патент
№ RU 2708125
МПК C22B7/00

СПОСОБ ПЕРЕРАБОТКИ ЦИНКСОДЕРЖАЩИХ МЕТАЛЛУРГИЧЕСКИХ ШЛАМОВ

Авторы:
Школлер Марк Борисович
Номер заявки
2019117309
Дата подачи заявки
04.06.2019
Опубликовано
04.12.2019
Страна
RU
Как управлять
интеллектуальной собственностью
Чертежи 
1
Реферат

Изобретение относится к переработке цинксодержащих отходов, а именно шламов и пылей мокрых и сухих газоочисток доменного, мартеновского, конверторного, электросталеплавильного и других производств, и может быть использовано в черной и цветной металлургии. Цинксодержащие отходы металлургического производства осушивают и смешивают осушенный шлам с углеродистым восстановителем. Полученную смесь подвергают высокотемпературной обработке при температуре до 1100° с восстановлением оксидов железа до металлического железа и испарения цинка. Осушивание шлама осуществляют в смесителе-дозаторе путем адсорбционного обезвоживания мелкозернистым буроугольным полукоксом, взятым в соотношении 1:(1,5-2). Увлажненный буроугольный кокс отделяют путем пневмосепарации и направляют его в промежуточный бункер, а осушенный шлам, смешанный с углеродистым восстановителем в соотношении 1:(0,5-1), подвергают термохимическому окускованию в печи с вращающимся подом. Полученный после обжига феррококс охлаждают и сортируют на классы. Способ позволяет утилизировать отходы металлургического производства и получить продукт - феррококс с удаленным цинком и металлизованным железом, пригодным к использованию в доменном производстве. 1 ил.

Формула изобретения

Способ переработки цинксодержащих металлургических шламов, включающий их осушивание, смешивание осушенного шлама с углеродистым восстановителем, высокотемпературную обработку полученной смеси при температуре до 1100°, восстановление оксидов железа до металлического железа и испарение цинка, отличающийся тем, что осушивание шлама осуществляют в смесителе-дозаторе путем адсорбционного обезвоживания мелкозернистым буроугольным полукоксом, взятым в соотношении 1:1,5-2, после чего отделяют увлажненный буроугольный кокс путем пневмосепарации и направляют его в промежуточный бункер, а осушенный шлам, смешанный с углеродистым восстановителем в соотношении 1:0,5-1, подвергают термохимическому окускованию в печи с вращающимся подом, при этом полученный после обжига феррококс охлаждают и сортируют по классам.

Описание

[1]

Изобретение относится к переработке цинксодержащих отходов, а именно шламов и пылей мокрых и сухих газоочисток доменного, мартеновского, конверторного, электросталеплавильного и других производств, и может быть использовано в черной и цветной металлургии.

[2]

Применение эффективных технологий по переработке образующихся на предприятиях металлургии промышленных отходов является одной из важнейших задач.

[3]

В конверторном производстве стали в зависимости от состава сырья, конструкции печей и условий плавки на тонну стали образуется 12-25 кг тонкодисперсной пыли, которая при мокрой очистке отходящих газов превращается в шлам, содержащий до 46-50% Fe2O3, что позволяет их рассматривать как ценное металлургическое сырье. Утилизация такого продукта затруднена из-за большой влажности, мелкодисперсного состава и наличия окислов цинка.

[4]

Содержание цинка в шламах металлургического производства составляет 1-14%, Его повышенное содержание в исходном сырье приводит к снижению стойкости футеровки, к образованию настылей в доменной печи и разрушению агломерата, из-за чего резко ухудшаются газодинамические условия доменного процесса и уменьшается производительность доменных печей. При утилизации таких пылей присадкой их в агломерационную шихту происходит накопление цинка в получаемом агломерате. Поэтому при подготовке к утилизации шламов кислородно-конвертерного цеха, пыли дуговых сталеплавильных печей электросталеплавильного цеха, шламов доменных газоочисток с повышенным содержанием цинка необходимо наряду с обезвоживанием и окускованием предусмотреть его обесцинкование.

[5]

Обезвоживание по традиционной технологии сложно и громоздко, связано с взрывоопасной термической сушкой, а окускование брикетированием или гранулированием осложнено дефицитом приемлемых связующих веществ и не решает проблемы присутствия оксидов цинка без последующего высокотемпературного восстановительного обжига.

[6]

Известна многоступенчатая технология утилизации железо цинкосодержащих шламов, предусматривающая термическую сушку цинкосодержащих шламов или их смеси с пылями в барабанной сушилке, смешивание высушенной смеси с углеродистым восстановителем, гранулирование смеси в тарельчатом грануляторе, высокотемпературную обработку в обжиговой печи при температуре 910-1100° с применением природного газа и угля, при котором оксиды железа восстанавливаются до металлического железа, а соединения цинка испаряются. Цинксодержащую пылегазовую смесь отводят из реакционной зоны обжиговой печи в количестве 70-80% от общего объема цинксодержащей пылегазовой смеси, пропускают через котел-утилизатор тепла, отгоняют цинк и улавливают возгоны цинка с получением товарного цинкового продукта (RU №2269580 МПК С22В 1/216, С22В 7/00, С22В 19/30, опубл. 10.02.2006).

[7]

Недостатками этого способа являются применение энергозатратной и взрывоопасной технологии сушки шлама и многоступенчатость процесса окускования, являющегося отдельной стадией высокотемпературного обжига.

[8]

Техническая проблема, решаемая предлагаемым изобретением, заключается в утилизации железо цинкосодержащих отходов металлургического производства и разработке эффективной технологии с получением продукта без примеси цинка - (феррококса), пригодного для использования в доменных и сталеплавильных агрегатах.

[9]

Существующая проблема решается тем, что в известном способе переработки цинксодержащих отходов металлургического производства, включающем их осушивание, смешивание осушенного шлама с углеродистым восстановителем, высокотемпературную обработку полученной смеси при температуре до 1100°, восстановление оксидов железа до металлического железа и испарение цинка, отличающийся тем, что осушивание шлама осуществляют в смесителе-дозаторе путем адсорбционного обезвоживания мелкозернистым буроугольным полукоксом взятом в соотношении 1:(1,5-2), затем отделяют увлажненный буроугольный кокс путем пневмосепарации и направляют его в промежуточный бункер, а осушенный шлам, смешанный с углеродистым восстановителем в соотношении 1:(0,5-1), подвергают термохимическому окускованию в печи с вращающимся подом, полученный после обжига феррококс охлаждают и сортируют на классы.

[10]

Технический результат, получаемый в результате использования изобретения, заключается в утилизации отходов металлургического производства и получении продукта - феррококса с удаленным цинком и металлизованным железом, пригодным к использованию в доменном производстве.

[11]

В качестве адсорбента был использован такой энергоноситель как твердый остаток пиролиза бурого угля - мелкозернистый буроугольный полукокса (БПК), который в настоящее время производится по технологии «Термококс-КС», на опытно-промышленной установке разреза Березовский-1 в г. Шарыпово Красноярского края. БПК обладает высокоразвитой и хорошо доступной пористой структурой и соответственно высокой адсорбционной способностью и высокими энергетическими свойствами.

[12]

Объем микропор пористой структуры БПК более чем в 10 превышает объем микропор в структуре каменноугольного кокса. В связи с этим адсорбционная способность БПК, близка по этому показателю к традиционным активным углям.

[13]

Определение гранулометрического состава БПК на приборе лазерной гранулометрии MALVERN-2000 показало, что он практически идентичен гранулометрии пробы шлама.

[14]

Результаты обезвоживания оценивались по показателю сыпучести материала (ГОСТ 25139-93). В основе определения соотношения БПК: шлам, необходимого для получения сыпучей смеси, лежат данные по влажности шлама и адсорбционной способности БПК.

[15]

Предварительные расчеты показали, что при данной влажности шлама и адсорбционной способности БПК их соотношение в смеси для достижения сыпучего состояния должно быть как 1:(1,5-2).

[16]

В то же время следует отметить, что плотность частиц БПК даже при условии заполнения всего пористого пространства адсорбированной влагой (1,42 г/см3) будет более чем 2,5 раза ниже плотности частиц конверторного шлама (3,8 г/см3). Это делает возможным их пневмосепарационное разделение, после которого БПК направляется на технолого-энергетическое использование, шлам - на термохимическое окускование для получения кускового железоуглеродистого компонента доменной шихты.

[17]

Смешивание осушенного шлама с углеродистым восстановителем (коксующиеся угли марок ГЖ и Ж) в массовом соотношении 1:(0,5-1) позволяет получить прочный кусковый материал. Выбор такого соотношения компонентов смеси базируется на представлениях о том, что в данном случае осушенный шлам является отощающей добавкой к коксующимся углям с высоким выходом летучих веществ и для получения прочного кускового материала необходимо иметь определенный уровень спекаемости смеси.

[18]

Предлагаемое изобретение иллюстрируется чертежом, где изображена принципиальная технологическая схема переработки цинксодержащих металлургических шламов.

[19]

На схеме изображены шламонакопитель 1, сгуститель 2, шламовый насос 3 для перекачки шлама, бункер 4 для хранения БПК, смеситель-адсорбер 5, циклон 6 для удаления более легких частиц пыли, пневмоклассификатор 7 для отделения увлажненного БПК от шлама, рукавный фильтр 8, бункер 9 для отделенного увлажненного БПК, воздуходувка 10 для пневмосепаратора, бункер 11 для углеродистого восстановителя, смеситель 12 для смешивания осушенного шлама и углеродистого восстановителя, печь с вращающимся подом 13 для коксования и получения кускового материала, газовая утилизационная бескомпрессорная турбина (ГУБТ) 14, установка сухого тушения кокса 15, устройство для сортировки феррококса 16, котел-утилизатор 17, конденсатор цинка 18.

[20]

Способ переработки осуществляется следующим образом.

[21]

Конверторный шлам (КШ) из шламонакопителя 1 поступает в сгуститель 2 и затем передается в смеситель-адсорбер 5, для контакта с мелкозернистым буроугольным полукоксом (БПК), выполняющим функцию адсорбента влаги, поступающим из бункера 4. Затем смесь БПК+КШ передается на разделение в пневмоклассификационную установку 7, откуда более легкий БПК через пылеотделительную систему (циклон 6, рукавный фильтр 8) поступает в бункер 9, откуда забирается на энерготехнологические нужды, а очищенный от пыли воздух сбрасывается в атмосферу. Более тяжелый шлам из пневмоклассификатора 7 переходит через дозирующее устройство в смеситель 12, туда же поступает из бункера 11 через дозирующее устройство углеродный восстановитель (коксующийся уголь). Составленная в заданном соотношении смесь подвергается термоокислительному коксованию в печи с вращающимся подом 13 в течение 5-7 часов. Полученный при конечной температуре 1100°С феррококс охлаждается в агрегате сухого тушения 15 с котлом-утилизатором 17 и сортируется на классы 0-10 мм, 25-10 мм и +25 мм. Тепло для коксования формируется за счет сжигания над слоем шихты в печи с вращающимся подом 13 выделяющихся газообразных продуктов. Одновременно на конечной стадии коксования (температуры 1050-1100°С) завершаются процессы восстановления окислов железа до Feмет и окислов цинка до Znмет, степень восстановления до Feмет составляет 85-94% масс, содержание ZnO - 0,008-0,017%. Продукты сгорания газа из печи с вращающимся подом, пройдя конденсатор цинка 18, где осуществляется сбор цинка, направляются на газовую утилизационную бескомпрессорную турбину (ГУБТ) 14 и затем сбрасываются в атмосферу.

[22]

Таким образом, разработан новый комплексный технологический энергосберегающий процесс кондиционирования железо

[23]

цинкосодержащих металлургических шламов нетермическим адсорбционным обезвоживанием и термохимическим окускованием с одновременным восстановлением при этом окислов железа и цинка, с получением продукта - феррококса, пригодного для использования в доменных и сталеплавильных агрегатах.

Как компенсировать расходы
на инновационную разработку
Похожие патенты