и растворителями, затем выдерживают в сушильном шкафу при температуре 70-80°С в течение 4-5 часов и обрабатывают раствором хелатного комплекса эрбия в ксилоле при температуре 18÷25°С, с последующей переработкой композиции при температуре 210÷220°С и следующем соотношении введенных в экструдер компонентов, г:

Полиэтилентерефталат (ПЭТФ)170-180
Полиизобутилен (ПИБ)10-18
Фторопласт-32 литьевой - (Ф-32Л)3

Полифенил-метилсилоксан-4 (ПФМС-4)3

Хелатный комплекс Er0,001-0,01

Описание

[1]

Изобретение относится к области переработки отходов полимеров, в частности, получению композиционных материалов с применением вторичного сырья - полиэтилентерефталата и может быть использовано в различных отраслях промышленности в качестве конструкционных материалов в машиностроении, авиастроении, приборостроении и др.

[2]

Состояние экологии и проблема утилизации отходов, 30% от общей массы которых составляет полиэтилентерефталат (ПЭТФ) и постоянный рост цен на первичное сырье ПЭТФ инициирует использование и переработку вторичной продукции из ПЭТФ для получения композиционных материалов.

[3]

Существует два основных источника полимерных отходов - это производственные и бытовые. Промышленные отходы до 90% перерабатываются на самих производствах, а бытовые, содержащие поверхностные загрязнения и различные примеси, требуют более тщательной предварительной подготовки при рециклинге.

[4]

В последнее время появилось много предложений по разработке технологий рециклинга отходов ПЭТФ для получения композиционных материалов.

[5]

Известен способ переработки отходов полиэтилентерефталата, включающий термообработку отходов в среде, содержащей паровой компонент, в замкнутом герметизированном объеме (патент RU 2384592).

[6]

Однако, следует отметить, что при повторной переработке ПЭТФ под воздействием термической обработки возникает ряд проблем, связанных с протекающими при этом процессами деструкции и окисления. Все указанные недостатки связаны с повышенным содержанием влаги и частичной деструкцией, окислением материала при термическом воздействии в процессе переработки.

[7]

Известен способ рециклинга при производстве изделий из ПЭТФ с использованием вторичного сырья (патент US №5503790). Эта технология предусматривает переработку массы в вакууме с целью удаления паров из формуемой массы. Полученные по предлагаемой технологии листы используются для изготовления тары для различных технических целей.

[8]

Рассматриваемый способ отличается сложностью технологического процесса и требует введения дополнительной операции вакуумирования массы, а соответственно и дополнительного оборудования. И самое главное - материалы, полученные данным способом, отличаются повышенной хрупкостью, низкой прочностью на изгиб, повышенным коэффициентом трения и износом.

[9]

Одним из путей улучшения качества композиционного материала из вторичного ПЭТФ является введение в состав функциональных добавок и проведение модификации, что способствует приданию новых улучшенных свойств получаемому материалу. Существуют способы модификации поверхности отходов путем обработки различными реагентами.

[10]

Известны способы модификации поверхностности гранулята полиэтилентерефталата (ПЭТФ) функциональными добавками для повышения термостойкости, что позволяет расширить температурный интервал эксплуатации изделий за счет химического связывания используемого модификатора со сложным полиэфиром и способствует повышению термостойкости полимера (патенты RU 2494122, 2495884).

[11]

Однако материалы, полученные по предлагаемому способу, обладают невысокими антифрикционными характеристиками, что ограничивает область их применения, и поэтому они не могут быть использованы в качестве конструкционных материалов в машиностроении, авиастроении и приборостроении.

[12]

Известна смесь для получения композиционных строительных материалов (патент RU №2623754), включающая предварительно измельченные термомеханически обработанный вторичный полиэтилентерефталат (ВПЭТФ) и вторичный полипропилен (ВПП), сополимер этилена и винил-ацетата, тонкодисперсный наполнитель, модифицированный сополимер Этатилен EVA-g-GMA, тонкодисперсный наполнитель с содержанием карбонатов кальция и магния не менее 80% и дополнительно - коротково-локнистый хризотил с характеристическим отношением длины к диаметру 300÷400. Смесь получена термомеханической обработкой ВПЭТФ плавлением при 280°C с последующим охлаждением расплава в воде, сушкой при 80°С и измельчением, с последующим плавлением при 210÷240°С, введением в расплав измельченного ВПП в соотношении, мас. %: ВПЭТФ 73,7 и ВПП 26,3, а затем указанных сополимера, наполнителя и хризотила при следующем соотношении компонентов, мас. %:

[13]

ВПЭТФ и ВПП19÷38
наполнитель60÷80
сополимер1÷2
хризотил0÷3,5

[14]

Изделия из предлагаемого материала обладают повышенной твердостью, а истираемость составляет 0,09÷0,04 г/см2.

[15]

Однако к недостаткам данного состава следует отнести высокое содержание в наполнителе вторичного сырья (60÷80%), что приводит к снижению механической прочности (растрескиванию, охрупчиванию) изделий, и снижению пластичности, вызывающей сложности при экструзии. Также наличие большого количества компонентов наполнителя, требующего предварительной подготовки, усложняет технологический процесс. Кроме того, применяемый хризотил - гидросиликат магния (асбест) относится к канцерогенным материалам, запрещенным к применению в большинстве стран.

[16]

Известны антифрикционные полимерные композиции на основе полиэтилена, обладающие низким коэффициентом трения и повышенной теплостойкостью (патенты RU 2445323, 2495060).

[17]

В состав композиции по патенту RU 2495060 входит раствор хелатного комплекса Nd в бензоле или толуоле, обладающий устойчивостью к высоким температурам (Тпл=170°С). Полученная масса композита более пластична и легче перерабатывается в изделия.

[18]

Растворы хелатных комплексов (Nd и Er) могут быть использованы при создании не только эффективных антифрикционных полимерных композиций и материалов, но и в процессах переработки полимеров, например, рециклинге вторичного полиэтилентерефталата при утилизации отходов.

[19]

Технической задачей, на решение которой направлено данное изобретение, является разработка способа получения композиционных материалов на основе вторичного ПЭТФ с улучшенными физико-механическими свойствами (коэффициент трения, износостойкость, твердость, пластичность) за счет предварительной модификации отходов ПЭТФ раствором в ксилоле хелатного комплекса Er.

[20]

Указанный технический результат достигается за счет использования предлагаемого способа получения композиционных материалов на основе вторичного ПЭТФ, включающего сортировку - отделение инородных примесей и предварительную очистку, измельчение на флексы размером ≈10÷15 мм и окончательную очистку во флотационных ваннах с ПАВ и растворителями, сушку и обработку раствором хелатного комплекса соединений Er в ксилоле при температуре 18÷25°С и тщательном перемешивании с последующим термическим воздействием в экструдере при следующем соотношении компонентов, г:

[21]

Полиэтилентерефталат (ПЭТФ)170-180
Полиизобутилен (ПИБ)10-18
Фторопласт - 32 литьевой (Ф-32Л)3
Полифенил-метилсилоксан-4 (ПФМС-4)3
Раствор хелатного комплекса Er в ксилоле0,001-0,01

[22]

Отмечено, что хелатный комплекс Er обладает каталитическим свойством. Это связано с наличием в молекуле донорно-акцепторных связей, которые и являются источником каталитических центров. Даже при незначительных концентрациях хелатного комплекса существенно изменяются свойства материалов. Обработка очищенного, дробленного вторичного сырья раствором катализатора - хелатного комплекса Er, растворенного в ксилоле оказывает значительное влияние на химическое взаимодействие функциональных добавок с вторичным сырьем ПЭТФ.

[23]

Существенным и новым в предложенном способе получения композиционных материалов на основе вторичного ПЭТФ является предварительная модификация отходов растворами хелатных комплексов, а именно, обработка очищенного дробленного вторичного сырья раствором хелатного комплекса соединений Er в ксилоле. Полученные композиционные материалы обладают повышенной пластичностью и хорошими антифрикционными свойствами.

[24]

Технический результат предлагаемого изобретения заключается в создании способа, позволяющего получить материал с улучшенными физико-механическими свойствами (коэффициент трения, износостойкость, твердость). Предварительная обработка флексов вторичного ПЭТФ раствором хелатного комплекса Er, не только улучшает физико-механические свойства, но и позволяет получать образцы, отличающиеся высокой пластичностью.

[25]

Сущность изобретения поясняется чертежами.

[26]

Фиг. 1 - зависимость коэффициента трения от нагрузки V=0,075 м/с без смазки; фиг. 2 - волокно из композиции №4 Табл., фиг. 3 - состав волокна композиции №4 Табл., спектр 2; фиг. 4 - состав волокна композиции №4 Табл., спектр 3 и примерами оптимальных составов композиций, сведенными в Таблицу.

[27]

Способ осуществляется следующим образом.

[28]

В качестве вторичного сырья использовали бытовые отходы, содержащие поверхностные загрязнения и различные примеси. Рециклинг таких отходов требует более тщательной предварительной подготовки, включающей сортировку - отделение инородных примесей и предварительную очистку. Бытовые отходы очищали от грязи, клея и этикеток. Очистку проводили при температуре 18÷25°C с использованием щелочных растворов при постоянном перемешивании, а затем промывали проточной водой.

[29]

Очищенный вторичный ПЭТФ измельчали на флексы размером ≈10÷15 мм, например с помощью дробилки с ножами типа «ласточкин хвост».

[30]

Полученные флексы для окончательной и более качественной очистки пропускали через флотационные ванны, содержащие ПАВ и растворители.

[31]

Учитывая, что ПЭТФ - продукт поликонденсации, и при термическом воздействии в пределах температуры его плавления в присутствии гидроксильных групп, а именно малейших частиц воды, происходит деструкция перерабатываемого сырья очень важно после окончательной очистки удалить всю влагу из вторичного полиэтилентерефталата. Для удаления влаги очищенные флексы выдерживали в сушильном шкафу при температуре 70÷80°С в течение 4÷5 часов.

[32]

После максимального обезвоживания поверхность вторичного сырья ПЭТФ обрабатывали раствором в ксилоле хелатного комплекса соединений Er. Процесс проводили при температуре 18÷25°С, тщательном перемешивании и при следующем соотношении компонентов, г:

[33]

Полиэтилентерефталат (ПЭТФ)170-180
Полиизобутилен (ПИБ)10-18
Фторопласт - 32 литьевой (Ф-32Л)3
Полифенил-метилсилоксан-4 (ПФМС-4)3
Раствор хелатного комплекса Er в ксилоле0,001-0,01

[34]

Из подготовленных таким образом флексов и функциональных добавок составляли композиции на основе вторичного полиэтилентерефталата (ПЭТФ), и раствора хелатного комплекса эрбия (Er) в ксилоле, основные составы которых представлены в Табл.

[35]

Химическое взаимодействие всех введенных компонентов и катализатора происходило при термическом воздействии. Переработку осуществляли в экструдере, при этом температура не превышала 210÷220°C, с последующим формованием образцов в пресс-форме.

[36]

Формование образцов для осуществления физико-механических испытаний проводили в смазанных пресс-формах. Образцы для испытаний представляли собой шайбу диаметром 22÷23 мм и высотой 10 мм. Полученные образцы подвергались физико-химическим исследованиям.

[37]

Отличительной особенностью этих составов является то, что полученные композиционные материалы обладают хорошими антифрикционными свойствами и повышенной пластичностью.

[38]

Коэффициент трения образцов, полученных из разработанного композита, был определен на торцевой машине трения при скорости скольжения 0,075 м/с без смазки. Результаты испытаний представлены на Фиг. 1.

[39]

Как видно из представленных данных, предварительная обработка флексов ПЭТФ перед переработкой на экструдере раствором Er, способствует не только снижению коэффициента трения в ≈ 2÷3 раза, но и весового износа.

[40]

Для исследования пластичности из предложенных составов были получены волокна, которые исследовали на электронном микроскопе «Mira 3 tes-can» Фиг. 2-4.

[41]

Следует отметить, что полученные волокна из композиции №4 отличаются высокой пластичностью, легко вытягиваются, имеют минимальную разнотолщинность по длине волокна (Фиг. 2). Элементный состав волокна, полученный из разных спектров, практически одинаковый (Фиг. 3-4).

[42]

Таким образом, можно сделать вывод, что предварительная обработка флексов вторичного ПЭТФ раствором хелатного комплекса Ег, не только улучшает эксплуатационные свойства (коэффициент трения, износ, твердость), но и позволяет получать образцы, отличающиеся высокой пластичностью.

Как компенсировать расходы
на инновационную разработку
Похожие патенты