патент
№ RU 2605855
МПК G01N33/15

СПОСОБ КОЛИЧЕСТВЕННОГО ОПРЕДЕЛЕНИЯ КАЛЬЦИЯ И МАГНИЯ В РАСТИТЕЛЬНОМ СЫРЬЕ

Авторы:
Чистякова Анна Сергеевна Тринеева Ольга Валерьевна Сливкин Алексей Иванович
Все (5)
Номер заявки
2015102880/15
Дата подачи заявки
28.01.2015
Опубликовано
27.12.2016
Страна
RU
Как управлять
интеллектуальной собственностью
Реферат

Изобретение относится к аналитической химии и касается способа количественного определения кальция и магния в лекарственном растительном сырье. Сущность способа заключается в том, что проводят озоление сырья в муфельной печи при температуре 500С, прокаливают до постоянной массы, растворяют полученную золу в 10% растворе соляной кислоты, фильтруют полученный солянокислый раствор золы. Далее проводят комплексонометрическое титрование Трилоном Б для кальция в присутствии кислотного хрома темно-синего при рН 11-12, а для магния в присутствии пирокатехинового фиолетового при рН 9-10. Использование способа позволяет провести полное количественное определение микроэлементов, как в свободном, так и связанном виде при их совместном присутствии. 1 табл., 3 пр.

Формула изобретения

Способ количественного определения кальция и магния в растительном сырье, включающий озоление сырья в муфельной печи при температуре 5000С, прокаливание до постоянной массы, растворение полученной золы в 10% растворе соляной кислоты, фильтрацию полученного солянокислого раствора золы, комплексонометрическое титрование Трилоном Б для кальция в присутствии кислотного хрома темно-синего при рН 11-12; а для магния в присутствии пирокатехинового фиолетового при рН 9-10.

Описание

[2]

Изобретение относится к фармации, а именно к фармацевтической химии и фармакогнозии, и может быть использовано для количественного определения биологически активных элементов - кальция и магния в лекарственном растительном сырье.

[3]

Известен способ количественного определения кальция и магния с использованием атомно-абсорбционной спектроскопии (ААС) [1, 2]. Сущность метода заключается в том, что навеску сырья измельчают и подвергают озолению с последующим растворением золы в растворе сильной кислоты (азотной кислоты), а количественное определение кальция и магния в золе проводят методом ААС, основанным на излучении оптического диапазона невозбужденными свободными атомами исследуемого образца. Несмотря на высокую специфичность и чувствительность метода ААС, его существенным недостатком является необходимость приобретения дорогостоящего оборудования, ламп, специфичных для каждого конкретного элемента, необходимость проведения сравнения получаемых спектров со спектрами государственных стандартных образцов изучаемых элементов, а также длительность и трудоемкость исследования.

[4]

Близким аналогом предлагаемого способа является способ определения ионов кальция и магния в лекарственном растительном сырье, в части, касающейся комплексонометрического титрования с металлоиндикаторами [3].

[5]

Он заключается в определении кальция и магния в извлечении, полученном после экстракции сырья раствором хлористоводородной кислоты с последующим комплексонометрическим титрованием трилоном Б с использованием в качестве индикаторов мурексида или хромового темно-синего для кальция и пирокатехинового фиолетового для магния.

[6]

Данный способ определения изучаемых элементов имеет ряд недостатков. Так, например, ионы Ca и Mg присутствуют в растениях как в свободном виде (растворимые соли, оксалат Ca и др.), так и в связанном виде (Ca - составная часть клеточных оболочек, Mg - входит в состав основного пигмента зеленых листьев - хлорофилла и др), при этом выделение связанных элементов представляет определенные трудности. Выход элементов из лекарственного растительного сырья (ЛРС) при использовании экстракции в таком случае не может считаться полным, так как экстракция биологически активных веществ (БАВ), в т.ч. Ca2+ и Mg2+, из высушенного ЛРС складывается из следующих этапов: смачивания частиц сырья экстрагентом; проникновение экстрагента в клетки; набухание растительного сырья, сопровождающееся растворением БАВ клеточного сока, адсорбированных на клеточных стенках и органеллах клетки; вымывание полученного раствора из клеток и получение собственно экстракта. При этом в экстрагент выходят лишь соединения Ca и Mg, способные растворяться в применяемом экстрагенте. Однако процесс экстракции не сопровождается полным разрушением клеточных стенок и органелл клетки, в составе которых присутствуют Ca и Mg, в качестве строительных элементов клетки. Кроме того, Ca и Mg входят в состав ферментативного аппарата клетки, представляющего собой высокомолекулярные вещества (биополимеры), неспособные проходить сквозь клеточные мембраны в процессе экстракции. Озоление же ЛРС при температуре 500°C с последующим прокаливанием приводит к полной минерализации не только соединений Ca и Mg клеточного сока, но и соединений, включенных в клеточные стенки и органеллы. Такая пробоподготовка ЛРС обеспечивает полный количественный переход всех элементов клетки (в том числе Ca и Mg) в неорганические соединения и ионы, так как органические вещества в процессе сжигания полностью переходят в неорганические.

[7]

Задача изобретения - разработка нового, специфичного и высокочувствительного метода количественного определения кальция и магния в растительных объектах, дающего наиболее полную информацию о присутствии изучаемых элементов как в свободном, так и в связанном виде.

[8]

Технический результат заключается в возможности полного количественного определения микроэлементов (кальция и магния) как в связанном, так и в свободном виде, при их совместном присутствии в растительном сырье после его предварительного озоления методом комплексонометрии.

[9]

Технический результат количественного определения кальция и магния в растительном сырье при их совместном присутствии достигается тем, что он включает в себя озоление навески сырья в муфельной печи при температуре 500°C с прокаливанием до постоянной массы, растворение полученной золы в 10% растворе кислоты хлороводородной, фильтрацию полученного солянокислого раствора золы растительного сырья и последующее комплексонометрическое титрование в присутствии кислотного хрома темно-синего (в случае определения кальция при рН 11-12), и пирокатехинового фиолетового (в случае определения магния при рН 9-10).

[10]

Предлагаемый способ, в отличие от известного, позволяет получить данные о количестве кальция и магния в минеральном остатке после озоления растительного сырья, а также достаточно полную информацию о количественном содержании элементов в сырье при проведении соответствующего пересчета.

[11]

Изобретение проиллюстрировано таблицей, где представлены результаты определения содержания кальция и магния с помощью разработанного способа в различных образцах ЛРС.

[12]

Способ количественного определения кальция и магния в растительном сырье реализуется следующим образом.

[13]

В процессе проведения пробоподготовки аналитическую пробу сырья измельчают до размера частиц, проходящих сквозь сито с отверстиями диаметром 1 мм. В предварительно взвешенный тигель помещают точную навеску сырья и сжигают в муфельной печи при температуре 500°C с последующим прокаливанием до постоянной массы. Далее точную навеску золы (около 0,2 г) помещают в мерную колбу вместимостью 50 мл и растворяют в 10% растворе кислоты хлористоводородной, доводят до метки тем же растворителем, перемешивают и фильтруют через складчатый фильтр, отбрасывая первые порции фильтрата.

[14]

Определение кальция.

[15]

10 мл извлечения помещают в колбу для титрования вместимостью 100 мл, добавляют 0,1 мл 30% раствора NaOH и аммиачный буферный раствор до рН 11-12 по универсальной индикаторной бумаге для осаждения магния. В результате чего выпадает белый студневидный осадок гидроксида магния (Mg(OH)2), который затем отфильтровывают. В фильтрате проводится количественное определение кальция, для чего прибавляют несколько крупинок индикатора хромового темно-синего и титруют 0,025 М раствором Трилона Б до перехода окраски от розовато-сиреневой до фиолетово-синей.

[16]

Данные о содержании кальция в золе исследуемого объекта рассчитывают по формуле:

[17]

[18]

где V - объем 0,025 М раствора Трилона Б, пошедшего на титрование, мл,

[19]

K - поправочный коэффициент к концентрации титранта;

[20]

T - титр по определяемому веществу, равный 0,001 г/мл;

[21]

a - масса золы, г;

[22]

W - объем мерной колбы, взятой для разведения, мл;

[23]

Va - объем аликвоты, взятой на анализ, мл.

[24]

Для пересчета на содержание кальция в ЛРС использовали формулу:

[25]

[26]

где С - содержание кальция в золе образца ЛРС, %;

[27]

W золы - содержание золы общей в образце ЛРС, %.

[28]

Определение магния.

[29]

10 мл фильтрата помещают в колбу для титрования вместимостью 100 мл, добавляют 0,1 мл 30% раствора NaOH до рН 9-10, 0,1 мл аммиачного буферного раствора, несколько крупинок индикатора пирокатехинового фиолетового и титруют раствором Трилона Б (0,025 М) до перехода окраски от сине-зеленой в темно-вишневую. Содержание магния в золе ЛРС рассчитывают по формуле:

[30]

[31]

где V - объем 0,025 М раствора Трилона Б, пошедшего на титрование, мл,

[32]

К - поправочный коэффициент, к концентрации титранта;

[33]

Т - титр по определяемому веществу, равный 0,006 г/мл;

[34]

а - масса золы, г;

[35]

W - объем мерной колбы, взятой для разведения, мл;

[36]

Va - объем аликвоты, взятой на анализ, мл.

[37]

Для пересчета на содержание магния в ЛРС использовали формулу:

[38]

[39]

где С - содержание магния в золе образца ЛРС, %;

[40]

W золы - содержание золы общей в образце ЛРС, %.

[41]

Способ иллюстрируется следующими конкретными примерами.

[42]

Способ подготовки золы из лекарственного растительного сырья.

[43]

Аналитическую пробу сырья измельчают до размера частиц, проходящих сквозь сито с отверстиями диаметром 1 мм. В предварительно взвешенный тигель помещают точную навеску сырья и сжигают в муфельной печи при температуре 500°C с последующим прокаливанием до постоянной массы.

[44]

Пример 1. Определение кальция и магния в траве горца почечуйного.

[45]

Определение кальция. Около 0,2 г (точная навеска) золы помещают в мерную колбу вместимостью 50 мл, растворяют в 10% растворе кислоты хлористоводородной и доводят до метки тем же растворителем (Раствор А).

[46]

В мерную колбу вместимостью 50 мл помещают 10 мл раствора А и доводят водой, очищенной до метки (Раствор Б).

[47]

В колбу для титрования вместимостью 100 мл помещают 10 мл раствора Б, добавляют 0,1 мл 30% раствора NaOH и аммиачный буферный раствор до рН 11-12 по универсальной индикаторной бумаге для осаждения магния. Образовавшийся осадок отфильтровывают. К полученному фильтрату добавляют разбавленную соляную кислоту до рН 9-10, несколько крупинок индикатора кислотного хрома темно-синего и титруют раствором Трилона Б (0,025) до сине-фиолетового окрашивания. Содержание кальция в золе исследуемого объекта рассчитывают по формуле (1).

[48]

Для пересчета на содержание кальция в ЛРС используют формулу (2).

[49]

Определение магния.

[50]

Около 0,5 г золы (точная навеска) помещают в мерную колбу вместимостью 25 мл и растворяют в 10 мл 10% раствора кислоты хлористоводородной, доводят до метки водой дистиллированной (Раствор А).

[51]

В колбу для титрования вместимостью 100 мл помещают 10 мл раствора А, добавляют 0,1 мл 30% раствора NaOH до рН 9-10, 0,1 мл аммиачного буферного раствора, несколько крупинок индикатора пирокатехинового фиолетового, титруют раствором Трилона Б (0,025 М) до фиолетово-зеленого окрашивания. Данные о содержании магния в золе исследуемого объекта рассчитывают по формуле (3).

[52]

Содержание магния в ЛРС в пересчете на абсолютно сухое сырье рассчитывают по формуле (4).

[53]

Пример 2. Определение содержания кальция и магния в листьях крапивы двудомной.

[54]

Определение кальция.

[55]

Около 0,2 г золы (точная навеска) помещают в мерную колбу вместимостью 50 мл и растворяют в 10% растворе кислоты хлористоводородной и доводят до метки тем же растворителем, перемешивают и фильтруют через складчатый фильтр, отбрасывая первые порции фильтрата. К полученному фильтрату добавляют кристаллический NaOH до pH 12 (по универсальной индикаторной бумаге) для осаждения ионов Mg+в виде белого студенистого осадка Mg(OH)2. Осадок отфильтровывают через складчатый фильтр, отбрасывая первые порции фильтрата. 2 мл фильтрата помещают в колбу для титрования вместимостью 100 мл, прибавляют 50 мл воды очищенной, несколько крупинок индикатора хромогенного темно-синего и титруют 0,025 М раствором Трилона Б до перехода окраски от розовато-сиреневой до фиолетово-синей. Содержание кальция в золе листьев крапивы двудомной рассчитывают по формуле (1).

[56]

Содержание кальция в листьях крапивы двудомной в пересчете на абсолютно сухое сырье рассчитывают по формуле (2).

[57]

Определение магния.

[58]

Около 0,2 г золы (точная навеска) помещают в мерную колбу вместимостью 50 мл и растворяют в 10% растворе кислоты хлористоводородной и доводят до метки тем же растворителем, перемешивают и фильтруют через складчатый фильтр, отбрасывая первые порции фильтрата. 5 мл фильтрата помещают в колбу для титрования вместимостью 100 мл, прибавляют 50 мл воды очищенной, 2 мл 30% раствора NaOH, 4 мл аммиачного буферного раствора, несколько крупинок индикатора пирокатехинового фиолетового и титруют раствором Трилона Б (0,025 М) до перехода окраски от сине-зеленой в темно-вишневую. Содержание магния в золе листьев крапивы двудомной рассчитывают по формуле (3).

[59]

Содержание магния в ЛРС в пересчете на абсолютно сухое сырье рассчитывают по формуле (4).

[60]

Пример 3. Определение содержания кальция и магния в плодах облепихи крушиновидной.

[61]

Определение кальция.

[62]

Около 0,2 г золы (точная навеска) помещают в мерную колбу вместимостью 50 мл и растворяют в 10% растворе кислоты хлористоводородной и доводят до метки тем же растворителем, перемешивают и фильтруют через складчатый фильтр, отбрасывая первые порции фильтрата. 5 мл извлечения помещают в колбу для титрования вместимостью 100 мл, прибавляют 50 мл воды очищенной, 5 мл 30% раствора NaOH, несколько крупинок индикатора хромового темно-синего и титруют 0,025 М раствором Трилона Б до перехода окраски от розовато-сиреневой до фиолетово-синей.

[63]

Содержание кальция в золе плодов облепихи крушиновидой рассчитывают по формуле (1).

[64]

Содержание кальция в плодах облепихи крушиновидной в пересчете на абсолютно сухое сырье рассчитывают по формуле (2).

[65]

Определение магния в плодах облепихи крушиновидной.

[66]

Попытки оттитровать в растворе катионы Mg2+в золе, растворенной в 10% растворе HCl в присутствии специфичного индикатора пирокатехинового фиолетового при создании необходимого значения рН раствора, не увенчались успехом и показали его отсутствие в плодах или содержание менее 10-6-10-7 моль/л. Данный факт подтверждается тем, что при подщелачивании раствора кристаллическим NaOH до рН 12-13 не наблюдалось выпадения осадка Mg(OH)2, как это наблюдалось в случае ЛРС крапивы двудомной и горца почечуйного.

[67]

Пример 4. Определение содержания кальция и магния в плодах аронии черноплодной.

[68]

Определение кальция.

[69]

Около 0,1 г золы (точная навеска) помещают в мерную колбу вместимостью 50 мл, растворяют в 10% растворе HCl и доводят до метки тем же растворителем (Раствор А).

[70]

В мерную колбу вместимостью 50 мл помещают 10 мл раствора А и доводят водой очищенной до метки (Раствор Б).

[71]

В колбу для титрования вместимостью 100 мл помещают 10 мл раствора Б, добавляют 0,1 мл 30% раствора NaOH и аммиачный буферный раствор до рН 11-12 универсальной индикаторной бумаге для осаждения магния. Образовавшийся осадок отфильтруют. К полученному фильтрату добавляют по каплям разбавленную соляную кислоту до рН 9-10, несколько крупинок индикатора кислотного хрома темно-синего и титруют раствором Трилона Б (0,025 М) до сине-фиолетового окрашивания. Содержание кальция в золе исследуемого объекта рассчитывают по формуле (1).

[72]

Для пересчета на содержание кальция в плодах аронии использовали формулу (2).

[73]

Определение магния. Результат определения содержания катионов Mg+в золе плодов аронии черноплодной аналогичен таковому в плодах облепихи крушиновидной (пример 3).

[74]

Результаты количественного определения кальция и магния в растительном сырье отражены в таблице 1.

[75]

[76]

Библиографические источники

[77]

1. Листов С.А. О содержании тяжелых металлов в лекарственном растительном сырье / С.А. Листов, Н.В. Перов, А.П. Арзамасцев // Фармация. - 1990. - №2. С. 19-25.

[78]

2. Барашков Г.К. Краткая медицинская бионеорганика / Г.К. Барашков. - М., 1999. - 43 с.

[79]

3. Способ определения ионов кальция и магния в лекарственном растительном сырье: пат. 2466387 Рос. Федерация, МПК7G01N 031/16 / Скалозубова Т.А., Марахова А.И., Федоровский Н.Н. Заявитель и патентообладатель Государственное бюджетное образовательное учреждение высшего профессионального образования Первый Московский государственный медицинский университет имени И.М. Сеченова Министерства здравоохранения и социального развития Российской Федерации (ГБОУ ВПО Первый МГМУ им. И.М. Сеченова Минздравсоцразвития России) (RU) 2011142057/15 заяв. 18.10.2011; опубл. 10.11.2012, Бюл. №31. - 4 с.

Как компенсировать расходы
на инновационную разработку
Похожие патенты