патент
№ RU 2562650
МПК B01J20/281

АНИОНООБМЕННЫЙ СОРБЕНТ ДЛЯ ИОНОХРОМАТОГРАФИЧЕСКОГО ОПРЕДЕЛЕНИЯ ОРГАНИЧЕСКИХ И НЕОРГАНИЧЕСКИХ АНИОНОВ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ

Авторы:
Затираха Александра Валерьевна Щукина Ольга Игоревна Попик Михаил Васильевич
Все (5)
Номер заявки
2014105926/05
Дата подачи заявки
19.02.2014
Опубликовано
10.09.2015
Страна
RU
Как управлять
интеллектуальной собственностью
Реферат

Изобретение относится к анионообменным сорбентам для ионохроматографического определения органических и неорганических анионов. Сорбент общей формулы (1) содержит химически привитую с помощью спейсера четвертичную аммониевую функциональную группу, содержащую по крайней мере один 2-гидроксипропильный радикал.При этом R- (СН)n, где n=2-8, Rвыбран из ряда: Н, ОН, Hal (галоген), Alkyl (алкильный радикал).В качестве исходного материала при получении берут аминированную матрицу, выбранную из ряда аминированных: полимера на основе дивинилбензола, в котором дивинилбензол является сшивающим агентом, полиметакрилата, диоксида кремния, диоксида титана, диоксида циркония или оксида алюминия. К матрице прививают спейсер на основе соединения из класса диглицидиловых эфиров. Затем модифицируют полученные соединения водорастворимым полимером, содержащим в цепи первичные либо вторичные аминогруппы, и алкилируют оксираном. Изобретение обеспечивает получение сорбента для селективного разделения смеси более десяти анионов. Сорбент обладает высокой эффективностью, стабильностью и селективностью. 2 н. и 12 з.п. ф-лы, 1 табл., 10 пр.

Формула изобретения

1. Анионообменный сорбент для ионохроматографического определения органических и неорганических анионов на основе аминированной матрицы, причем матрица выбрана из ряда: полимер на основе дивинилбензола, выступающего в качестве сшивающего агента в данном полимере, полиметакрилат, диоксид кремния, диоксид титана, диоксид циркония или оксид алюминия, с химически привитой к ней с помощью спейсера четвертичной аммониевой функциональной группой, входящей в основную или боковую цепь водорастворимого полимера, при этом четвертичная аммониевая функциональная группа содержит по крайней мере один 2-гидроксипропильный радикал, и общая формула сорбента соответствует формуле (1):

где R1-(СН2)n, n=2-8,
R2 выбран из ряда: Н, ОН, Hal (галоген), Alkyl (алкильный радикал),
- четвертичная аммониевая группа, входящая в основную или боковую цепь водорастворимого полимера и содержащая по крайней мере один 2-гидроксипропильный радикал.

2. Анионообменный сорбент по п.1, отличающийся тем, что в качестве полимера на основе дивинилбензола, выступающего в качестве сшивающего агента, используют сополимер стирола и дивинилбензола.

3. Анионообменный сорбент по п.1, отличающийся тем, что в качестве полимера на основе дивинилбензола, выступающего в качестве сшивающего агента, используют сополимер этилвинилбензола и дивинилбензола.

4. Анионообменный сорбент по п.1, отличающийся тем, что при использовании в качестве матрицы полимера на основе дивинилбензола, выступающего в качестве сшивающего агента, размер частиц полимера составляет 3-10 мкм, а степень сшивки не менее 25%.

5. Анионообменный сорбент по п.1, отличающийся тем, что при использовании в качестве матрицы полиметакрилата размер частиц матрицы составляет 3-10 мкм.

6. Анионообменный сорбент по п.1, отличающийся тем, что при использовании в качестве матрицы оксидов, выбранных из ряда: диоксид кремния, диоксид титана, оксид алюминия или диоксид циркония, размер частиц матрицы составляет 1-10 мкм.

7. Способ получения анионообменного сорбента, соответствующего п.1, для ионохроматографического определения органических и неорганических анионов, включающий следующую последовательность операций:
- в качестве исходного соединения берут аминированную матрицу, выбранную из ряда аминированных: полимера на основе дивинилбензола, в котором дивинилбензол является сшивающим агентом, полиметакрилата, диоксида кремния, диоксида титана, диоксида циркония или оксида алюминия;
- химически прививают к ней спейсер на основе соединения из класса диглицидиловых эфиров;
- модифицируют полученные соединения водорастворимым полимером, содержащим в цепи первичные либо вторичные аминогруппы;
- алкилируют полученное соединение оксираном.

8. Способ по п.7, отличающийся тем, что в качестве полимера на основе дивинилбензола, выступающего в качестве сшивающего агента, используют сополимер стирола и дивинилбензола.

9. Способ по п.7, отличающийся тем, что в качестве полимера на основе дивинилбензола, выступающего в качестве сшивающего агента, используют сополимер этилвинилбензола и дивинилбензола.

10. Способ по п.7, отличающийся тем, что при использовании в качестве матрицы полимера на основе дивинилбензола, выступающего в качестве сшивающего агента, размер его частиц составляет 3-10 мкм, а степень сшивки не менее 25%.

11. Способ по п.7, отличающийся тем, что при использовании в качестве матрицы полиметакрилата размер его частиц составляет 3-10 мкм.

12. Способ по п.7, отличающийся тем, что при использовании в качестве матрицы диоксида кремния, диоксида титана, диоксида циркония или оксида алюминия размеры частиц оксидов составляют 1-10 мкм.

13. Способ по п.7, отличающийся тем, что в качестве оксирана для алкилирования аминогрупп используют эпихлоргидрин.

14. Способ по п.7, отличающийся тем, что в качестве оксирана для алкилирования аминогрупп используют глицидол.

Описание

[6]

Изобретение относится к новому анионообменному материалу на основе полимеров либо неорганических оксидов, который может быть использован в ионной хроматографии в качестве сорбента для одновременного определения органических и неорганических анионов с повышенной эффективностью, позволяющий произвести селективное разделение смеси свыше десяти анионов, в частности, для анализа воды, почвы и других объектов на содержание анионов.

[7]

Для анионообменных сорбентов удерживание функциональных ионогенных групп на матрице может осуществляться посредством различных механизмов: электростатического или гидрофобного взаимодействия, с использованием адгезионного прикрепления («приклеивания»). В известных из литературы способах модифицирования матриц водорастворимыми полимерами для получения так называемых полиэлектролитных сорбентов обычно реализуется вариант электростатического закрепления.

[8]

Известны полиэлектролитные анионообменные сорбенты на основе матриц, представляющих собой силикагель, модифицированных водорастворимым полимером, содержащим в цепи положительно заряженные четвертичные аммониевые группы (O.V. Krokhin, A.D. Smolenkov, N.V. Svintsova, O.N. Obrezkov, O.A. Shpigun, Modified silica as a stationary phase for ion chromatography. // J. Chromatogr. A. 1995. V.706. P.93-98). Для их приготовления матрицу - оксид кремния марки Silasorb C8 - смешивали с додецилбензилсульфоновой кислотой (для создания отрицательного заряда на поверхности матрицы). Затем проводили модифицирование водорастворимым полимером, содержащим положительно заряженные четвертичные аммониевые группы в цепи - например, раствором поли(N-этил-4-винилпиридиния бромида) или поли(диметилдиаллиламмония хлорида). Удерживание водорастворимого полимера осуществляется за счет электростатических взаимодействий между отрицательно заряженной поверхностью матрицы и положительно заряженными четвертичными аммониевыми группами в цепи полимера.

[9]

Одним из достоинств полиэлектролитных сорбентов является их высокая эффективность, обусловленная тем, что при таком подходе к синтезу отсутствует диффузия анионов вглубь частицы матрицы, что приводит к отсутствию размывания хроматографических пиков. Другим важным преимуществом является их хорошая селективность, которая зависит от структуры используемого водорастворимого полимера и может легко варьироваться при выборе подходящего ионена, то есть полимера, содержащего четвертичные атомы азота в цепи.

[10]

Однако существенным недостатком полиэлектролитных сорбентов является их невысокая стабильность, которая приводит к постепенному снижению ионообменной емкости в результате изменения конформации электростатически закрепленного водорастворимого полимера, а также его постепенного смывания с поверхности матрицы.

[11]

Известны полиэлектролитные анионообменные сорбенты на основе полимерных матриц, представляющих собой сополимер стирола и дивинилбензола, модифицированный водорастворимым полимером, содержащим в цепи положительно заряженные четвертичные аммониевые группы (Касьянова Т.Н., Смоленков А.Д., Пирогов А.В., Шпигун О.А. Полиэлектролитные сорбенты для ионной хроматографии на основе полистирол-дивинилбензольной матрицы. // Сорбционные и хроматографические процессы. 2007. Т.7. Вып.1. С.52-59). Способ их получения включает получение отрицательно заряженной поверхности матрицы сульфированием ее поверхности концентрированной серной или хлорсульфоновой кислотой либо сульфоацилированием. Затем к полученной матрице с отрицательно заряженной поверхностью добавляют суспензию водорастворимого полимера, содержащего положительно заряженные четвертичные аммониевые группы в цепи, в водном растворе сульфита натрия. Удерживание водорастворимого полимера на поверхности происходит из-за сильных электростатических взаимодействий положительно заряженных атомов азота в молекуле полимера и отрицательно заряженных сульфогрупп на поверхности матрицы (образование полиэлектролитного комплекса). Избыточные положительные заряды и обеспечивают анионообменные свойства сорбента, позволяющие проводить разделение 6-8 анионов.

[12]

Получаемые анионообменные сорбенты на основе сополимера стирола и дивинилбензола обладают всеми как положительными, так и отрицательными свойствами полиэлектролитных сорбентов на основе силикагеля, проявляя невысокую стабильность, которая приводит к постепенному снижению ионообменной емкости в результате изменения конформации электростатически закрепленного водорастворимого полимера, а также его постепенного смывания с поверхности матрицы.

[13]

Однако современный уровень техники требует все более эффективного определения неорганических и органических анионов.

[14]

Предлагаемое изобретение решает задачу создания анионообменных сорбентов, технология синтеза которых позволяет варьировать в широких пределах их селективность, и обладающих улучшенными эксплуатационными и хроматографическими характеристиками, такими как высокая стабильность, селективность и повышенная эффективность.

[15]

Поставленная задача решается анионообменным сорбентом для ионохроматографического определения органических и неорганических анионов на основе аминированной матрицы, причем матрица выбрана из ряда: полимер на основе дивинилбензола, выступающего в качестве сшивающего агента в данном полимере, полиметакрилат, диоксид кремния, диоксид титана, диоксид циркония или оксид алюминия, с химически привитой к ней с помощью спейсера четвертичной аммониевой функциональной группой, входящей в основную или боковую цепь водорастворимого полимера, при этом четвертичная аммониевая функциональная группа содержит по-крайней мере один 2-гидроксипропильный радикал, и общая формула сорбента соответствует формуле (1):

[16]

[17]

где R1 - (CH2)n, при этом n=2-8,

[18]

R2 выбран из ряда: H, OH, Hal (галоген), Alkyl (алкильный радикал).

[19]

- четвертичная аммониевая группа, входящая в основную или боковую цепь водорастворимого полимера и содержащая, по крайней мере, один 2-гидроксипропильный радикал.

[20]

В качестве полимера на основе дивинилбензола, выступающего в качестве сшивающего агента, наиболее оптимальные результаты дает использование сополимера стирола и дивинилбензола или сополимера этилвинилбензола и дивинилбензола.

[21]

При этом лучшие результаты получают, когда размер частиц полимера составляет 3-10 мкм, а степень сшивки не менее 25%.

[22]

При использовании в качестве матрицы полиметакрилата наиболее оптимальные результаты получают при размере частиц матрицы, составляющем 3-10 мкм.

[23]

А при использовании в качестве матрицы оксидов, выбранных из ряда: диоксид кремния, диоксид титана, оксид алюминия или диоксид циркония, оптимальные результаты получают при размере частиц матрицы, составляющем 1-10 мкм.

[24]

Еще одним аспектом изобретения является способ получения анионообменного сорбента, соответствующего п. 1, включающий следующую последовательность операций:

[25]

- в качестве исходного соединения берут аминированную матрицу, выбранную из ряда аминированных: полимера на основе дивинилбензола, в котором дивинилбензол является сшивающим агентом, полиметакрилата, диоксида кремния, диоксида титана, диоксида циркония или оксида алюминия;

[26]

- химически прививают к ней спейсер на основе соединения из класса диглицидиловых эфиров;

[27]

- модифицируют полученные соединения водорастворимым полимером, содержащим в цепи первичные либо вторичные аминогруппы;

[28]

- алкилируют полученное соединение оксираном.

[29]

В качестве полимера на основе дивинилбензола, выступающего в качестве сшивающего агента, оптимально использовать сополимер стирола и дивинилбензола или сополимер этилвинилбензола и дивинилбензола.

[30]

При использовании в качестве матрицы полимера на основе дивинилбензола, выступающего в качестве сшивающего агента, оптимальный размер его частиц составляет 3-10 мкм, а степень сшивки не менее 25%.

[31]

А при использовании в качестве матрицы полиметакрилата оптимальный размер его частиц составляет 3-10 мкм.

[32]

В то время как при использовании в качестве матрицы диоксида кремния, диоксида титана, диоксида циркония или оксида алюминия оптимальные размеры частиц оксидов составляют 1-10 мкм.

[33]

В качестве оксиранов для алкилирования аминогрупп оптимально использовать глицидол и эпихлоргидрин.

[34]

Техническим результатом предлагаемых изобретений является создание высокоселективного анионообменного сорбента, обладающего высокими стабильностью, селективностью и эффективностью, способ получения которого дает возможность варьирования селективности в широких пределах, является простым, быстрым и хорошо воспроизводимым, позволяя достигнуть селективного разделения смеси свыше десяти анионов с эффективностью порядка 30000-50000 тт/м, а также сохранять ионообменную емкость сорбента в течение длительного времени.

[35]

Стадия химической прививки полимера к матрице через диглицидиловый эфир является новой, неизвестной из уровня техники и тем самым сообщает всему изобретению соответствие критериям как «новизны», так и «изобретательского уровня».

[36]

В таблице 1 приведены хроматографические характеристики полученных анионообменных сорбентов.

[37]

Приведенные ниже примеры подтверждают, но не ограничивают заявляемую совокупность признаков.

[38]

Пример 1. Получение сорбента с химически привитым линейным полиэтиленимином на основе аминированного диоксида кремния с диаметром частиц 10 мкм.

[39]

1) В качестве исходной матрицы берут аминированный диоксид кремния с диаметром частиц 10 мкм.

[40]

2) Химическая прививка спейсера:

[41]

в колбу на 100 мл помещают 1 г аминированного диоксида кремния, добавляют 15 мл воды и 1 мл (1,4-бутандиол)диглицидилового эфира. Реакционную смесь перемешивают в течение 30 минут при температуре 60°С, затем отфильтровывают и промывают водой.

[42]

3) Модификация полученного соединения водорастворимым полимером со вторичными аминогруппами:

[43]

1 г разветвленного полиэтиленимина растворяют в 15 мл дистиллированной воды, затем раствор добавляют к 1 г продукта, полученного на 2-й стадии. Реакционную смесь перемешивают в течение 45 минут при температуре 60°С, затем отфильтровывают и промывают водой.

[44]

4) Алкилирование:

[45]

к 1 г продукта, полученного на 3-й стадии, добавляют 15 мл воды и 5 мл эпихлоргидрина. Реакционную смесь перемешивают в течение 60 минут при температуре 60°С, затем отфильтровывают и промывают водой.

[46]

[47]

Пример 2. Получение сорбента с химически привитым линейным полиэтиленимином на основе аминированного оксида алюминия с диаметром частиц 5 мкм.

[48]

1) В качестве исходной матрицы берут аминированный оксид алюминия с диаметром частиц 5 мкм.

[49]

2)) Химическая прививка спейсера:

[50]

в колбу на 100 мл помещают 1 г аминированного оксида алюминия, добавляют 15 мл воды и 1 мл (1,4-бутандиол)диглицидилового эфира. Реакционную смесь перемешивают в течение 30 минут при температуре 60°С, затем отфильтровывают и промывают водой.

[51]

3) Модификация полученного соединения водорастворимым полимером со вторичными аминогруппами: аналогично примеру 1.

[52]

4) Алкилирование: аналогично примеру 1.

[53]

[54]

Пример 3. Получение сорбента с химически привитым линейным полиэтиленимином на основе аминированного диоксида титана с диаметром частиц 2 мкм.

[55]

1) В качестве исходной матрицы берут аминированный диоксид титана с диаметром частиц 2 мкм.

[56]

2) Химическая прививка спейсера:

[57]

в колбу на 100 мл помещают 1 г аминированного диоксида титана, добавляют 15 мл воды и 1 мл (1,4-бутандиол)диглицидилового эфира. Реакционную смесь перемешивают в течение 30 минут при температуре 60°С, затем отфильтровывают и промывают водой.

[58]

3) Модификация полученного соединения водорастворимым полимером со вторичными аминогруппами: аналогично примеру 1.

[59]

4) Алкилирование: аналогично примеру 1.

[60]

[61]

Пример 4. Получение сорбента с химически привитым линейным полиэтиленимином на основе аминированного диоксида циркония с диаметром частиц 7 мкм.

[62]

1) В качестве исходной матрицы берут аминированный диоксид циркония с диаметром частиц 7 мкм.

[63]

2)) Химическая прививка спейсера:

[64]

В колбу на 100 мл помещают 1 г аминированного диоксида циркония, добавляют 15 мл воды и 1 мл (1,4-бутандиол)диглицидилового эфира. Реакционную смесь перемешивают в течение 30 минут при температуре 60°С, затем отфильтровывают и промывают водой.

[65]

3) Модификация полученного соединения водорастворимым полимером со вторичными аминогруппами:аналогично примеру 1.

[66]

4) Алкилирование: аналогично примеру 1.

[67]

[68]

Пример 5. Получение сорбента с химически привитым линейным полиэтиленимином на основе аминированного полиметакрилата с диаметром частиц 6 мкм.

[69]

1) В качестве исходной матрицы берут аминированный полиметакрилат с диаметром частиц 6 мкм.

[70]

2) Химическая прививка спейсера:

[71]

в колбу на 100 мл помещают 1 г аминированного полиметакрилата, добавляют 10 мл воды, 10 мл этанола и 1 мл (1,4-бутандиол)диглицидилового эфира. Реакционную смесь перемешивают в течение 60 минут при температуре 60°С, затем отфильтровывают и промывают водой.

[72]

3) Модификация полученного соединения водорастворимым полимером со вторичными аминогруппами:

[73]

1 г разветвленного полиэтиленимина растворяют в 10 мл дистиллированной воды, затем раствор добавляют к 1 г продукта, полученного на 2-й стадии, суспензированного в 10 мл этанола. Реакционную смесь перемешивают в течение 60 минут при температуре 60°С, затем отфильтровывают и промывают водой.

[74]

4) Алкилирование:

[75]

к 1 г продукта, полученного на 3-й стадии, добавляют 15 мл этанола и 5 мл эпихлоргидрина. Реакционную смесь перемешивают в течение 2 часов при температуре 60°С, затем отфильтровывают и промывают водой.

[76]

[77]

Пример 6. Получение сорбента с химически привитым разветвленным полиэтиленимином на основе аминированного сополимера стирола и дивинилбензола со степенью сшивки 50% и диаметром частиц 3 мкм.

[78]

1) В качестве исходной матрицы берут аминированный сополимер стирола и дивинилбензола со степенью сшивки 50% и диаметром частиц 3 мкм.

[79]

2) Химическая прививка спейсера:

[80]

в колбу на 100 мл помещают 1 г аминированного сополимера стирола и дивинилбензола, добавляют 10 мл воды, 10 мл этанола и 1 мл (1,4-бутандиол)диглицидилового эфира. Реакционную смесь перемешивают в течение 60 минут при температуре 60°С, затем отфильтровывают и промывают водой.

[81]

3) Модификация полученного соединения водорастворимым полимером со вторичными аминогруппами: аналогично примеру 5.

[82]

4) Алкилирование: аналогично примеру 5.

[83]

[84]

Пример 7. Получение сорбента с химически привитым поливиниламином на основе аминированного диоксида кремния с диаметром частиц 6 мкм.

[85]

1) В качестве исходной матрицы берут аминированный диоксид кремния с диаметром частиц 6 мкм.

[86]

2) Химическая прививка спейсера:

[87]

в колбу на 100 мл помещают 1 г аминированного диоксида кремния, добавляют 15 мл воды и 1 мл (этандиол)диглицидилового эфира. Реакционную смесь перемешивают в течение 60 минут при температуре 60°С, затем отфильтровывают и промывают водой.

[88]

3) Модификация полученного соединения водорастворимым полимером с первичными аминогруппами:

[89]

1 г поливиниламина растворяют в 15 мл дистиллированной воды, затем раствор добавляют к 1 г продукта, полученного на 1-й стадии. Реакционную смесь перемешивают в течение 60 минут при температуре 60°С, затем отфильтровывают и промывают водой.

[90]

4) Алкилирование:

[91]

к 1 г продукта, полученного на 3-й стадии, добавляют 15 мл воды и 5 мл глицидола. Реакционную смесь перемешивают в течение 60 минут при температуре 60°С, затем отфильтровывают и промывают водой.

[92]

[93]

Пример 8. Получение сорбента с химически привитым поливиниламином на основе аминированного сополимера стирола и дивинилбензола со степенью сшивки 25% и диаметром частиц 7 мкм.

[94]

1) В качестве исходной матрицы берут аминированный сополимер стирола и дивинилбензола со степенью сшивки 25% и диаметром частиц 7 мкм.

[95]

2) Стадия прививки спейсера, как в примере 6.

[96]

3) Модификация полученного соединения водорастворимым полимером с первичными аминогруппами:

[97]

1 г поливиниламина растворяют в 10 мл дистиллированной воды, затем раствор добавляют к 1 г продукта, полученного на 2-й стадии, суспензированного в 10 мл этанола. Реакционную смесь перемешивают в течение 60 минут при температуре 60°С, затем отфильтровывают и промывают водой.

[98]

4) Алкилирование:

[99]

к 1 г продукта, полученного на 2-й стадии, добавляют 10 мл этанола, 10 мл воды и 5 мл глицидола. Реакционную смесь перемешивают в течение 2 часов при температуре 60°С, затем отфильтровывают и промывают водой.

[100]

[101]

Пример 9. Получение сорбента с химически привитым поливиниламином на основе аминированного сополимера этилвинилбензола и дивинилбензола со степенью сшивки 55% и диаметром частиц 5 мкм.

[102]

1) В качестве исходной матрицы берут аминированный сополимер этилвинилбензола и дивинилбензола со степенью сшивки 55% и диаметром частиц 5 мкм.

[103]

2) Стадия прививки спейсера, как в примере 6.

[104]

3) Модификация полученного соединения водорастворимым полимером с первичными аминогруппами, как в примере 8.

[105]

4) Алкилирование, как в примере 8.

[106]

[107]

Пример 10. Ионохроматографическое определение органических и неорганических анионов с помощью анионообменных сорбентов, полученных в примерах 1-6 и 9.

[108]

Полученные в примерах 1-6 анионообменные сорбенты набивают в хроматографические колонки размером 4×50 мм под давлением 200 бар и проводят ионохроматографическое разделение смеси органических и неорганических анионов в варианте одноколоночной ионной хроматографии с УФ-детектированием для анионообменников, полученных в примерах 1-4 и в варианте двухколоночной хроматографии с кондуктометрическим детектированием для анионообменников, полученных в примерах 5 и 6. В качестве подвижных фаз при работе в одноколоночном режиме используют растворы гидрофталата калия с pH 4 и 6, а в двухколоночном варианте - растворы карбоната, гидрокарбоната и гидроксида натрия.

[109]

Хроматографические характеристики полученных анионообменных сорбентов представлены в таблице 1.

[110]

Как видно из таблицы 1, полученные сорбенты обладают повышенной эффективностью (40000-55000 тт/м), селективностью (позволяют проводить одновременное определение 8-13 анионов) и стабильностью (минимальный срок эксплуатации без изменения ионообменной емкости составляет 4 месяца). Кроме того, предложенный способ получения дает возможность варьирования селективности анионообменников путем выбора водорастворимого полимера, например, при переходе от линейного полиэтиленимина к поливиниламину количество разделяемых анионов возрастает от 10 до 13 в случае использования в качестве матрицы диоксида кремния.

[111]

Таким образом, предлагаемый способ получения сорбентов прост в исполнении и не требует использования высокотоксичных реагентов.

[112]

Предложенные нами анионообменные сорбенты сочетают в себе как достоинства полиэлектролитных сорбентов, такие как высокая эффективность и селективность, так и высокую стабильность, обусловленную химическим закреплением (химической прививкой) водорастворимого полимера, что исключает возможность изменения его конформации и смывания слоя с поверхности матрицы. Кроме того, предложенный способ синтеза позволяет расширить круг используемых водорастворимых полимеров (до содержащих в цепи первичные, вторичные или третичные атомы азота), что позволяет существенно улучшить селективность и варьировать ее в более широких пределах, увеличивая возможное число определяемых анионов более чем в 1,5 раза по сравнению с прототипом.

[113]

Предлагаемый подход к модифицированию прост в реализации, а благодаря высокой реакционной способности эпоксидных колец спейсера и алкилирующих агентов их реакции с аминогруппами, принадлежащими как матрице, так и водорастворимому полимеру, протекают легко, быстро и количественно при довольно мягких условиях (30-60 минут на одну стадию при температуре 50-60°С). Таким образом, дополнительным преимуществом данного подхода будет являться хорошая воспроизводимость синтеза с точки зрения получения необходимой ионообменной емкости.

[114]

Как компенсировать расходы
на инновационную разработку
Похожие патенты