патент
№ RU 2722595
МПК C07D333/68

СПОСОБ ПОЛУЧЕНИЯ СЛОЖНОГО ЭФИРА 4-ФОРМИЛ-6,7-ДИГИДРОКСИ-БЕНЗО[B]ТИОФЕН-3-КАРБОНОВОЙ КИСЛОТЫ

Авторы:
Ямпольский Илья Викторович
Номер заявки
2019144633
Дата подачи заявки
27.12.2019
Опубликовано
02.06.2020
Страна
RU
Как управлять
интеллектуальной собственностью
Реферат

Изобретение относится к области органического синтеза, а именно к способу получения сложного эфира 4-формил-6,7-дигидрокси-бензо[b]тиофен-3-карбоновой кислоты структурной формулы, где R представляет собой C1-C6 алкил. Способ включает взаимодействие 2,3-диалкокситиофенола формулы, где R1 и R2 независимо представляют собой C1-C6 алкил, с алкилпропиолатом формулыв среде ацетонитрила в присутствии инициатора радикальной реакции с получением сложного эфира 6,7-диалкокси-бензо[b]тиофен-3-карбоновой кислоты формулы, с последующим бромированием и получением сложного эфира 4-бром-6,7-диалкокси-бензо[b]тиофен-3-карбоновой кислоты формулы, с последующим кросс-сочетанием с алкиловым эфиром акриловой кислоты формулы, где R3 представляет собой C1-C6 алкил, в присутствии катализатора на основе палладия с получением сложного эфира ()-4-(3-алкокси-3-оксопроп-1-ен-1-ил)-6,7-диалкоксибензо[]тиофен-3-карбоновой кислоты формулы, с последующим окислением смесью осмата щелочного металла и периодата щелочного металла с получением сложного эфира 4-формил-6,7-диалкокси-бензо[b]тиофен-3-карбоновой кислоты формулы, с последующим деалкилированием трихлоридом или трибромидом бора с получением сложного эфира 4-формил-6,7-дигидрокси-бензо[b]тиофен-3-карбоновой кислоты. Технический результат: предложенный способ позволяет синтезировать сложный эфир из доступных исходных веществ с высоким выходом. 5 з.п. ф-лы, 1 табл., 5 пр.

Формула изобретения

1. Способ получения сложного эфира 4-формил-6,7-дигидрокси-бензо[b]тиофен-3-карбоновой кислоты структурной формулы

,

где R представляет собой C1-C6 алкил, включающий взаимодействие 2,3-диалкокситиофенола формулы

,

где R1 и R2 независимо представляют собой C1-C6 алкил, с алкилпропиолатом формулы

,

где R такой как определено выше, в среде ацетонитрила в присутствии инициатора радикальной реакции с получением сложного эфира 6,7-диалкокси-бензо[b]тиофен-3-карбоновой кислоты формулы

,

где R, R1 и R2 такие, как определено выше, с последующим бромированием и получением сложного эфира 4-бром-6,7-диалкокси-бензо[b]тиофен-3-карбоновой кислоты формулы

,

где R, R1 и R2 такие, как определено выше, с последующим кросс-сочетанием с алкиловым эфиром акриловой кислоты формулы

,

где R3 представляет собой C1-C6 алкил, в присутствии катализатора на основе палладия с получением сложного эфира (Е)-4-(3-алкокси-3-оксопроп-1-ен-1-ил)-6,7-диалкоксибензо[b]тиофен-3-карбоновой кислоты формулы

,

где R, R1, R2 и R3 такие, как определено выше, с последующим окислением смесью осмата щелочного металла и периодата щелочного металла с получением сложного эфира 4-формил-6,7-диалкокси-бензо[b]тиофен-3-карбоновой кислоты формулы

,

где R, R1 и R2 такие, как определено выше, с последующим деалкилированием трихлоридом или трибромидом бора с получением сложного эфира 4-формил-6,7-дигидрокси-бензо[b]тиофен-3-карбоновой кислоты.

2. Способ по п. 1, в котором в качестве инициатора радикальной реакции используют азобисизобутиронитрил.

3. Способ по п. 1, в котором R, R1 и R2 представляют собой метил, а R3 представляет собой этил.

4. Способ по п. 1, в котором взаимодействие 2,3-диалкокситиофенола с алкилпропиолатом в среде ацетонитрила в присутствии инициатора радикальной реакции осуществляют при концентрации 2,3-диалкокситиофенола от 5 до 20 мг/мл.

5. Способ по п. 1, в котором в качестве катализатора на основе палладия используют Pd(dppf)2Cl2·CH2Cl2.

6. Способ по п. 1, в котором смесь осмата щелочного металла и периодата щелочного металла представляет собой смесь осмата натрия и периодата натрия.

Описание

[1]

Область техники, к которой относится изобретение

[2]

Настоящее изобретение относится к области органического синтеза, более конкретно, к синтезу сложного C1-C6 алкилового эфира 4-формил-6,7-дигидрокси-бензо[b]тиофен-3-карбоновой кислоты, являющегося предшественником особо ценного люциферина Odontosyllis undecimdonta. Предложенный способ получения позволяет синтезировать сложный C1-C6 алкиловый эфир 4-формил-6,7-дигидрокси-бензо[b]тиофен-3-карбоновой кислоты из доступных исходных веществ с высоким выходом.

[3]

Уровень техники

[4]

Биолюминесценция в настоящее время нашла практическое применение в самых разных областях. Светящиеся метки используют для проведения анализов в медицине и в тест-системах при разработке лекарств. В лаборатории это позволяет визуализировать различные физиологические процессы, а также увидеть работу какого-либо гена. Экологи используют биолюминесценцию для мониторинга окружающей среды.

[5]

В недавней работе (PNAS, 2019, v.116, n. 38, p.p. 18911-18916) был получен и охарактеризован новый люциферин Odontosyllis undecimdonta. Названный люциферин при взаимодействии с люциферазой Odontosyllis излучает зеленый свет. Ввиду его нетоксичности и достаточной устойчивости, у названного люциферина имеются большие возможности практического применения.

[6]

[7]

Структурная формула люциферина Odontosyllis undecimdonta

[8]

Для развития направления по практическому применению люциферина Odontosyllis undecimdonta существует потребность в доступных подходах по его химическому синтезу, поскольку существующий способ выделения миллиграммовых количество люциферина предполагает переработку большого количества (килограммовые количества) биомассы Odontosyllis undecimdonta.

[9]

Ретросинтетический анализ молекулы люциферина Odontosyllis undecimdonta показал, что основным ее предшественником является сложный C1-C6 алкиловый эфир 4-формил-6,7-дигидрокси-бензо[b]тиофен-3-карбоновой кислоты формулы:

[10]

, R=C1-C6 алкил.

[11]

Однако в патентной литературе отсутствуют сведения о синтезе сложного C1-C6 алкилового эфира 4-формил-6,7-дигидрокси-бензо[b]тиофен-3-карбоновой кислоты. Кроме того, способы синтеза схожих производных бензо[b]тиофен-3-карбоновой кислоты не совершенствовались.

[12]

В заявке на патент США US20190241583 раскрывается способ получения метилового эфира 5-формил-4,7-диметокси-бензотиофен-3-карбоновой кислоты структурной формулы

[13]

[14]

реакцией 2,5-диметокситиофенола с азобисизобутиронитрилом и метилпропиолатом (выход около 10%), и получение метилового эфира 5-формил-4,7-диметокси-бензотиофен-3-карбоновой кислоты формилированием метилового эфира 4,7-диметокси-бензотиофен-3-карбоновой кислоты (выход около 60%).

[15]

Несмотря на незначительные отличия положения функциональных групп, синтетические подходы, реализованные в заявке US20190241583, не позволяли получить сложный C1-C6 алкиловый эфир 4-формил-6,7-дигидрокси-бензо[b]тиофен-3-карбоновой кислоты с аналогичными выходами. Основная проблема заключалась в крайне низких выходах (менее 30%) реакции формилирования сложного эфира 6,7-диалкокси-бензо[b]тиофен-3-карбоновой кислоты формулы

[16]

,

[17]

где R, R1 и R2 = C1-C6 алкил.

[18]

Таким образом, основная задача изобретения заключается в введении формильной группы в молекулу сложного C1-C6 алкилового эфира 6,7-диалкокси-бензо[b]тиофен-3-карбоновой кислоты с высокими выходами, превышающими 50-60%.

[19]

Дополнительная задача изобретения заключалась в том, чтобы повысить выход получения сложного C1-C6 алкилового эфира 6,7-диалкокси-бензо[b]тиофен-3-карбоновой кислоты из предшествующего 2,3-дизамещенноготиофенола. Известные подходы из заявки US20190241583 и статьи Phosphorus, Sulfur and Silicon and Related Elements, 2000, 166, p.p. 201-219 не позволяли получить выходы более 30% (по ВЭЖХ).

[20]

Вышеизложенные задачи решены авторами в настоящем изобретении.

[21]

Раскрытие изобретение

[22]

В рамках настоящего изобретения авторы неожиданно обнаружили, что сложный эфир 4-формил-6,7-дигидрокси-бензо[b]тиофен-3-карбоновой кислоты может быть получен с использованием в качестве исходного соединения 2,3-диалкокситиофенола. Причем используемые в настоящем изобретении на каждом этапе синтеза подходы позволяют получить желаемый продукт с наибольшими выходами, чем в известных патентных и литературных источниках.

[23]

В связи с этим, настоящее изобретение направлено на способ получения сложного эфира 4-формил-6,7-дигидрокси-бензо[b]тиофен-3-карбоновой кислоты структурной формулы

[24]

,

[25]

где R представляет собой C1-C6 алкил, включающий взаимодействие 2,3-диалкокситиофенола формулы

[26]

,

[27]

где R1 и R2 независимо представляют собой C1-C6 алкил, с алкилпропиолатом формулы

[28]

,

[29]

где R такой как определено выше, в среде ацетонитрила в присутствии инициатора радикальной реакции с получением сложного эфира 6,7-диалкокси-бензо[b]тиофен-3-карбоновой кислоты формулы

[30]

,

[31]

где R, R1 и R2 такие, как определено выше, с последующим бромированием с получением сложного эфира 4-бром-6,7-диалкокси-бензо[b]тиофен-3-карбоновой кислоты формулы

[32]

,

[33]

где R, R1 и R2 такие, как определено выше, с последующим кросс-сочетанием с алкиловым эфиром акриловой кислоты формулы

[34]

,

[35]

где R3 представляет собой C1-C6 алкил, в присутствии катализатора на основе палладия с получением сложного эфира (Е)-4-(3-алкокси-3-оксопроп-1-ен-1-ил)-6,7-диалкоксибензо[b]тиофен-3-карбоновой кислоты формулы

[36]

,

[37]

где R, R1, R2 и R3 такие, как определено выше, с последующим окислением смесью осмата щелочного металла и периодата щелочного металла с получением сложного эфира 4-формил-6,7-диалкокси-бензо[b]тиофен-3-карбоновой кислоты формулы

[38]

,

[39]

где R, R1 и R2 такие, как определено выше, с последующим деалкилированием трихлоридом или трибромидом бора с получением сложного эфира 4-формил-6,7-дигидрокси-бензо[b]тиофен-3-карбоновой кислоты.

[40]

В одном варианте изобретения в качестве инициатора радикальной реакции используют азобисизобутиронитрил.

[41]

В еще одном варианте изобретения R, R1 и R2 представляют собой метил, а R3 представляет собой этил.

[42]

В предпочтительном варианте изобретения в качестве катализатора на основе палладия используют Pd(dppf)2Cl2·CH2Cl2.

[43]

В наиболее предпочтительном варианте изобретения взаимодействие 2,3-диалкокситиофенола с алкилпропиолатом в среде ацетонитрила в присутствии инициатора радикальной реакции осуществляют при концентрации 2,3-диалкокситиофенола от 5 до 20 мг/мл.

[44]

В еще одном варианте изобретения смесь осмата щелочного металла и периодата щелочного металла представляют собой смесь осмата натрия и периодата натрия.

[45]

Осуществление изобретения

[46]

В настоящем изобретении предложен пятистадийный способ получения сложного эфира 4-формил-6,7-дигидрокси-бензо[b]тиофен-3-карбоновой кислоты структурной формулы

[47]

,

[48]

где R представляет собой C1-C6 алкил.

[49]

Термин «C1-C6 алкил» относится к углеводородной цепи с одинарными связями, которая может быть неразветвленной цепью или разветвленной цепью, содержащей от 1 до 6 атомов углерода. Примерами C1-C6 алкила являются метил, этил, н-пропил, изопропил, н-бутил, изо-бутил, трет-бутил и т.д.

[50]

На первой стадии осуществляют взаимодействие 2,3-диалкокситиофенола формулы

[51]

,

[52]

где R1 и R2 независимо представляют собой C1-C6 алкил, с алкилпропиолатом формулы

[53]

,

[54]

где R такой как определено выше, в среде ацетонитрила в присутствии инициатора радикальной реакции с получением сложного эфира 6,7-диалкокси-бензо[b]тиофен-3-карбоновой кислоты формулы

[55]

,

[56]

где R, R1 и R2 такие, как определено выше.

[57]

Термин «инициатор радикальной реакции» относится к различным органическим и неорганическим пероксидам, азосоединениям, N-нитрозоанилидам, триазенам, дибензилам и элементоорганическим соединениям, которые при нагревании или облучении образуют свободные радикалы. Примерами инициаторов радикальной реакции являются азобисизобутиронитрил (АИБН), дибензоилпероксид, трет-бутилгидропероксид, трет-бутилпероксид, кумилгидропероксид, кумилпероксид, ацетилциклогексилсульфонилпероксид, три-(трет-бутилперокси)винилкремний и т.д. Наиболее предпочтительным инициатором радикальной реакции является азобисизобутиронитрил.

[58]

Авторы настоящего изобретения неожиданно установили, что проведение реакции тиофенола с пропиолатом в растворе ацетонитрила приводит к наибольшим выходам бензотиофена, чем с другими подходящими растворителями. Кроме того, авторы установили, что концентрация тиофенола от 5 до 20 мг/мл является предпочтительной для достижения наибольшего выхода.

[59]

В таблице ниже представлена оптимизация условий получения бензотиофена на первой стадии в зависимости от растворителя, температуры и концентрации исходного тиофенола.

[60]

Таблица 1. Оптимизация условий синтеза бензотиофена на первой стадии (0.1 экв. АИБН, 2 экв. метилпропиолата, время 2 часа)

[61]

РастворительТемпература,°СКонцентрация тиофенола, мг/млВыход, %a
1PhFб801030
2MeCN801045
3CCl4801040
4PhNO2801031
5PhMe801042
6PhCF3в801029
7MeCN802041
8MeCN804025
9MeCN808021
10MeCN80544
11MeCN50106

[62]

a – выход установлен методом ВЭЖХ-МС;

[63]

бPhosphorus, Sulfur and Silicon and Related Elements, 2000, 166, p.p. 201-219;

[64]

в – US20190241583

[65]

На второй стадии сложный эфир 6,7-диалкокси-бензо[b]тиофен-3-карбоновой кислоты формулы

[66]

,

[67]

где R, R1 и R2 такие, как определено выше, бромируют, например, при помощи брома, с получением сложного эфира 4-бром-6,7-диалкокси-бензо[b]тиофен-3-карбоновой кислоты формулы

[68]

,

[69]

где R, R1 и R2 такие, как определено выше. Поскольку бензольное кольцо бензотиофена активировано двумя алкоксигруппами для реакции замещения, то для осуществления бромирования нет необходимости использовать специфические условия и специальные катализаторы, известные в данной области.

[70]

На третьей стадии осуществляют кросс-сочетание сложного эфира 4-бром-6,7-диалкокси-бензо[b]тиофен-3-карбоновой кислоты формулы

[71]

,

[72]

где R, R1 и R2 такие, как определено выше, с алкиловым эфиром акриловой кислоты формулы

[73]

,

[74]

где R3 представляет собой C1-C6 алкил, в присутствии катализатора на основе палладия с получением сложного эфира (Е)-4-(3-алкокси-3-оксопроп-1-ен-1-ил)-6,7-диалкоксибензо[b]тиофен-3-карбоновой кислоты формулы

[75]

,

[76]

где R, R1, R2 и R3 такие, как определено выше.

[77]

Термин «катализатор на основе палладия» относится к соединениям палладия, которые необходимы для осуществления реакции Хека. Подходящими катализаторами могут являться как соли двухвалентного палладия: PdCl2 и Pd(OAc)2, так и комплексные соли Pd(PPh3)4 или Pd(dppf)2Cl2·CH2Cl2.

[78]

При необходимости в реакцию кросс-сочетания могут добавлять подходящее основание, например, триэтиламин, карбонат натрия, гидрокарбонат натрия, карбонат калия и другие.

[79]

На четвертой стадии сложный эфир (Е)-4-(3-алкокси-3-оксопроп-1-ен-1-ил)-6,7-диалкоксибензо[b]тиофен-3-карбоновой кислоты формулы

[80]

,

[81]

где R, R1, R2 и R3 такие, как определено выше, окисляют смесью осмата щелочного металла и периодата щелочного металла с получением сложного эфира 4-формил-6,7-диалкокси-бензо[b]тиофен-3-карбоновой кислоты формулы

[82]

,

[83]

где R, R1 и R2 такие, как определено выше.

[84]

Под термином «щелочной металл» подразумевают натрий, калий, литий, рубидий. Наиболее предпочтительно в качестве щелочного металла использовать натрий. Таким образом, предпочтительно, что смесь осмата щелочного металла и периодата щелочного металла представляет собой смесь осмата натрия и периодата натрия.

[85]

Проведение стадий 2-4 позволяет ввести формильную группу в положение 4 сложного эфира 6,7-диалкокси-бензо[b]тиофен-3-карбоновой кислоты формулы

[86]

,

[87]

где R, R1 и R2 такие, как определено выше, причем суммарный выход от указанных стадий составляет более 60% (62%). Указанного выхода и близко не удалось добиться при прямом формилировании вышеприведенного сложного эфира 6,7-диалкокси-бензо[b]тиофен-3-карбоновой кислоты.

[88]

На пятой стадии осуществляют деалкилирование сложного эфира 4-формил-6,7-диалкокси-бензо[b]тиофен-3-карбоновой кислоты формулы

[89]

,

[90]

где R, R1 и R2 такие, как определено выше, при помощи подходящей кислоты Льюиса, выбранной из трихлорида бора и трибромида бора с получением целевого сложного эфира 4-формил-6,7-дигидрокси-бензо[b]тиофен-3-карбоновой кислоты структурной формулы

[91]

,

[92]

где R такое, как определено выше.

[93]

ПРИМЕРЫ

[94]

Представленные ниже примеры иллюстрируют (без ограничения объема притязаний) наиболее предпочтительные варианты осуществления изобретения, а также подтверждают возможность осуществления заявленного способа получения сложного эфира 4-формил-6,7-дигидрокси-бензо[b]тиофен-3-карбоновой кислоты на примере получения метилового эфира 4-формил-6,7-дигидрокси-бензо[b]тиофен-3-карбоновой кислоты, а также достижение заявленных технических результатов (высокого выхода).

[95]

Пример 1. Получение метилового эфира 6,7-диметоксибензо[b]тиофен-3-карбоновой кислоты (1).

[96]

Смесь 8.13 г (47.8 ммоль) 2,3-диметокситиофенола, 8.5 мл (16.8 ммоль) метилпропиолата и 1.57 г (9.6 ммоль) азобисизобутиронитрила (АИБН) в 500 мл ацетонитрила кипятили в течение 2 часов в атмосфере аргона. Затем растворитель отогнали в вакууме, остаток фильтровали через 5 см. слой силикагеля в системе этилацетат-гексан 1:10. Полученную смесь изомеров перекристаллизовывали из гексана. Получено 4.25 г (35%) игольчатых кристаллов соединения 1.1H NMR δ 8.24 (d, J = 8.8 Hz, 1H), 8.23 (s, 1H), 7.18 (d, J = 8.8 Hz, 1H), 4.05 (s, 3H), 3.98 (s, 3H), 3.95 (s, 3H).13C NMR δ 163.26, 148.77, 142.74, 135.33, 134.77, 132.11, 127.21, 119.97, 113.67, 60.61, 56.91, 51.67. HRMS (M+H)+ расч.: 253.0490, найдено: 253.0487.

[97]

Пример 2. Получение метилового эфира 4-бром-6,7-диметоксибензо[b]тиофен-3-карбоновой кислоты (2).

[98]

К раствору 4.00 г (15.8 ммоль) соединения 1 в 25 мл сухого дихлорметана (ДХМ) прибавили по каплям 813 мкл (15.8 ммоль) Br2. Реакционную смесь перемешивали в течение 3 часов при комнатной температуре. Затем промывали 3х12 мл насыщенного водного раствора NaHCO3, 3х12 мл насыщенного водного раствора Na2S2O3, 3х12 мл воды и 3х12 мл насыщенного водного раствора NaCl. Органическую фазу сушили безводным Na2SO4 и упаривали в вакууме. Остаток хроматографировали на силикагеле в толуоле. Получено 4.50 г (85%) бесцветного масла соединения 2.1H NMR δ 7.73 (s, 1H), 7.32 (s, 1H), 4.00 (s, 3H), 3.95 (s, 3H), 3.94 (s, 3H).13C NMR δ 165.28, 148.61, 142.22, 136.47, 130.48, 130.45, 129.91, 118.20, 109.86, 60.70, 57.03, 52.52. HRMS (M+H)+ расч.: 330.9634, найдено: 330.9641.

[99]

Пример 3. Получение метилового эфира (Е)-4-(3-этокси-3-оксопроп-1-ен-1-ил)-6,7-диметоксибензо[b]тиофен-3-карбоновой кислоты (3).

[100]

Смесь 2.00 г (6.13 ммоль) соединения 2, 1.35 мл (12.26 ммоль) этилакрилата, 0.25 г (0.31 ммоль) Pd(dppf)2Cl2·CH2Cl2 и 2.54 г (18.40 ммоль) K2CO3 в 20 мл абсолютного диметилформамида (ДМФ) перемешивали в течение 3 часов при 100°С в атмосфере аргона. Затем реакционную массу охлаждали и фильтровали через 2 см целита, фильтр промывали 25 мл этилацетата. К фильтрату прибавляли 100 мл воды, затем водную фазу экстрагировали 3х25 мл этилацетата. Органическую фазу промывали 3х25 мл воды и 3х25 мл насыщенного водного раствора NaCl, сушили безводным Na2SO4 и упаривали в вакууме. Остаток хроматографировали на силикагеле в системе этилацетат-гексан 1:3. Получено 1.87 г (87%) желтых кристаллов соединения 3.1H NMR δ 8.45 (d, J = 15.7 Hz, 1H), 8.11 (s, 1H), 7.32 (s, 1H), 6.29 (d, J = 15.6 Hz, 1H), 4.30 (q, J = 7.1 Hz, 2H), 4.07 (s, 3H), 3.99 (s, 3H), 3.96 – 3.93 (m, 3H), 1.37 (t, J = 7.1 Hz, 3H).13C NMR: δ 166.5, 159.9, 145.1, 140.3, 129.8, 134.9, 132.5, 131.0, 129.8, 124.2, 116.2, 110.6, 61.4, 51.5, 14.2. HRMS (M+H)+ расч.: 351.0858, найдено: 351.0865.

[101]

Пример 4. Получение метилового эфира 4-формил-6,7-диметоксибензо[b]тиофен-3-карбоновой кислоты (4).

[102]

К смеси 1.23 г (3.84 ммоль) соединения 3, 58 мг (0.19 ммоль) Na2OsO4, 6 мл ТГФ и 6 мл воды прибавили раствор 1.64 г (7.68 ммоль) NaIO4 в 6 мл воды. Реакционную массу перемешивали в течение 1 ч, затем фильтровали, промывали 3х6 мл воды и сушили в вакууме. Получено 0.87 г (80%) порошка кремового цвета соединения 4.1H NMR δ 10.62 (s, 1H), 8.27 (s, 1H), 7.76 (s, 1H), 4.16 (s, 3H), 4.02 (s, 3H), 3.95 (s, 3H).13C NMR δ 190.90, 164.61, 147.74, 146.83, 137.19, 136.36, 130.62, 128.54, 127.50, 114.91, 61.04, 56.85, 52.40. HRMS (M+H)+ расч.: 281.0439, найдено: 281.0431.

[103]

Пример 5. Получение метилового эфира 4-формил-6,7-дигидроксибензо[b]тиофен-3-карбоновой кислоты (5).

[104]

К раствору 400 мг (1.43 ммоль) соединения 4 в 10 мл сухого ДХМ прибавили 1.43 мл (7.15 ммоль) 5М раствора BBr3 в ДХМ. Реакционную смесь перемешивали в течение 4 часов при комнатной температуре, затем вылили в охлажденный до -78 °С метанол и упарили на холоде. Остаток переупарили еще три раза с 15 мл порциями метанола. Полученное масло растворили в 1 мл ДМФ и прибавили к 10 мл воды. Осадок отфильтровали, промыли водой 3х3 мл и высушили в вакууме. Получено 315 мг (88%) кремового порошка соединения 5.1H NMR (300 MHz, DMSO-d6) δ 10.81 (br.s, 1H), 10.22 (br.s, 1H), 10.20 (br.s, 1H), 8.38 (s, 1H), 7.57 (s, 1H), 3.82 (s, 3H).13C NMR (75 MHz, DMSO) δ 190.60, 165.29, 145.29, 141.37, 136.13, 131.04, 129.62, 129.11, 123.73, 119.00, 52.56. HRMS (M-H)- расч.: 251.2325, найдено: 251.2318.

[105]

Вышеприведенные примеры подтверждают получение сложного эфира 4-формил-6,7-дигидрокси-бензо[b]тиофен-3-карбоновой кислоты из исходного 2,3-диалкокситиофенола с высокими выходами, чем в известных до уровня техники источниках. Описанные выше превращения можно проиллюстрировать следующей синтетической схемой:

[106]

Как компенсировать расходы
на инновационную разработку
Похожие патенты