патент
№ RU 2739245
МПК C11D1/66

Моющее средство для очистки металлических поверхностей

Авторы:
Садетдинов Шейиздан Вазыхович Илларионов Илья Егорович Стрельников Игорь Анатольевич
Все (4)
Номер заявки
2020115060
Дата подачи заявки
26.03.2020
Опубликовано
22.12.2020
Страна
RU
Как управлять
интеллектуальной собственностью
Чертежи 
1
Реферат

Изобретение относится к моющим средствам, применяемым для очистки металлических поверхностей деталей, узлов и агрегатов металлургических машин, транспортных средств от загрязнений в виде смазок, масел, жидких углеводородов, и может быть использовано в качестве эффективного моющего средства в ремонтном производстве на металлургических заводах и автотранспортных предприятиях. Моющее средство для очистки металлических поверхностей содержит синтанол ДС-10, карбонат натрия, триполифосфат натрия, метасиликат натрия, дипропионамидпентаборат аммония состава NH4B5O8⋅2C2H5CONH2⋅2H2O и воду. Технический результат - повышение моющих и противокоррозионных свойств моющего средства для очистки загрязненных металлических поверхностей, уменьшение температуры и времени мойки, повышение эффективности использования моющего средства для очистки металлических поверхностей. 1 ил., 3 табл.

Формула изобретения

Моющее средство для очистки металлических поверхностей, содержащее синтанол ДС-10, карбонат натрия, триполифосфат натрия, метасиликат натрия и воду, дополнительно содержит дипропионамидпентаборат аммония состава NH4B5O8⋅2C2H5CONH2⋅2H2O при следующем соотношении компонентов, мас. %:

Синтанол ДС-100,6-0,8
Карбонат натрия2,0-3,0
Триполифосфат натрия1,5-2,5
Метасиликат натрия0,5-0,7
Дипропионамидпентаборат аммония0,4-0,6
Водаостальное до 100

Описание

[1]

Изобретение относится к моющим средствам, применяемым для очистки металлических поверхностей деталей, узлов и агрегатов металлургических машин, транспортных средств от загрязнений в виде смазок, масел, жидких углеводородов, и может быть использовано в качестве эффективного моющего средства в ремонтном производстве на металлургических заводах и автотранспортных предприятиях.

[2]

Известны боратфосфатные моющие средства для очистки от масляно-жировых загрязнений металлических поверхностей деталей металлургических машин в ремонтном производстве (Илларионов И.Е., Пестряев Д.А., Садетдинов Ш.В., Стрельников И.А. Разработка боратфосфатных моющих средств для очистки деталей металлургических машин в ремонтном производстве // Механическое оборудование металлургических заводов. 2019. №1(12). С. 71-75; Стрельников И.А., Пестряев Д.А., Садетдинов Ш.В., Влияние температуры раствора боратфосфатных моющих средств на качество очистки металла // Механическое оборудование металлургических заводов. 2019. №2(13). С. 23-28).

[3]

Недостатками вышеназванных моющих средств являются недостаточные смачивающая, моющая способности и недостаточные ингибирующие коррозию свойства.

[4]

Наиболее близким к заявленному техническому решению является моющее средство для очистки деталей, узлов и агрегатов, содержащее мас. %: синтанол ДС-10 -3,5-8,0; карбонат натрия - 47,5-50,0; триполифосфат натрия - 28,0-30,0; метасиликат натрия - 6,8-10,0; моноборат калия - 0,5-1,0; вода - остальное (RU 2620593, C11D 1/72, C11D 3/06, C11 D3/10, C11D 3/08, 29.05.2017).

[5]

Недостатками известного моющего средства являются его низкая моющая способность к органическим загрязнениям при очистке поверхности металла и недостаточные противокоррозионные свойства.

[6]

Целью предлагаемого изобретения является создание моющего средства для очистки металлических поверхностей от органических загрязнений с улучшенными моющими и противокоррозионными свойствами.

[7]

Технический результат - повышение моющих и противокоррозионных свойств моющего средства для очистки загрязненных металлических поверхностей, уменьшение температуры и времени мойки, повышение эффективности использования моющего средства для очистки металлических поверхностей.

[8]

Технический результат достигается тем, что моющее средство для очистки металлических поверхностей, содержащее синтанол ДС-10, соду кальцинированную, триполифосфат натрия, метасиликат натрия и воду согласно изобретению, вместо монобората калия содержит дипропионамидпентаборат аммония состава NH4B5O8⋅2C2H5CONH2⋅2H2O при следующем соотношении компонентов, мас. %:

[9]

Синтанол ДС-100,6-0,8
Карбонат натрия 2,0-3,0
Триполифосфат натрия1,5-2,5
Метасиликат натрия0,5-0,7
Дипропионамидпентаборат аммония0,4-0,6
Водаостальное до 100

[10]

Отличием заявляемого решения от известного, заключается в использовании в моющем средстве для очистки металлических поверхностей дипропионамидпентабората аммония состава NH4B5O8⋅2C2H5CONH2⋅2H2O, за счет которого достигается повышение моющих и противокоррозионных свойств моющего средства.

[11]

В патентной и научно-технической литературе не известны технические решения, аналогичные заявляемому, что свидетельствует о соответствии заявляемого моющего средства условию патентоспособности - «новизна».

[12]

Заявляемое соотношение компонентов моющего средства в сочетании с дипропионамидпентаборат аммонием, позволяет получить положительный эффект, что соответствует условию патентоспособности - «изобретательский уровень».

[13]

Заявляемое моющее средство применимо для мойки загрязненных поверхностей деталей, узлов, агрегатов при техническом обслуживании и ремонте оборудования, а также мобильной техники на металлургических заводах и автотранспортных предприятиях. Заявляемое моющее средство изготавливается из веществ, выпускаемых отечественной промышленностью. Вышеуказанное подтверждает соответствие условию патентоспособности - «промышленная применимость».

[14]

Образование дипропионамидтетраборат аммония установлено исследованиями системы NH4B5O8-C2H5CONH22О при 25°С методами физико-химического анализа (Илларионов И.Е., Садетдинов Ш.В., Фадеев И.В. Системы из боратов аммония с некоторыми солями, аминами и амидами // Чебоксары. - 2019. - 232 с.).

[15]

Дипропионамидпентаборат аммония состава NH4B5O8⋅2C2H5CONH2⋅2H2O, синтезируют следующим способом: в реакционную емкость помещают 1 литр дистиллированной воды и растворяют в ней 146,0 г (2 моль) 3-амино-1-пропанола и 200,1 г (1 моль) пентабората аммония. Смесь непрерывно перемешивают в течение 1,0 часа при комнатной температуре. Затем раствор переносят в кристаллизатор для выращивания кристаллов. При изотермическом испарении раствора кристаллизация происходит через 2-3 недели с образованием твердой фазы состава NH4B5O8⋅2C2H5CONH2⋅2H2O. Выход продукта составляет 362,4 г (94,9%). Химическим анализом найдено, мас. %: С - 18,84; В - 14,15. Показатель преломления синтезированного соединения, измеренного иммерсионным методом равен 1,394; плотность, найденная в бензоле и толуоле равна 1,538 г/см3; вычисленный молекулярный объем - 248,40 см3/моль и удельный объем - 0,65 см3/г.

[16]

Моющее средство для очистки металлических поверхностей готовят последовательным растворением в дистиллированной воде при перемешивании синтанола ДС-10 (ТУ 6-14-577-88), карбоната натрия (ГОСТ 5100-85, изм. 1), триполифосфата натрия (ГОСТ 13493-86), метасиликата натрия (ГОСТ 13079-93) и дипропионамидпентабората аммония. Составы испытуемых моющих средств, приведены в табл. 1.

[17]

[18]

Для выявления оптимального режима мойки загрязненной металлической поверхности моющими средствами составов табл. 1 изучено влияние температуры и продолжительности мойки на его моющее свойство.

[19]

Испытания проводили в лабораторной моечной установке с использованием стальной пластинки из стали Ст3 размером 150×70×2 мм. Образцы устанавливали в моечную установку с помощью кронштейна, температуру раствора измеряли термометром. Перед испытанием поверхность образцов шлифовали с одной стороны, удаляли продукты коррозии в ингибированной кислоте, обезжиривали с одной стороны венской известью, промывали холодной водой и сушили между листами фильтровальной бумаги. Затем измеряли размеры образцов и взвешивали их, наносили на обезжиренную поверхность образцов модельное загрязнение в количестве 0,1 г равномерным слоем и выдерживали на воздухе в течение 30 минут. В качестве модельного загрязнения использовали смесь отработавшего моторного масла со смолистым отложением из центрифуги в соотношении 2:1. Далее устанавливали образцы с загрязнением в моечную установку, которая представляет двустенную термостатированную ванну вместимостью 5 литров моющего раствора, который перемешивается мешалкой с помощью электромотора. Раствор подогревали через рубашку установленную вокруг ванны путем перекачивания воды с требуемой температурой из термостата ТС-24. Температуру жидкости контролировали с помощью термометра, вмонтированного в ванну с жидкостью. В ванну моечной установки наливали 1 литр испытуемого моющего средства и нагревали раствор до температуры программного испытания 20, 40, 60, 80 и 100°С. После мойки образцы выдерживали при комнатной температуре в течение 4-5 часов до их полного высыхания.

[20]

Моющая способность определяется весовым методом с вычислением процента смываемости загрязнений с поверхности металла по формуле:

[21]

[22]

где Р0 - начальный вес образца (чистого), г;

[23]

P1 - вес загрязненного образца, г;

[24]

Р2 - вес образца после мойки, г.

[25]

При определении смачивающей способности образцы (металлические пластины размером 150×70 мм) сначала погружали в приготовленный раствор моющего средства, а затем - дистиллированную воду на 10 секунд. Далее образцы вынимали из воды и фиксировали нарушение сплошности водяной пленки визуально. При этом поверхность, удаленную от краев и острых кромок менее чем на 10 мм, во внимание не принимали. Смачивающая способность характеризуется временем, в секундах, от начала испытаний до разрыва водяной пленки.

[26]

Экспериментальные исследования показали, что температура моющего средства и продолжительность мойки значительно влияют на моющую способность и смачиваемость. Фиг. 1 - Зависимость моющей способности испытуемых МС от температуры раствора: 1 - составы 1, 2, 3; 2 - прототип.

[27]

На фиг. 1 показана зависимость кинетики нарастания моющей способности синтетических моющих средств составов табл. 1 в зависимости от температуры раствора при продолжительности мойки 5 минут.

[28]

Зависимость кинетики моющей способности испытуемых моющих средств от температуры аналогичны и отличаются лишь и их предельными значениями. Из рисунка видно, что в интервале температур 20-80°С, моющая способность испытуемых средств резко нарастает и при 80°С достигается предельное значение моющей способности. В интервале температур раствора от 80-100°С моющее свойство испытуемых моющих средств ухудшается, происходит помутнение раствора. Данное явление можно объяснить началом процесса дегидратации молекул поверхностно-активных веществ и выделением в раствор молекул коллоидных частиц. Этот процесс имеет тенденцию усиления, что приводит к уменьшению концентрации компонентов состава моющего средства для очистки металлических поверхностей и соответственно к ухудшению его моющего свойства. В связи с этим оптимальный режим мойки заявляемых моющих средств составов 1, 2 и 3 - температура 80°С, продолжительность мойки - 5 мин. Полученные технологические параметры заявляемого моющего средства, в сравнении с 85-90°С и длительностью мойки 8 мин. прототипа, позволяют повысить эффективность использования моющего средства для очистки металлических поверхностей.

[29]

Полученные данные моющей способности и смачиваемости испытуемых составов моющих средств для очистки металлических поверхностей при температуре мойки 80°С и продолжительности мойки 5 мин представлены в табл. 2

[30]

[31]

Противокоррозионные свойства испытуемых эффективных составов (№1, №2 и №3) моющего средства изучали гравиметрическим методом. Для испытаний использовали пластинки из стали Ст3 размером 120×10×1 мм из одной партии, поэтому ее химический состав, структура и механические свойства были одинаковыми. Перед испытаниями поверхность образцов последовательно шлифовали наждачной бумагой различной зернистости, полировали на сукне до полного удаления рисок, остающихся от шлифования. Продукты коррозии с поверхности образцов удаляли в ингибированной кислоте (18% РСд+0,5% ингибитора коррозии металла КИ-1 ТУ 6-04689381.006-97.

[32]

Испытания полностью погруженных шлифованных и обезжиренных образцов проводили в стеклянных сосудах при соотношении объема раствора к поверхности металла 18-20 мл/см2. Время выдержки образцов в коррозионно-активной среде (3%-ный раствор NaCl) составляло 10 суток.

[33]

Эффективность действия ингибиторов оценивали по потере массы образцов в исследуемых средах. Скорость коррозии (К) вычисляли по убыли массы образцов, отнесенной к единице поверхности за единицу времени по формуле:

[34]

К=m0-m/S⋅t,

[35]

где m0 и m - масса пластинки до и после опыта, соответственно, г; S - площадь пластинки, м2; t - время проведения опыта, ч.

[36]

Ингибиторный эффект (коэффициент торможения), который показывает, во сколько раз ингибитор замедляет скорость коррозии, вычисляли по формуле:

[37]

γ=К0/К,

[38]

где К и К0 - скорость коррозии в присутствии ингибитора и без него, соответственно.

[39]

Степень защиты, характеризующая полноту подавления коррозии определяли в %:

[40]

Z=K0-K/K0⋅100.

[41]

Результаты сравнительных исследований противокоррозионных свойств испытуемых МС приведены в табл. 3.

[42]

[43]

Из табл. 2 следует, что моющая способность и смачиваемость заявляемых составов выше чем у прототипа и позволяет практически полностью очистить металлическую поверхность от загрязнения. Согласно данным табл.3, заявляемое моющее средство для очистки металлических поверхностей проявляет более высокие противокоррозионные свойства.

[44]

Таким образом, заявляемое соотношение известных компонентов моющего средства в сочетании с дипропионамидтетраборат аммонием позволяет в сравнении с известным моющим средством (прототипом), получить более высокие показатели качества очищаемой металлической поверхности при снижении производственных затрат (например, электроэнергия на подогрев воды и работу моющей машины) на получение моющего средства.

[45]

Заявляемое моющее средство для очистки металлических поверхностей от органических загрязнений в виде смазок, масел и жидких углеводородов может быть использовано в качестве эффективного моющего средства для очистки металлических поверхностей в ремонтном производстве на металлургических заводах и автотранспортных предприятиях.

Как компенсировать расходы
на инновационную разработку
Похожие патенты