патент
№ RU 2702524
МПК C21D8/00

Способ закалки металлических изделий при термомеханической обработке

Авторы:
Макаров Сергей Сергеевич Балобанов Никита Алексеевич Чекмышев Константин Эдуардович
Все (4)
Номер заявки
2018143199
Дата подачи заявки
05.12.2018
Опубликовано
08.10.2019
Страна
RU
Как управлять
интеллектуальной собственностью
Чертежи 
1
Реферат

[21]

Изобретение относится к металлургии и машиностроению и может быть использовано для закалки изделий, выполненных из углеродистых и легированных сталей. Для повышения эффективности охлаждения и расширения диапазона закаливания металлических изделий охлаждающую среду подают на заданном расстоянии от выхода закаливаемого изделия из деформирующих роликов под углом к поверхности с заданным расходом среды. Основное количество тепла отбирается на выходе изделия за счет предварительного нагрева и парообразования жидкости (воды), при этом используется водовоздушная среда с содержанием воздуха 10-20 %, которая подается на расстоянии 0,15-0,3 м от выхода закаляемого изделия из деформирующих роликов под углом к поверхности 10-15 градусов с расходом 250-330 см3/с среды и при начальной температуре (85-90)°С. Подача воды с регулированной воздушной фазой позволит создать условия охлаждения нужной интенсивности и скорости охлаждения, что значительно уменьшит расход охлаждающей среды и повысит полноту использования ее теплофизических свойств в процессе закалки. 1 ил.

Формула изобретения

Способ закалки металлических изделий при термомеханической обработке, включающий нагрев изделия, деформацию и охлаждение, отличающийся тем, что для охлаждения используют предварительно нагретую до 85-90°С водовоздушную среду с содержанием воздуха 10-20%, подаваемую на расстоянии 0,15-0,3 м от выхода закаливаемого изделия из деформирующих роликов под углом к поверхности 10-15 градусов и с расходом 250-330 см3/с.

Описание

[1]

Изобретение относится к металлургии и машиностроению и может быть использовано для закалки изделий, выполненных из углеродистых и легированных сталей.

[2]

Известен способ охлаждения проката (SU 619524 A1, C21/D1/60, опубл. 15.08.1978), в котором повышение эффективности охлаждения и экономичности процесса при термической обработке проката достигается путем подачи на охлаждаемую поверхность водовоздушной смеси с дальнейшим ее испарением. Охлаждение происходит с помощью последовательно расположенных секций, на каждой из которых производится охлаждение проката из спрейерных устройств. Воду, отработанную в предыдущей секции, подают на поверхность охлаждаемого проката в последующей секции, а по достижении водой температуры 85-90°С из нее создают водовоздушную смесь и дальнейшее охлаждение в требуемом диапазоне температур осуществляют путем подачи этой смеси на поверхность проката. Основное количество тепла отбирается в испарительной секции с использованием нагретой до температуры кипения водовоздушной смеси. Использование данного способа обеспечивает интенсификацию процесса охлаждения путем повышения коэффициента теплоотдачи и значительное уменьшение расхода воды за счет полного использования, по мнению авторов, ее теплофизических свойств.

[3]

Недостаток способа заключается в отсутствии возможности достичь оптимальных режимов охлаждения, которые можно организовать путем изначальной подачи водовоздушной смеси на поверхность проката в первой секции. Кроме того, отсутствует возможность регулирования скорости охлаждения.

[4]

В Уральском Государственной Техническом Университете (УГТУ-УПИ г. Екатеринбург, с 2010 года Уральский Федеральный Университет), разработан способ охлаждения (закалки) металлических изделий в водовоздушных смесях (среда водяного тумана) как альтернативный закалке в масло. Водовоздушная смесь, содержащая капли воды заданной дисперсности, создается специальными устройствами и равномерно распределяется по поверхности охлаждаемого тела. Регулирование скорости охлаждения обеспечивается за счет изменения плотности орошения поверхности водовоздушной смесью с неизменными теплофизическими свойствами.

[5]

Недостатком способа является ограниченное регулирование интенсивности отвода теплоты, которое, главным образом, достигается за счет варьирования плотности орошения, независимо от структуры потока охлаждающей среды и ее теплофизических свойств.

[6]

Наиболее близким способом к заявленному изобретению и выбранным в качестве прототипа признан способ управляемого охлаждения при термообработке изделий из различных материалов, металлов и их сплавов водовоздушной смесью и устройство для его осуществления (Евроазиатский патент №006413, C21D 11/00, 1/667, 29.12.2005). Способ включает регулирование для каждой зоны охлаждения, рассчитанного с помощью ЭВМ, до температуры, определяющей окончание фазовых преобразований. Использование способа позволяет производить закалку водовоздушной смесью, при которой охлаждение всей партии одинаковых изделий проводят в импульсном режиме по одному, заранее рассчитанному, режиму и заданной величине отклонения температуры (глубина термоцикла) при микро- и термоциклировании процесса охлаждения. Регулирование закалочного охлаждения водовоздушной смесью осуществляется путем импульсно - периодической подачи двухфазной среды при помощи программного управления работой каждой форсунки в режимах «открыт-закрыт».

[7]

Недостатком данного способа является необходимость для достижения требуемых режимов теплосъема экспериментального подбора длительности импульса (времени воздействия водовоздушного потока на объект) в процессе охлаждения при постоянных теплофизических параметрах охлаждающей среды. Природа регулирования носит технологический характер, и обеспечивается автоматизированной системой подачи с заданной периодичностью закалочной водовоздушной среды, причем рассматриваемая среда представляет собой смесь капель воды с водяными парами и воздухом. Такой подход к созданию охлаждаемых сред является традиционным и применяется повсеместно для технологических операций охлаждения.

[8]

Задачей предложенного способа является расширение диапазона закаливания в охлаждающей жидкости изделий из различных металлов за счет управления в расширенном диапазоне интенсивностью отвода тепла.

[9]

Решение поставленной задачи достигается тем, что охлаждающую среду подают на поверхность на заданном расстоянии от выхода закаливаемого изделия из деформирующих роликов под углом к поверхности с заданным расходом среды. Основное количество тепла отбирается на выходе изделия за счет предварительно нагрева и парообразования жидкости (воды).

[10]

Регулирование теплофизических свойств (теплоемкость, теплопроводность) достигается за счет требуемой концентрации парогазовой фазы, при этом интенсивность отвода тепла от нагретых поверхностей металлических изделий может изменяться от максимальных скоростей, в несколько раз превышающих охлаждение в воде, до минимальных скоростей, обеспечиваемых использованием в качестве закалочных сред масла и воздуха.

[11]

Предлагаемый способ поясняется чертежами: фиг. 1. Схема процесса закалки металлических изделий при термомеханической обработке.

[12]

Способ осуществляют следующим образом: -заготовка 1 при перемещение через деформирующие ролики 2 попадает в спрейерную установку 3, в которой водовоздушная среда 4 предварительно нагретая до (85-90)°С подается на поверхность 5 на расстоянии (0.15-0.3) м от выхода закаливаемого изделия из деформирующих роликов под углом к поверхности (10-15) градусов с расходом (250-330) см3/с, что способствует формированию эффективной зоны охлаждения при закалке. Основное количество тепла отбирается за счет предварительного нагрева и парообразования водовоздушной среды.

[13]

Пример осуществления способа.

[14]

Закалялись образцы из стали 60С2, при этом охлаждающая водовоздушная среда создавалась в кавитирующем устройстве типа трубки Вентури. Вода подается на вход кавитирующего устройства под давлением 0,21 МПа., с массовым расходом 0,25 кг/с. При прохождении сужающегося участка трубки в потоке воды возникают кавитационные парогазовые пузырьки. Для реализованного случая приведенная плотность водовоздушной среды составила 0,18 г/см3. При этом теплоемкость среды 1,56 кДж/(кг⋅град), коэффициент теплопроводности 0,138 Вт/(м⋅град). Скорость охлаждения, характеризующая интенсивность отвода тепла, изменялась в диапазоне (100-120) град/с.

[15]

Для достижения скоростей охлаждения (150-200) град/с стали 30ХН2МФ применялось давление воды 0,3 МПа, массовым расходом 0,5 кг/с. Приведенная плотность среды составила 0,57 г/см3, теплоемкость среды 2,87 кДж/(кг⋅град), коэффициент теплопроводности 0,39 Вт/(м⋅град).

[16]

В результате закалки получена твердость от 35 HRC до 50 HRC в зависимости от расхода воды и температуры нагрева стали под закалку. Кроме того, структура полученных образцов имела различные формы - от бесструктурного мартенсита до пластинчатого перлита без дополнительного отпуска. Проведенные исследования показали возможность применения двухфазной водовоздушной среды для закалки высокоуглеродистых и легированных сталей марок типа 60С2, Ст40, Ст50, 40ХНМА, 65Г, 65С2 ВА без проведения дополнительного отпуска. При этом теплофизические свойства закалочной (охлаждающей) среды изменялись для каждой конкретной стали с учетом обеспечения заданного теплосъема охлаждающей средой (соотношением количество воздуха - количество воды) при температуре Т=85-90°С.

[17]

Применение способа позволит:

[18]

1. Сократить этапы технологических операций в комплексном процессе изготовления изделий и снизить расходы материала и времени на производство.

[19]

2. Повысить уровень безопасности проведения работ за счет отказа от применения агрессивных сред, таких, как масло, эмульсии, керосин, обеспечивая при этом нормы пожарной безопасности.

[20]

3. Улучшить экологические параметры производства, минимизировав вредные выбросы в окружающую среду.

Как компенсировать расходы
на инновационную разработку
Похожие патенты