патент
№ RU 2662239
МПК B01J21/12

Катализатор гидрокрекинга углеводородного сырья

Авторы:
Климов Олег Владимирович Казаков Максим Олегович Надеина Ксения Александровна
Все (7)
Номер заявки
2017140003
Дата подачи заявки
16.11.2017
Опубликовано
25.07.2018
Страна
RU
Как управлять
интеллектуальной собственностью
Реферат

Изобретение относится к катализаторам гидрокрекинга углеводородного сырья для получения низкосернистых керосиновых и дизельных фракций. Описан катализатор, который содержит одновременно молибден и вольфрам в форме биметаллических комплексных соединений [Ni(HO)(L)][MoO(CHO)] и Ni(NH)[HWO(CHO)], где: L и СНО- частично депротонированная форма лимонной кислоты; х=0 или 2; y=0 или 1; а=0, 1 или 2; b=2-а; кремний в форме аморфного алюмосиликата, алюминий в форме γ-AlOи аморфного алюмосиликата, при этом компоненты в катализаторе содержатся в следующих концентрациях, мас. %: [Ni(HO)(L)][MOO(CHO)] - 6.2-14.9, Ni(NH)[HWO(CHO)] - 10.2-23.3, аморфный алюмосиликат - 33.4-50.9; γ-AlO- остальное, что соответствует содержанию в прокаленном при 550°С катализаторе, мас. %: MoO- 3.6-8.4, WO- 5.8-13.5, NiO - 3.1-3.9, аморфный алюмосиликат - 38.3-56.9, γ-AlO- остальное. При этом входящие в состав катализатора вольфрам и молибден содержатся в мольном соотношении W/(Mo+W) от 0.3 до 0.7. Технический результат - высокая активность в гидрокрекинге углеводородного сырья и высокая селективность по отношению к керосиновой и дизельным фракциям. 2 з.п. ф-лы, 2 табл., 6 пр.

Формула изобретения

1. Катализатор гидрокрекинга углеводородного сырья, включающий в свой состав никель, молибден, алюминий и кремний, отличающийся тем, что он содержит одновременно молибден и вольфрам в форме биметаллических комплексных соединений [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] и Ni(NH4)a[HbW2O5(C6H5O7)2], где: L и C6H5O7 - частично депротонированная форма лимонной кислоты; х=0 или 2; y=0 или 1; а=0, 1 или 2; b=2-а; кремний в форме аморфного алюмосиликата, алюминий в форме γ-Al2O3 и аморфного алюмосиликата, при этом компоненты в катализаторе содержатся в следующих концентрациях, мас. %: [Ni(H2O)х(L)у]2[Mo4O11(C6H5O7)2] 6.2-14.9, Ni(NH4)a[HbW2O5(C6H5O7)2] 10.2-23.3, аморфный алюмосиликат - 33.4-50.9, γ-Al2O3 - остальное, что соответствует содержанию в прокаленном при 550°C катализаторе, мас. %: MoO3 - 3.6-8.4, WO3 - 5.8-13.5, NiO - 3.1-3.9, аморфный алюмосиликат - 38.3-56.9; γ-Al2O3 - остальное.

2. Катализатор по п. 1, отличающийся тем, что входящие в состав катализатора вольфрам и молибден содержатся в мольном соотношении W/(Mo+W) от 0.3 до 0.7.

3. Катализатор по п. 1, отличающийся тем, что он имеет объем пор 0.61-0.80 см3/г, удельную поверхность 224-263 м2/г и средний диаметр пор 10.3-11.8 нм и представляет собой частицы с сечением в виде трилистника, четырехлистника либо круга с диаметром описанной окружности 1,2-2,5 мм и длиной до 20 мм, имеющие объемную механическую прочность, определяемую по методу Shell SMS 1471, не менее 1,0 МПа.

Описание

[1]

Изобретение относится к катализаторам гидрокрекинга углеводородного сырья, предназначенных для получения керосиновых и дизельных фракций с низким содержанием серы.

[2]

В настоящее время в российской нефтеперерабатывающей промышленности наблюдаются следующие тенденции: увеличение глубины переработки нефти, ужесточение требований к моторным топливам, вовлечение в переработку все более тяжелой нефти. Гидрокрекинг углеводородного сырья позволяет увеличить глубину нефтепереработки, вовлекать в переработку более тяжелые нефти и получать высококачественные моторные топлива - с низким содержанием серы и ароматических соединений.

[3]

В зависимости от условий проведения процесса гидрокрекинга и применяемых катализаторов можно добиваться изменения фракционного состава получаемой смеси углеводородов в широких пределах, что позволяет существенно регулировать выход получаемых продуктов: углеводородного газа, бензиновой, керосиновой, дизельной фракций, остатка гидрокрекинга. Из-за повышенного спроса и высокого качества наиболее ценными продуктами гидрокрекинга являются керосиновая и дизельная фракции. Существующие марки российских катализаторов обладают низкой селективностью по отношению к керосиновой и дизельной фракциям и не позволяют достигать высоких выходов керосиновой и дизельной фракций даже при ужесточении условий проведения процесса гидрокрекинга, например, за счет подъема температуры в реакторе. Кроме того, известные катализаторы обладают низкой активностью в гидрокрекинге и гидрообессеривании, что приводит к необходимости увеличения стартовой температуры процесса и, как следствие, меньшему циклу пробега катализатора до его дезактивации. Соответственно, актуальной задачей является создание новых высокоактивных катализаторов гидрокрекинга селективных к керосиновой и дизельной фракциям, имеющих повышенную активность в гидрообессеривании и позволяющих получать керосиновую и дизельную фракции с высоким выходом.

[4]

Известны различные нанесенные катализаторы гидрокрекинга углеводородного сырья, однако общим недостатками для них являются: низкий выход целевых продуктов - керосиновой и дизельной фракций и высокое содержание серы в получаемых продуктах.

[5]

Чаще всего для проведения гидрокрекинга углеводородного сырья используют катализаторы, содержащие оксиды никеля и молибдена или вольфрама, нанесенные на носитель, содержащий аморфный алюмосиликат, высококремниземистый цеолит Y и оксид алюминия. Так известен катализатор [РФ №2540071], наиболее предпочтительно содержащий 10-20 мас. % вольфрама или молибдена, 1-6 мас. % никеля, а его носитель содержит суммарно 10-50 мас. % цеолитов Y и бета, а остальное составляет аморфный алюмосиликат, причем содержание цеолита бета составляет 0.5-10 мас. %. При этом процесс гидрокрекинга ведут при температуре 300-450°С, давлении 8-20 МПа, при соотношении водород/сырье 200-3000 нл/кг и объемной скорости подачи сырья 0,2-5 кг*л-1-1. Основным недостатком такого катализатора и способа проведения процесса гидрокрекинга является низкий выход керосиновой и дизельной фракций, а также высокое содержание серы в получаемых продуктах.

[6]

Известен катализатор [РФ №2366505], наиболее предпочтительно содержащий 21 мас. % WO3, 5 мас. % NiO, а его носитель наиболее предпочтительно содержит суммарно 20-80 мас. % ультрастабильного цеолита Y и низкокремнеземного цеолита Y либо цеолита бета, либо цеолита ZSM-5, а остальное связующее в виде аморфного алюмосиликата и оксида алюминия, причем содержание низкокремнеземного цеолита Y, цеолита бета, цеолита ZSM-5 составляет 0,5-10%. При этом процесс гидрокрекинга ведут при температуре 300-450°С, давлении 8-20 МПа, при соотношении водород/сырье 250-2000 нл/кг и объемной скорости подачи сырья 0,5-5 кг*л-1-1. Основным недостатком такого катализатора и способа проведения процесса гидрокрекинга является низкий выход керосиновой и дизельной фракций, а также высокое содержание серы в получаемых продуктах.

[7]

С целью повышения активности и селективности катализаторов гидрокрекинга могут использоваться катализаторы, содержащие в качестве гидрирующих компонентов трехкомпонентную систему (Ni+Mo+W), в качестве кислотного компонента фтористый алюминий, а в качестве промоторов оксид бора, оксид циркония или их смесь.

[8]

Так известен катализатор [РФ №2245737], содержащий, мас. %: гидрирующие компоненты 15-30% (оксиды никеля, молибдена и вольфрама при массовом соотношении 25:35:40), кислотный компонент (фтористый алюминий) 20-40 промотор (оксид бора и/или циркония) 1-4, связующее (оксид алюминия, алюмосиликат, глину или их смесь) до 100%. При этом процесс гидрокрекинга ведут при температуре 380-430°С, давлении 3-10 МПа, при соотношении водород/сырье 250-1000 нм33 и объемной скорости подачи сырья 1-3 ч-1 Основным недостатком такого катализатора и способа проведения процесса гидрокрекинга является низкий выход керосиновой и дизельной фракций, а также высокое содержание серы в получаемых продуктах.

[9]

С целью увеличения активности катализатора в гидробессеривании могут применяться катализаторы, содержащие в качестве модифицирующих добавок полигидрокси-соедниения С312.

[10]

Так известен катализатор гидрокрекинга углеводородного сырья [WO 2013092806 A1, B01J 21/12, C10G 47/12, 27/06/2013], включающий в свой состав никель, молибден или вольфрам, носитель на основе аморфного алюмосиликата и полигидрокси-соедниения С312. Компоненты в катализаторе наиболее предпочтительно содержатся в следующих концентрациях, мас. %: никель 3-6, молибден 10-16 или вольфрам 15-22, сукроза и/или глюконовая кислота 5-20. Причем катализатор после нанесения активных металлов сушат при температуре не более 200°С. При этом процесс гидрокрекинга ведут при температуре 300-450°С, давлении 8-20 МПа, при соотношении водород/сырье 200-3000 нл/кг и объемной скорости подачи сырья 0,2-5 кг*л-1-1. Основным недостатком такого катализатора является низкий выход керосиновой и дизельной фракций, а также высокое содержание серы в получаемых продуктах.

[11]

Наиболее близким по своей технической сущности к заявляемому катализатору является катализатор гидрокрекинга углеводородного сырья [РФ №2607905], включающий в свой состав никель, молибден, алюминий и кремний. При этом никель и молибден содержатся в форме биметаллических комплексных соединений [Ni(H2O)х(L)у]2[Mo4O11(C6H5O7)2], где L-частично депротонированная форма лимонной кислоты С6Н5О7; х=0 или 2; у=0 или 1; кремний в форме аморфного алюмосиликата, алюминий в форме γ-Al2O3 и аморфного алюмосиликата.

[12]

Компоненты в катализаторе содержатся в следующих концентрациях, мас. %: мас. %: [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] 13,1-23,3, аморфный алюмосиликат - 40,0-61,3; γ-Al2O3 - остальное, что соответствует содержанию в прокаленном при 550°С катализаторе, мас. %: МоО3 - 7,0-13,0, NiO - 1,8-3,4, аморфный алюмосиликат - 43,1-66,9; γ-Al2O3 - остальное.

[13]

Основным недостатком прототипа, также как и других известных катализаторов, является низкий выход керосиновой и дизельной фракций, а также высокое содержание серы в получаемых продуктах.

[14]

Изобретение решает задачу создания улучшенного катализатора гидрокрекинга углеводородного сырья.

[15]

Технический результат - высокая гидрообессеривающая активность и оптимальные для гидрокрекинга углеводородного сырья текстурные и кислотные характеристики катализатора, обеспечивающие получение керосиновой и дизельной фракций с высоким выходом и низким содержанием серы.

[16]

Предлагаемый катализатор имеет оптимальный химический состав, включающий молибден, вольфрам и никель в форме биметаллических комплексных соединений, нанесенные на композитный носитель, в состав которого входит оксид алюминия и аморфный алюмосиликат.

[17]

Задача решается катализатором, который содержит никель, молибден, вольфрам, алюминий и кремний. При этом молибден, вольфрам и никель содержится в форме биметаллических комплексных соединений [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] и Ni(NH4)a[HbW2O5(C6H5O7)2], где: L и С6Н5О7 - частично депротонированная форма лимонной кислоты; х=0 или 2; у=0 или 1; а=0, 1 или 2; b=2-а; кремний в форме аморфного алюмосиликата, алюминий в форме γ-Al2O3 и аморфного алюмосиликата, при этом компоненты в катализаторе содержатся в следующих концентрациях, мас. %: Ni(H2O)х(L)y]2[Mo4O11(C6H5O7)2] 6.2-14.9, Ni(NH4)a[HbW2O5(C6H5O7)2] 10.2-23.3, аморфный алюмосиликат - 33.4-50.9; γ-Al2O3 - остальное, что соответствует содержанию в прокаленном при 550°С катализаторе, мас. %: MoO3 - 3.6-8.4, WO3 - 5.8-13.5, NiO - 3.1-3.9, аморфный алюмосиликат - 38.3-56.9; γ-Al2O3 - остальное. Причем мольное соотношение W/(Mo+W) в катализаторе должно находиться в диапазоне 0.3-0.7.

[18]

При этом катализатор имеет объем пор 0.61-0.80 см3/г, удельную поверхность 224-263 м2/г и средний диаметр пор 10.3-11.8 нм и представляет собой частицы с сечением в виде трилистника, четырехлистника либо круга с диаметром описанной окружности 1,2-2,5 мм и длиной до 20 мм, имеющие объемную механическую прочность, определяемую по методу Shell SMS 1471, не менее 1,0 МПа. В качестве аморфного алюмосиликата могут использоваться алюмосиликаты с массовым отношением Si/Al от 0,6 до 0,85, характеризующиеся рентгенограммами, содержащими широкий пик в области 16,5-33,5° с максимумом 23,1-23,4°.

[19]

Отличительным признаком предлагаемого катализатора по сравнению с прототипом является то, что катализатор содержит, [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] 6.2-14.9, Ni(NH4)a[HbW2O5(C6H5O7)2] 10.2-23.3, аморфный алюмосиликат - 33.4-50.9; γ-Al2O3 - остальное, что соответствует содержанию в прокаленном при 550°С катализаторе, мас. %: MoO3 - 3.6-8.4, WO3 - 5.8-13.5, NiO - 3.1-3.9, аморфный алюмосиликат - 38.3-56.9; γ-Al2O3 - остальное. Причем мольное соотношение W/(Mo+W) в катализаторе должно находиться в диапазоне 0.3-0.7. Выход содержания и массового отношения компонентов катализатора за заявляемые границы приводит к уменьшению активности катализатора в целевых реакциях гидрокрекинга, к уменьшению селективности катализатора по отношению к керосиновой и дизельной фракциям и к уменьшению активности катализатора в гидрообессеривании.

[20]

Технический эффект предлагаемого катализатора складывается из следующих составляющих:

[21]

1. Заявляемый химический состав катализатора обуславливает высокую активность в целевых реакциях гидрокрекинга и высокую селективность по отношению к керосиновой и дизельной фракциям. Наличие в составе катализатора биметаллических соединений [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] и Ni(NH4)a[HbW2O5(C6H5O7)2] в заявляемых концентрациях обеспечивает дальнейшее формирование в катализаторе, при его эксплуатации в гидрокрекинге, высокоактивных частиц сульфидного компонента - NiMoS и NiWS фаз типа II в форме частиц оптимальной для катализа морфологии, локализованных в порах, доступных для всех подлежащих превращению молекул.

[22]

2. Наличие в составе катализатора одновременно двух биметаллических комплексных соединений: никеля-молибдена и никеля-вольфрама с мольным соотношении W/(Mo+W) от 0.3 до 0.7 приводит к более легкому сульфидированию вольфрамсодержащих соединений за счет достраивания сульфида вольфрама вокруг сульфида молибдена с образованием частиц типа ядро-оболочка - триметаллической NiMoWS фазы типа II, обладающей максимальной активностью в гидрировании ароматических соединений.

[23]

3. Наличие в составе катализатора аморфного алюмосиликата в заявляемых концентрациях обеспечивает оптимальную концентрацию кислотных центров, обеспечивая высокую активность в гидрокрекинге углеводородного сырья.

[24]

4. Наличие в составе катализатора предшественников высокоактивных триметаллических сульфидных частиц в приводит к повышенной активности катализаторов в гидрокрекинге за счет большего гидрирования ароматических соединений, уменьшения дезактивации катализатора органическими азотсодержащими соединениями и к уменьшению содержания серы в получаемых керосиновой и дизельной фракциях.

[25]

5. Наличие в составе катализатора предшественников триметаллических сульфидных частиц обладающих высокой активностью в гидрировании ароматических соединений приводит к увеличению срока службы катализатора за счет более эффективного гидрирования предшественников кокса.

[26]

Следовательно, каждый существенный признак необходим, а их совокупность является достаточной для достижения новизны качества, неприсущего признакам в разобщенности, то есть поставленная задача достигается не суммой эффектов, а новым сверхэффектом суммы признаков.

[27]

Описание предлагаемого технического решения.

[28]

Сначала готовят носитель, содержащий аморфный алюмосиликат и оксид алюминия. К навеске порошка гидроксида алюминия AlOOH, имеющего структуру бемита или псевдобемита, при непрерывном перемешивании в смесителе с Z-образными лопастями последовательно добавляют расчетное количество порошка аморфного алюмосиликата с массовым отношением Si/Al=0,6-0,85. Порошок алюмосиликата может быть получен по любой из известных методик, например методике соосаждения из совместных растворов алюминатов и силикатов щелочных металлов, или же методике осаждения силикатов щелочных металлов с гелем, полученным из сульфата или нитрата алюминия, или методике гидролиза элементоорганических соединений кремния и алюминия, или какой либо другой методике, обеспечивающей получение аморфного алюмосиликата с массовым отношением Si/Al=0,6-0,85, характеризующегося на рентгенограмме пиком с максимумом 23,1-23,4°. Аморфный алюмосиликат может быть подвергнут термической обработке, например прокаливанием при температуре 300-850°С, более предпочтительно при температуре 500-750°С. Далее к смеси порошков добавляют водный раствор азотной кислоты и продолжают перемешивание.

[29]

Количество гидроксида алюминия и порошка алюмосиликата берут с учетом того, чтобы массовое содержание аморфного алюмосиликата в носителе составляло 50-70 мас. %. Количество воды, добавляемой для приготовления пасты, зависит от влажности исходных порошков и составляет приблизительно 0,8-1,3 мл/г.Количество азотной кислоты рассчитывают в зависимости от количества γ-Al2O3 так, чтобы кислотный модуль составлял от 0,05 до 0,7, более предпочтительно, от 0,1 до 0,5. Полученную пасту экструдируют через фильеру с отверстиями, форма и размеры которых обеспечивают получение гранул с поперечным сечением в виде трилистника, четырехлистника либо круга с диаметром описанной окружности 1,2-2,5 мм. Полученный влажный носитель сушат при температуре 100-150°С и прокаливают при температуре 500-600°С. В результате получают однородный носитель белого цвета, представляющий собой гранулы с поперечным с сечением в виде трилистника, четырехлистника либо круга с диаметром описанной окружности 1,2-2,5 мм и длиной 2-20 мм. На рентгенограмме носителя сохраняется пик с максимумом 23,1-23,4°, соответствующий аморфному алюмосиликату с массовым отношением Si/Al=0,6-0,85.

[30]

Далее готовят пропиточный раствор с заданными концентрациями биметаллических комплексных соединений [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] и Ni(NH4)a[HbW2O5(C6H5O7)2]. Синтез биметаллических соединений в растворе осуществляют следующим образом: в воде при перемешивании растворяют требуемое количество лимонной кислоты C6H8O7 или моногидрата лимонной кислоты С6Н8О7⋅Н2О. К полученному раствору при перемешивании и нагревании добавляют требуемое количество никеля (II) углекислого основного водного Ni(СО3)⋅Ni(ОН)2⋅nH2O. Перемешивание продолжают до полного растворения Ni(СО3)⋅Ni(ОН)2⋅nH2O и образования раствора темно-зеленого цвета, не содержащего взвешенных частиц. Далее в полученном растворе производят растворение требуемого количества паравольфрамата аммония водного. Далее в полученном растворе производят растворение требуемого количества парамолибдата аммония водного.

[31]

При растворении паравольфрамата аммония и парамолибдата аммония в полученном растворе происходит образование комплексов [Ni(H2O)x(L)y]2[MO4O11(C6H5O7)2] и Ni(NH4)a[HbW2O5(C6H5O7)2]. Перемешивание продолжают до полного растворения паравольфрамата и парамолибдата аммония и образования раствора, не содержащего взвешенных частиц.

[32]

Образование комплексных соединений в растворе подтверждается данными ИК-спектроскопии (таблица 1). Раствор, содержащий [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] и Ni(NH4)a[HbW2O5(C6H5O7)2], имеет полосы поглощения, типичные для этих соединений.

[33]

Полученным раствором пропитывают носитель, содержащий аморфный алюмосиликат, при этом используют либо пропитку носителя по влагоемкости, либо из избытка раствора, либо вакуумную пропитку. Пропитку проводят при температуре 15-90°С в течение 5-60 мин при периодическом перемешивании, в случае пропитки из избытка раствора, или вакуумной пропитки, после пропитки избыток раствора сливают с катализатора и используют для приготовления следующих партий катализатора. После пропитки катализатор сушат на воздухе при температуре 100-250°С. В результате получают катализатор, характеристики которого полностью соответствуют заявляемым интервалам.

[34]

Далее катализатор испытывают в гидрокрекинге вакуумного газойля с содержанием серы и азота 2.81 мас. % и 0.093 мас. %, соответственно, температурой дистилляции 5% об. 292°С и температурой дистилляции 95% об. 527°С. Перед испытаниями катализатор сульфидируют путем его нагрева в токе водорода и сульфидирующей смеси, представляющей собой прямогонное дизельное топливо с содержанием серы 1.45% S, в которое дополнительно добавлен диметилдисульфид с концентрацией 12 г/л. Сульфидирование проводят при 3.5 МПа, расходе сульфидирующей смеси 2 ч-1 и объемном отношении водород/сульфидирующая смесь 500 нм33 4 ч при 240°С, а затем 4 ч при 260°С и затем 8 ч при 340°С. Процесс гидрокрекинга проводят при температуре 390°С, давлении 12 МПа, объемном расходе сырья 0.6 ч-1, объемном соотношение водород/сырье - 1100 м3 (при н.у.)/м3.

[35]

Сущность изобретения иллюстрируется следующими примерами:

[36]

Пример 1. (Согласно известному техническому решению).

[37]

Готовят носитель, содержащий 50 мас. % аморфного алюмосиликата. В смесителе с Z-образными лопастями перемешивают 46,7 г порошка гидроксида алюминия AlOOH, имеющего структуру псевдобемита и 42,7 г порошка аморфного алюмосиликата с соотношением Si/Al=0.85. К смеси добавляют 90 мл воды и 7,0 мл концентрированной азотной кислоты, имеющей плотность 1,4 г/см3. Пасту перемешивают 30 мин и формуют через фильеру с отверстиями в форме трилистника с диаметром описанной окружности 1,0-1.6 мм. Полученный влажный носитель сушат 4 ч при температуре 100-150°С и прокаливают 4 ч при температуре 550°С. Получают 70 г готового носителя с влагоемкостью 1.02 мл/г.

[38]

Готовят водный раствор, содержащий 19.4 г [Ni(H2O)x(L)y]2[Mo4O11(O6H5O7)2], для чего в 30 мл воды при 70°С и перемешивании последовательно растворяют 7.22 г моногидрата лимонной кислоты С6Н3О7×Н2О, 12.13 г парамолибдата аммония (NH4)6Mo7O24×4H2O, 4.23 г основного карбоната никеля NiCO3⋅mNi(ОН)2⋅nH2O. Далее добавлением воды объем раствора доводят до 72 мл. 70 г носителя пропитывают по влагоемкости 72 мл полученного раствора. Катализатор сушат на воздухе при 120°С. Рентгенограмма полученного катализатора содержит пик с максимумом 23.1°, соответствующий аморфному алюмосиликату с массовым отношением Si/Al=0.85.

[39]

Полученный катализатор содержит, мас. %: [Ni(Н2О)х(L)у]2[Mo4O11(C6H5O7)2] - 21.7; аморфный алюмосиликат - 39.2; γ-Al2O3 - 39.2, что соответствует содержанию в прокаленном при 550°С катализаторе, мас. %: MoO3 - 12.0; NiO - 3.1; аморфный алюмосиликат - 42.4; γ-Al2O3 - остальное.

[40]

Порцию катализатора, объемом 30 см3 смешивают с 120 см3 карбида кремния (0,1-0,3 мм), помещают в проточный реактор из нержавеющей стали и нагревают в токе водорода и сульфидирующей смеси, представляющей собой прямогонное дизельное топливо с содержанием серы 1,45% S, в которое дополнительно добавлен диметилдисульфид с концентрацией 12 г/л. Сульфидирование проводят при 3.5 МПа, расходе сульфидирующей смеси 2 ч-1 и объемном отношении водород/сульфидирующая смесь 500 нм33 4 ч при 240°С, а затем 4 ч при 260°С и затем 8 ч при 340°С. Далее катализатор тестируют в гидрокрекинге вакуумного газойля с содержанием серы и азота 2.81 мас. % и 0.093 мас. %, соответственно, температурой дистилляции 5% об. 292°С и температурой дистилляции 95% об. 527°С. Процесс гидрокрекинга проводят при температуре 390°С, давлении 12 МПа, объемном расходе сырья 0.6 ч-1, объемном соотношении водород/сырье - 1100 м3 (при н.у.)/м3.

[41]

Результаты тестирования приведены в таблице 1.

[42]

Примеры 2-6 иллюстрируют предлагаемое техническое решение.

[43]

Пример 2.

[44]

Готовят носитель, содержащий 50 мас. % аморфного алюмосиликата аналогично примеру 1. Готовят водный раствор, содержащий 13.9 г [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] и 9.5 г Ni(NH4)a[HbW2O5(C6H5O7)2], для чего в 40 мл воды при 70°С и перемешивании последовательно растворяют 9.62 г моногидрата лимонной кислоты С6Н8О7×Н2О, 4.34 г основного карбоната никеля NiCO3⋅mNi(OH)2⋅nH2O, 5.59 г паравольфрамата аммония (NH4)6W7O24×4H2Oг и 8.72 г парамолибдата аммония (NH4)6Mo7O24×4H2O. Далее добавлением воды объем раствора доводят до 72 мл. 70 г носителя пропитывают по влагоемкости 72 мл полученного раствора. ИК спектр полученного раствора содержит пики, характерные для Ni(NH4)a[HbW2O5(C6H5O7)2] и [Ni(H2O)х(L)у]2[Mo4O11(C6H5O7)2] (таблица 1). Катализатор сушат на воздухе при 120°С. Рентгенограмма полученного катализатора содержит пик с максимумом 23.1°, соответствующий аморфному алюмосиликату с массовым отношением Si/Al=0.85.

[45]

Полученный катализатор содержит, мас. %: [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] - 14.9, Ni(NH4)a[HbW2O5(C6H5O7)2] - 10.2; аморфный алюмосиликат - 37.4; γ-Al2O3 - 37.4, что соответствует содержанию в прокаленном при 550°С катализаторе, мас. %: МоО3 - 8.4, WO3 - 5.8, NiO - 3.1; аморфный алюмосиликат - 41.3; γ-Al2O3 - остальное. Мольное соотношение W/(Mo+W) в катализаторе составляет 0.3.

[46]

Катализатор имеет объем пор 0.69 см3/г, удельную поверхность 247 м2/г и средний диаметр пор 11.0 нм и представляет собой частицы с сечением в виде трехлистника с диаметром описанной окружности 1,0-1,6 мм и длиной до 20 мм. Объемная механическая прочность катализатора, измеренная по методу Shell SMS 1471, равна 1.15 МПа.

[47]

Далее катализатор тестируют в гидрокрекинге вакуумного газойля аналогично примеру 1. Результаты тестирования приведены в таблице 1.

[48]

Пример 3.

[49]

Готовят носитель, содержащий 50 мас. % аморфного алюмосиликата аналогично примеру 1. Готовят водный раствор, содержащий 10.1 г [Ni(H2O)х(L)y]2[Mo4O11(C6H5O7)2] и 16.2 г Ni(NH4)a[HbW2O5(C6H5O7)2], для чего в 40 мл воды при 70°С и перемешивании последовательно растворяют 11.30 г моногидрата лимонной кислоты С6Н8О7×Н2О, 4.41 г основного карбоната никеля NiCO3⋅mNi(ОН)2⋅nH2O, 9.48 г паравольфрамата аммония (NH4)6W7O24×4H2Oг и 6.34 г парамолибдата аммония (NH4)6Mo7O24×4H2O.

[50]

Далее добавлением воды объем раствора доводят до 72 мл. 70 г носителя пропитывают по влагоемкости 72 мл полученного раствора. ИК спектр полученного раствора содержит пики, характерные для Ni(NH4)a[HbW2O5(C6H5O7)2] и [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] (таблица 1). Катализатор сушат на воздухе при 120°С. Рентгенограмма полученного катализатора содержит пик с максимумом 23.1°, соответствующий аморфному алюмосиликату с массовым отношением Si/Al=0.85.

[51]

Полученный катализатор содержит, мас. %: [Ni(H2O)х(L)y]2[Mo4O11(C6H5O7)2] - 16.8, Ni(NH4)a[HbW2O5(C6H5O7)2] - 10.5; аморфный алюмосиликат - 36.3; γ-Al2O3 - 36.3, что соответствует содержанию в прокаленном при 550°С катализаторе, мас. %: MoO3 - 6.0, WO3 - 9.7, NiO - 3.1; аморфный алюмосиликат - 40.6; γ-Al2O3 - остальное. Мольное соотношение W/(Mo+W) в катализаторе составляет 0.5.

[52]

Катализатор имеет объем пор 0.66 см3/г, удельную поверхность 240 м2/г и средний диаметр пор 10.3 нм и представляет собой частицы с сечением в виде трехлистника с диаметром описанной окружности 1,0-1,6 мм и длиной до 20 мм. Объемная механическая прочность катализатора, измеренная по методу Shell SMS 1471, равна 1.15 МПа.

[53]

Далее катализатор тестируют в гидрокрекинге вакуумного газойля аналогично примеру 1. Результаты тестирования приведены в таблице 1.

[54]

Пример 4.

[55]

Готовят носитель, содержащий 50 мас. % аморфного алюмосиликата аналогично примеру 1. Готовят водный раствор, содержащий 6.2 г [Ni(H2O)х(L)y]2[Mo4O11(C6H5O7)2] и 23.1 г Ni(NH4)a[HbW2O5(C6H5O7)2], для чего в 40 мл воды при 70°С и перемешивании последовательно растворяют 13.04 г моногидрата лимонной кислоты C6H8O7×H2O, 4.49 г основного карбоната никеля NiCO3⋅mNi(OH)2⋅nH2O, 13.52 г паравольфрамата аммония (NH4)6W7O24×4H2Oг и 3.87 г парамолибдата аммония (NH4)6Mo7O24×4H2O. Далее добавлением воды объем раствора доводят до 72 мл. ИК спектр полученного раствора содержит пики, характерные для Ni(NH4)a[HbW2O5(C6H5O7)2] и [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] (таблица 1). 70 г носителя пропитывают по влагоемкости 72 мл полученного раствора. Катализатор сушат на воздухе при 120°С. Рентгенограмма полученного катализатора содержит пик с максимумом 23.1°, соответствующий аморфному алюмосиликату с массовым отношением Si/Al=0.85.

[56]

Полученный катализатор содержит, мас. %: [Ni(H2O)х(L)y]2[Mo4O11(C6H5O7)2] - 6.2, Ni(NH4)a[HbW2O5(C6H5O7)2] - 23.3; аморфный алюмосиликат - 35.3; γ-Al2O3 - 35.3, что соответствует содержанию в прокаленном при 550°С катализаторе, мас. %: MoO3 - 3.6, WO3 - 13.5, NiO - 3.1; аморфный алюмосиликат - 39.9; γ-Al2O3 - остальное. Мольное соотношение W/(Mo+W) в катализаторе составляет 0.7.

[57]

Катализатор имеет объем пор 0.64 см3/г, удельную поверхность 236 м2/г и средний диаметр пор 10.7 нм и представляет собой частицы с сечением в виде трехлистника с диаметром описанной окружности 1,0-1,6 мм и длиной до 20 мм. Объемная механическая прочность катализатора, измеренная по методу Shell SMS 1471, равна 1.10 МПа.

[58]

Далее катализатор тестируют в гидрокрекинге вакуумного газойля аналогично примеру 1. Результаты тестирования приведены в таблице 1.

[59]

Пример 5.

[60]

Готовят носитель, содержащий 50 мас. % аморфного алюмосиликата. В смесителе с Z-образными лопастями перемешивают 46,7 г порошка гидроксида алюминия AlOOH, имеющего структуру псевдобемита, и 42,7 г порошка аморфного алюмосиликата с соотношением Si/Al=0.85. К смеси добавляют 90 мл воды и 7,0 мл концентрированной азотной кислоты, имеющей плотность 1,4 г/см3. Пасту перемешивают 30 мин и формуют через фильеру с отверстиями в форме круга диаметром 1,0-1.6 мм. Полученный влажный носитель сушат 4 ч при температуре 100-150°С и прокаливают 4 ч при температуре 550°С. Получают 70 г готового носителя с влагоемкостью 1.02 мл/г.

[61]

Готовят водный раствор, содержащий 13.4 г [Ni(H2O)х(L)y]2[Mo4O11(C6H5O7)2] и 21.5 г Ni(NH4)a[HbW2O5(C6H5O7)2], для чего в 40 мл воды при 70°С и перемешивании последовательно растворяют 14.99 г моногидрата лимонной кислоты C6H8O7×Н2О, 5.86 г основного карбоната никеля NiCO3⋅mNi(ОН)2⋅nH2O, 12.58 г паравольфрамата аммония (NH4)6W7O24×4H2Oг и 8.41 г парамолибдата аммония (NH4)6Mo7O24×4H2O. Далее добавлением воды объем раствора доводят до 72 мл. ИК спектр полученного раствора содержит пики, характерные для Ni(NH4)a[HbW2O5(C6H5C7)2] и [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] (таблица 1). 70 г носителя пропитывают по влагоемкости 72 мл полученного раствора. Катализатор сушат на воздухе при 120°С. Рентгенограмма полученного катализатора содержит пик с максимумом 23.1°, соответствующий аморфному алюмосиликату с массовым отношением Si/Al=0.85.

[62]

Полученный катализатор содержит, мас. %: [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] - 12.8, Ni(NH4)a[HbW2O5(C6H5O7)2] - 20.5; аморфный алюмосиликат - 33.4; γ-Al2O3 - 33.4, что соответствует содержанию в прокаленном при 550°С катализаторе, мас. %: MoO3 - 7.5, WO3 - 12.1, NiO - 3.9; аморфный алюмосиликат - 38.3; γ-Al2O3 - остальное. Мольное соотношение W/(Mo+W) в катализаторе составляет 0.5.

[63]

Катализатор имеет объем пор 0.61 см3/г, удельную поверхность 224 м2/г и средний диаметр пор 11.8 нм и представляет собой частицы с сечением в виде круга с диаметром описанной окружности 1,0-1,6 мм и длиной до 20 мм. Объемная механическая прочность катализатора, измеренная по методу Shell SMS 1471, равна 1.28 МПа.

[64]

Далее катализатор тестируют в гидрокрекинге вакуумного газойля аналогично примеру 1. Результаты тестирования приведены в таблице 1.

[65]

Пример 6.

[66]

Порошок аморфного алюмосиликата с массовым отношением Si/Al=0,6, имеющий широкий пик в области 16,5-33,5° с максимумом 23,4°, прокаливают при температуре 700°С в течение 4 ч. Готовят носитель, содержащий 70 мас. % аморфного алюмосиликата. В смесителе с Z-образными лопастями перемешивают 28,0 г порошка гидроксида алюминия АlOОН, имеющего структуру псевдобемита и 62,0 г порошка аморфного алюмосиликата с массовым отношением Si/Al=0,6. К смеси добавляют 110 мл воды и 8,0 мл концентрированной азотной кислоты, имеющей плотность 1,4 г/см3. Пасту перемешивают 30 мин и формуют через фильеру с отверстиями в форме четырехлистника с диаметром описанной окружности 1,0-1.6 мм. Полученный влажный носитель сушат 4 ч при температуре 100-150°С и прокаливают 4 ч при температуре 550°С. Получают 70 г готового носителя, имеющего влагоемкость 1.16 мл/г.

[67]

Готовят водный раствор аналогично примеру 3. Далее добавлением воды объем раствора доводят до 82 мл. 70 г носителя пропитывают по влагоемкости 82 мл полученного раствора. Катализатор сушат на воздухе при 120°С. Рентгенограмма полученного катализатора содержит пик с максимумом 23.4°, соответствующий аморфному алюмосиликату с массовым отношением Si/Al=0.6.

[68]

Полученный катализатор содержит, мас. %: [Ni(H2O)х(L)у]2[Mo4O11(C6H5O7)2] - 10.5, Ni(NH4)a[HbW2O5(C6H5O7)2] - 16.8; аморфный алюмосиликат - 50.9; γ-Al2O3 - 21.8, что соответствует содержанию в прокаленном при 550°С катализаторе, мас. %: MoO3 - 6.0, WO3 - 9.7, NiO - 3.1; аморфный алюмосиликат - 56.9; γ-Al2O3 - остальное. Мольное соотношение W/(Mo+W) в катализаторе составляет 0.5.

[69]

Катализатор имеет объем пор 0.80 см3/г, удельную поверхность 263 м2/г и средний диаметр пор 11.4 нм и представляет собой частицы с сечением в виде четырехлистника с диаметром описанной окружности 1,0-1,6 мм и длиной до 20 мм. Объемная механическая прочность катализатора, измеренная по методу Shell SMS 1471, равна 1.05 МПа.

[70]

Далее катализатор тестируют в гидрокрекинге вакуумного газойля аналогично примеру 1. Результаты тестирования приведены в таблице 1.

[71]

Таким образом, как видно из приведенных примеров, предлагаемый катализатор за счет своего химического состава имеет высокую активность и селективность к фракции с температурой начала кипения 130°С и температурой конца кипения 360°С, т.е. к керосиновой и дизельной фракциям, обеспечивая значительно больший выход керосиновой и дизельной фракций чем при использовании катализатора-прототипа в гидрокрекинге углеводородного сырья. При этом содержание серы в получаемой фракции 360°С - конец кипения значительно ниже, чем при использовании катализатора-прототипа.

[72]

[73]

Как компенсировать расходы
на инновационную разработку
Похожие патенты