патент
№ RU 2553994
МПК C10G25/02

СПОСОБ УДАЛЕНИЯ СЕРАОРГАНИЧЕСКИХ СОЕДИНЕНИЙ ИЗ ЖИДКОГО УГЛЕВОДОРОДНОГО ТОПЛИВА

Авторы:
Ёлкин Сергей Ильич
Номер заявки
2014133056/04
Дата подачи заявки
12.08.2014
Опубликовано
20.06.2015
Страна
RU
Как управлять
интеллектуальной собственностью
Реферат

Изобретение относится к нефтеперерабатывающей промышленности, в частности к способу удаления сераорганических соединений из жидкого углеводородного топлива. Изобретение касается способа удаления сераорганических соединений из жидкого углеводородного топлива с помощью адсорбентов, в качестве которых используют алюмо-никель(или кобальт)-молибденовый катализатор гидроочистки, и/или синтетические цеолиты типа NaX или ZSM, и/или материалы, содержащие оксиды алюминия, и/или оксиды цинка и меди, при атмосферном давлении, отличающийся тем, что топливо пропускают через несколько слоев адсорбентов, каждый из которых работает в определенном диапазоне температур, при котором достигается наибольшая эффективность удаления сераорганических соединений с использованием данного адсорбента. Технический результат - эффективное удаление сераорганических соединений из жидкого углеводородного топлива. 4 з.п. ф-лы, 18 табл., 18 пр.

Формула изобретения

1. Способ удаления сераорганических соединений из жидкого углеводородного топлива с помощью адсорбентов, в качестве которых используют алюмо-никель(или кобальт)-молибденовый катализатор гидроочистки, и/или синтетические цеолиты типа NaX или ZSM, и/или материалы, содержащие оксиды алюминия, и/или оксиды цинка и меди, при атмосферном давлении, отличающийся тем, что топливо пропускают через несколько слоев адсорбентов, каждый из которых работает в определенном диапазоне температур, при котором достигается наибольшая эффективность удаления сераорганических соединений с использованием данного адсорбента.

2. Способ по п. 1, отличающийся тем, что алюмо-никель(или кобальт)-молибденовый катализатор гидроочистки, материалы, содержащие оксиды алюминия, оксиды цинка и меди, наиболее эффективно удаляют сераорганические соединения в диапазоне температур от 0 до 50°C.

3. Способ по п. 1, отличающийся тем, что синтетические цеолиты типа NaX наиболее эффективно удаляют сераорганические соединения в диапазоне температур от 45 до 100°C.

4. Способ по п. 1, отличающийся тем, что синтетические цеолиты типа ZSM-5 наиболее эффективно удаляют сераорганические соединения в диапазоне температур от 85 до 100°C.

5. Способ по п. 1, отличающийся тем, что в качестве жидкого углеводородного топлива используют бензиновую, керосиновую или дизельную фракцию углеводородов.

Описание

[1]

Изобретение относится к нефтеперерабатывающей промышленности, в частности к способу удаления сераорганических соединений из жидкого углеводородного топлива.

[2]

Повышение требований к качеству моторных топлив, в частности к содержанию серы, способствовало развитию интереса к нетрадиционным негидрогенизационным методам сероочистки. Селективная адсорбция, проводимая в мягких условиях без участия молекулярного водорода с использованием традиционных хорошо изученных материалов, представляется весьма перспективным методом. Промышленной реализации процесса препятствует быстрая выработка адсорбционной емкости, ограничивающая производительность процесса. В некоторых опубликованных работах описаны адсорбенты, обладающие большой емкостью, но, как правило, достижение высокой эффективности с их использованием требует довольно жестких условий работы: высокой температуры и даже повышенного давления. При этом весьма вероятно протекание побочных реакций олигомеризации, поликонденсации непредельных соединений топливных фракций, осложняющих регенерацию адсорбента.

[3]

Известен способ (WO 2005007780, 2005) адсорбционного удаления сераорганических соединений из углеводородных топлив при температуре 300-600°C и давлении 0,79-3,5 МПа с использованием в качестве адсорбента оксида переходного металла, например, оксида молибдена. Недостатком способа является проведение процесса при высоких температуре и давлении.

[4]

Известен также способ удаления сераорганических соединений из крекинг-бензина и дизельного топлива (пат. РФ 2242277, 2004) при жестких условиях: температуре 200-480°C и повышенном давлении. В способе используют сорбенты, полученные пропиткой основы сорбентов, содержащей оксид цинка, вспученный перлит и оксид алюминия, металлом-промотором, таким как никель и/или кобальт, с последующим восстановлением валентности металла-промотора молекулярным водородом.

[5]

Недостатком способа также, как и в WO 2005007780 является использование в процессе высоких температур и повышенного давления. Другим недостатком является использование в описанном способе молекулярного водорода.

[6]

Существуют другие способы адсорбционного удаления сераорганических соединений из углеводородных топлив (крекинг-бензина и дизельного топлива), в которых адсорбционный материал в качестве основного компонента содержит цинк (пат. РФ 2336126, 2006, и пат. РФ 2369630, 2008), но для этих изобретений характерны такие недостатки, как жесткие условия процесса (высокие температура и давление), а также использование молекулярного водорода.

[7]

Другой способ адсорбционного удаления сераорганических соединений из керосина (US 6992041, 2006) предлагает использовать в качестве сорбентов материал, содержащий никель, оксиды никеля, цинка и алюминия. Способ реализуется при температуре от 200 до 400°C и давлении до 2 МПа. Основными недостатками способа являются агрессивные условия процесса (повышенная температура), а также необходимость в использовании молекулярного водорода для активационной обработки адсорбента.

[8]

Наиболее близким к заявляемому является способ адсорбционного удаления сераорганических соединений (РФ 2517705, 2014), который заключается в том, что топливо при температуре, выбранной в интервале от 0 до 100°C, и атмосферном давлении, пропускают через неподвижный адсорбент с относительной объемной скоростью подачи, лежащей в диапазоне значений ОД - 10 час-1, при этом в качестве адсорбента используют различные адсорбционные материалы, расположенные слоями или в виде одного смешанного слоя: алюмо-никель(кобальт)-молибденовый катализатор гидроочистки, и/или синтетические цеолиты типа NaX или ZSM, и/или материалы, содержащие оксиды алюминия, и/или оксиды цинка и меди.

[9]

Недостатком указанного способа является то, что при комбинировании адсорбентов не учтены особенности влияния температуры на адсорбцию для каждого адсорбента в отдельности, что существенно сказывается как на адсорбционной способности, так и на емкости в целом.

[10]

Задачей предлагаемого изобретения является разработка эффективного способа удаления сераорганических соединений из жидкого углеводородного топлива с помощью комбинации адсорбентов, каждый из которых работает в определенном диапазоне температур, при котором достигается наибольшая эффективность адсорбции, в мягких условиях: при атмосферном давлении без применения молекулярного водорода.

[11]

Поставленная задача решается способом удаления сераорганических соединений из жидкого углеводородного топлива с помощью адсорбентов, в качестве которых используют алюмо-никель(или кобальт)-молибденовый катализатор гидроочистки, и/или синтетические цеолиты типа NaX или ZSM, и/или материалы, содержащие оксиды алюминия, и/или оксиды

[12]

цинка и меди при атмосферном давлении. Способ отличается тем, что топливо пропускают через несколько слоев адсорбентов, каждый из которых работает в определенном диапазоне температур, при котором достигается наибольшая эффективность удаления сераорганических соединений с использованием данного адсорбента.

[13]

Причем алюмо-никель(или кобальт)-молибденовый катализатор гидроочистки, материалы, содержащие оксиды алюминия, оксиды цинка и меди наиболее эффективно удаляют сераорганические соединения в диапазоне температур от 0 до 50°C, синтетические цеолиты типа NaX - в диапазоне температур от 45 до 100°C, синтетические цеолиты типа ZSM-5 - в диапазоне температур от 85 до 100°C.

[14]

В качестве жидкого углеводородного топлива используют бензиновую, керосиновую или дизельную фракцию углеводородов.

[15]

Следует отметить, что слой адсорбента, который первым взаимодействует с топливом, имеет наибольшую рабочую температуру, а последний - наименьшую. Такая последовательность связана с условиями производства топлив из углеводородного сырья, а именно при разгонке углеводородного сырья, а также при проведении процесса гидроочистки на выходе из аппарата полученное топливо (топливная фракция) имеет повышенную температуру. Для эффективной работы некоторых адсорбентов такие условия не являются благоприятными из-за физического характера адсорбции, а, следовательно, существует потребность в дополнительном охлаждении сырья перед адсорбционной очисткой (или доочисткой). С другой стороны, для ряда адсорбентов вероятен процесс протекания активированной адсорбции, т.е. увеличения адсорбции с ростом температуры. Такие отличия в характере адсорбции могут быть использованы как благоприятный фактор для оптимизации процесса адсорбционной сероочистки.

[16]

Таким образом, при условии подачи топлива, нагретого на стадии получения или предварительной гидроочистки, отсутствует потребность для некоторых адсорбентов в поддержании температуры за счет термостатирования слоя адсорбента, а также в дополнительном охлаждении топлива перед подачей на следующий слой адсорбента, так как в процессе адсорбции на предыдущем слое топливо будет охлаждаться естественным образом за счет контакта с ненагретым адсорбентом.

[17]

Предлагаемое техническое решение подтверждено следующими примерами.

[18]

ПРИМЕР 1

[19]

Экспериментальную серию процесса адсорбционной сероочистки дизельного малосернистого топлива проводили с использованием адсорбента, в качестве которого выбрали γ-оксид алюминия. Содержание серы в исходном топливе [S]° 67 ppm. Процесс проводили при объемной скорости подачи топлива в реактор через неподвижный слой адсорбента 1 час-1. Экспериментальную серию проводили в нескольких температурных режимах: при 0, 20, 45, 60, 85 и 100°C.Поддержание температуры обеспечивали за счет термостатирования рубашки реактора. Объем слоя адсорбента - 100 см3. Перед проведением процесса адсорбент предварительно был подвергнут процедуре прокаливания при 500°C в токе воздуха.

[20]

Исследование направлено на выявление наиболее эффективных температурных условий адсорбции сераорганических соединений из углеводородного сырья с использование данного типа адсорбента.

[21]

Результаты экспериментальной серии представлены в таблице 1.

[22]

[23]

Наибольшая адсорбция с использованием γ-оксида алюминия была достигнута при 20°C. Однако эффективной температурой можно считать температуру в диапазоне от 0 до 45°C и обеспечивает получение топлива с содержанием серы менее 10 ppm.

[24]

ПРИМЕР 2

[25]

Экспериментальную серию проводили аналогично примеру 1, используя то же дизельное малосернистое топливо с содержанием общей серы [S]° 67 ppm, за исключением того, что в качестве адсорбента использовали цеолит типа NaX производства ООО «Нижегородские сорбенты» (г. Нижний Новгород).

[26]

Результаты экспериментальной серии представлены в виде таблицы 2.

[27]

[28]

Наибольшая адсорбция с использованием цеолита NaX была достигнута при 100°C. Однако эффективной температурой является температура в диапазоне от 45 до 100°C, при которой эффективность адсорбции существенно не изменяется.

[29]

ПРИМЕР 3

[30]

Экспериментальную серию проводили аналогично примеру 1, используя то же дизельное малосернистое топливо с содержанием общей серы [S]° 67 ppm, за исключением того, что в качестве адсорбента использовали катализатор типа ГО-70 (алюмо-никель-молибденовый) производства ООО «Промкатализ» (г.Рязань).

[31]

Результаты экспериментальной серии представлены в виде таблицы 3.

[32]

[33]

Наибольшая адсорбция с использованием алюмо-никель-молибденового катализатора ГО-70 была достигнута при 20°C. Однако эффективной температурой является температура в диапазоне от 0 до 60°C, при которой эффективность адсорбции существенно не изменяется.

[34]

ПРИМЕР 4

[35]

Экспериментальную серию проводили аналогично примеру 1, используя то же дизельное малосернистое топливо с содержанием общей серы [S]° 67 ppm, за исключением того, что в качестве адсорбента использовали цеолит типа ZSM-5 (в аммонийной форме) производства ООО «Нижегородские сорбенты» (г. Нижний Новгород).

[36]

Результаты экспериментальной серии представлены в виде таблицы 4.

[37]

[38]

Наибольшая адсорбция с использованием цеолита ZSM-5 была достигнута при 100°C.

[39]

Однако эффективной температурой является температура в диапазоне от 85 до 100°C, при которой эффективность адсорбции существенно не изменяется.

[40]

ПРИМЕР 5

[41]

Экспериментальную серию проводили аналогично примеру 1, используя то же дизельное малосернистое топливо с содержанием общей серы [S]° 67 ppm, за исключением того, что в качестве адсорбента использовали катализатор типа ИК-ГО-1 (алюмо-кобальт-молибденовый) производства ООО «Промкатализ» (г. Рязань).

[42]

Результаты экспериментальной серии представлены в виде таблицы 5.

[43]

[44]

Наибольшая адсорбция с использованием катализатора типа ИК-ГО-1 (алюмо-кобальт-молибденового) была достигнута при 20°C. Однако эффективной температурой является температура в диапазоне от 0 до 60°C, при которой эффективность адсорбции существенно не изменяется.

[45]

ПРИМЕР 6

[46]

Экспериментальную серию проводили аналогично примеру 1, используя то же дизельное малосернистое топливо с содержанием общей серы [S]° 67 ppm, за исключением того, что в качестве адсорбента использовали адсорбент АПС-Ф (смеси оксидов цинка и меди (80 и 10%) производства ООО «АЗКиОС» (г. Ангарск).

[47]

Результаты экспериментальной серии представлены в виде таблицы 6.

[48]

Наибольшая адсорбция с использованием адсорбента АПС-Ф была достигнута при 20°C.Однако эффективной температурой является температура в диапазоне от 0 до 45°C, при которой эффективность адсорбции существенно не изменяется.

[49]

ПРИМЕР 7

[50]

Экспериментальную серию проводили аналогично примеру 1, используя то же дизельное малосернистое топливо с содержанием общей серы [S]° 67 ppm, за исключением того, что в качестве адсорбента использовали γ-оксид алюминия, содержащий 1% масс.оксида цинка.

[51]

Результаты экспериментальной серии представлены в виде таблицы 7.

[52]

[53]

[54]

Наибольшая адсорбция с использованием γ-оксида алюминия, содержащего 1% масс, оксида цинка, была достигнута при 20°C.Однако эффективной температурой является температура в диапазоне от 0 до 60°C, при которой эффективность адсорбции существенно не изменяется.

[55]

ПРИМЕР 8

[56]

Эксперимент проводили аналогично примеру 1, используя то же дизельное малосернистое топливо с содержанием серы [S]° 67 ppm и тот же γ-оксид алюминия в качестве адсорбента. Через адсорбент объемом 100 см3 со скоростью 1 час"1 перколировали топливо объемом 1000 см3, при этом процесс проводили двумя способами. В первом случае в реактор подавали топливо, нагретое до 50°C.При этом реактор дополнительно не термостатировали, а очищенное топливо на выходе из реактора имело температуру 20°C.

[57]

Во втором случае, в процессе адсорбции дополнительное термостатирование рубашки реактора не проводили и топливо не нагревали, т.е. проводили процесс при комнатных условиях (20°C).

[58]

Исследование направлено на определение динамической емкости адсорбента в наиболее благоприятных температурных условиях.

[59]

Результаты эксперимента представлены в виде таблицы 8.

[60]

[61]

Результаты, представленные в таблице 8, показывают, что способ поддержания температуры в интервале от 20 до 50°C в процессе адсорбции сераорганических соединений с использованием γ-оксида алюминия в качестве адсорбента существенно не влияет на эффективность адсорбции и адсорбционную емкость.

[62]

ПРИМЕР 9

[63]

Эксперимент проводили аналогично примеру 8, используя то же дизельное малосернистое топливо с содержанием серы [S]° 67 ppm, за исключением того, что в качестве адсорбента использовали цеолит NaX, а процесс проводили двумя способами. В первом случае в реактор подавали топливо, нагретое до 100°C.При этом реактор дополнительно не термостатировали, а очищенное топливо на выходе из реактора имело температуру 50°C.

[64]

Во втором случае, в процессе адсорбции проводили дополнительное термостатирование рубашки реактора до 100°C, в то время как топливо на входе в реактор имело температуру 20°C. При этом очищенное топливо на выходе из реактора имело температуру 100°C.

[65]

Результаты эксперимента представлены в виде таблицы 9.

[66]

[67]

Результаты, представленные в таблице 9, показывают, что способ поддержания температуры в интервале от 50 до 100°C в процессе адсорбции сераорганических соединений с использованием цеолита NaX в качестве адсорбента существенно не влияет на эффективность адсорбции и адсорбционную емкость.

[68]

ПРИМЕР 10

[69]

Эксперимент проводили аналогично примеру 8, используя то же дизельное малосернистое топливо с содержанием серы [S]° 67 ppm, за исключением того, что в качестве адсорбента использовали γ-оксид алюминия, содержащий 1% оксида цинка.

[70]

Результаты эксперимента представлены в виде таблицы 10.

[71]

[72]

Результаты, представленные в таблице 10, показывают, что способ поддержания температуры в интервале от 20 до 50°C в процессе адсорбции сераорганических соединений с использованием γ-оксида алюминия, содержащего 1% оксида цинка, в качестве адсорбента существенно не влияет на эффективность адсорбции и адсорбционную емкость.

[73]

ПРИМЕР 11

[74]

Эксперимент проводили аналогично примеру 1, используя то же дизельное малосернистое топливо с содержанием серы [S]° 67 ppm, за исключением того, что в качестве адсорбентов использовали цеолит NaX и γ-оксид алюминия, расположенные слоями, причем первым с топливом, нагретым до температуры от 50 до 100°C, взаимодействует цеолит NaX, а затем уже с остывшим ниже 50°C топливом контактирует γ-оксид алюминия. Дополнительного термостатирования рубашки реактора не проводили. Объем каждого адсорбента - 100 см3.

[75]

Результаты эксперимента представлены в виде таблицы 11.

[76]

[77]

Результаты, представленные в таблице 11, показывают, что комбинирование нескольких адсорбентов, каждый из которых работает при эффективной температуре, обеспечивает не только экономию, связанную с отсутствием потребности в дополнительном нагреве/охлаждении сырья, но и способствует увеличению глубины очистки и продолжительность времени выработки адсорбента.

[78]

ПРИМЕР 12

[79]

Эксперимент проводили аналогично примеру 8, используя то же дизельное малосернистое топливо с содержанием серы [S]° 67 ppm, за исключением того, что вместо γ-оксид алюминия использовали γ-оксид алюминия, содержащий 1% оксида цинка.

[80]

Результаты эксперимента представлены в виде таблицы 12.

[81]

[82]

Полученный результат подтверждает эффектиность комбинирования адсорбентов, работающих в различных температурных интервалах.

[83]

ПРИМЕР 13

[84]

Эксперимент проводили аналогично примеру 12, за исключением того, что в качестве сырья использовали бензиновую фракцию углеводородов с содержанием общей серы - 510 ppm.

[85]

Результаты эксперимента представлены в виде таблицы 13.

[86]

[87]

Полученный результат подтверждает эффективность способа сероочистки бензиновой фракции углеводородов.

[88]

ПРИМЕР 14

[89]

Эксперимент проводили аналогично примеру 12, за исключением того, что в качестве сырья использовали керосиновую фракцию углеводородов с содержанием общей серы -2230 ppm.

[90]

Результаты эксперимента представлены в виде таблицы 14.

[91]

[92]

Полученный результат подтверждает эффективность способа сероочистки керосиновой фракции углеводородов.

[93]

ПРИМЕР 15

[94]

Эксперимент проводили аналогично примеру 1, используя то же дизельное малосернистое топливо с содержанием серы [S]° 67 ppm, за исключением того, что в качестве адсорбентов использовали γ-оксид алюминия и цеолит NaX, расположенные слоями, каждый из которых помещен в отдельный реактор-адсорбер, причем первым с топливом, охлажденным до температуры 0°C, взаимодействует γ-оксид алюминия. В ходе эксперимента за счет теплообмена с адсорбентом и окружающей средой температура топлива повышается до температуры окружающей среды и на выходе из первого слоя адсорбента имеет значение 20±5°C.Затем топливо дополнительно нагревают до 100°C перед контактом со вторым слоем адсорбента, в качестве которого используют цеолит NaX. Дополнительного термостатирования рубашки реакторов не проводили, поэтому за счет теплообмена со слоем адсорбента и окружающей средой температура топлива снижалась естественным образом при прохождении через второй слой адсорбента и на выходе была не ниже 50°C.Объем каждого адсорбента - 100 см3.

[95]

Результаты эксперимента представлены в виде таблицы 15.

[96]

[97]

Результаты, представленные в табл. 15, подтверждают, что комбинирование нескольких адсорбентов, каждый из которых работает при эффективной температуре, способствует увеличению глубины очистки топлива.

[98]

ПРИМЕР 16

[99]

Эксперимент проводили аналогично примеру 1, используя то же дизельное малосернистое топливо с содержанием серы [S]° 67 ppm, за исключением того, что для проведения процесса использовали три слоя адсорбентов, в качестве которых применяли слой цеолита NaX, слой γ-оксида алюминия и слой алюмо-никель-молибденового катализатора ГО-70. На первый слой цеолита NaX подавали топливо, нагретое до 100°C. В ходе процесса реактор дополнительно не термостатировали, и поэтому при прохождении через слой цеолита топливо охлаждалось естественным образом и на выходе имело температуру не ниже 50°C.Затем без дополнительного охлаждения топливо пропускали через слой адсорбента - γ-оксид алюминия. При этом также топливо охлаждалось естественным образом и на выходе из второго слоя имело температуру около 20°C. Далее полученное топливо пропускали через третий слой адсорбента - ГО-70 - для глубокой доочистки. При этом температура топлива на выходе из реактора соответсвовала температуре окружающей среды (20±5°C).

[100]

Объем каждого адсорбента - 100 см3.

[101]

Результаты эксперимента представлены в виде таблицы 16.

[102]

[103]

Представленные в таблице 16 результаты подтверждают, что сочетание нескольких слоев адсорбентов, работающих при наиболее благопрятных температурных условиях, которые отличаются для каждого адсорбента, обеспечивает получение глубоко очищенного топлива.

[104]

ПРИМЕР 17

[105]

Эксперимент проводили аналогично примеру 1, используя то же дизельное малосернистое топливо с содержанием серы [S]° 67 ppm, за исключением того, что для проведения процесса использовали четыре слоя адсорбентов, в качестве которых применяли цеолит NaX, γ-оксид алюминия, алюмо-никель-молибденового катализатора ГО-70 и γ-оксид алюминия, содержащий 1% оксида цинка. На первый слой цеолита NaX подавали топливо,

[106]

нагретое до 100°C. В ходе процесса реактор дополнительно не термостатировали, и поэтому при прохождении через слой цеолита NaX топливо охлаждалось естественным образом и на выходе имело температуру не ниже 50°C.Затем без дополнительного охлаждения топливо пропускали через слой адсорбента γ-оксида алюминия. При этом также топливо охлаждалось естественным образом и на выходе из второго слоя имело температуру около 20°C.Далее полученное топливо пропускали через третий слой адсорбента - ГО-70, а затем через четвертый слой γ-оксида алюминия, содержащего 1% оксида цинка для глубокой доочистки при той же температуре. При этом температура топлива на выходе из реактора соответствовала температуре окружающей среды (20±5°C).

[107]

Объем каждого адсорбента - 100 см3.

[108]

Результаты эксперимента представлены в виде таблицы 17.

[109]

[110]

Представленные результаты показали, что пропускание топлива через четыре слоя адсорбентов, каждый из которых работает в определенном диапазоне температур, обеспечивает глубокое удаление нежелательных сераорганических соединений.

[111]

ПРИМЕР 18 (Сравнительный)

[112]

Эксперимент проводили аналогично примеру 11, используя то же дизельное малосернистое топливо с содержанием серы [S]° 67 ppm, за исключением того, что в качестве адсорбентов использовали γ-оксид алюминия и цеолит NaX, расположенные слоями, причем первым с топливом, нагретым до температуры от 50 до 100°C, взаимодействует γ-оксид алюминия, а затем уже с остывшим ниже 50°C топливом контактирует цеолит NaX. Дополнительного термостатирования рубашки реактора не проводили. Объем каждого адсорбента - 100 см3.

[113]

Результаты эксперимента представлены в виде таблицы 18.

[114]

[115]

Результаты, представленные в таблице 18, показывают, что комбинирование нескольких адсорбентов, каждый из которых работает в неблагоприятном диапазоне температур, не обеспечивает достижение высокой глубины очистки топлива от сераорганических соединений.

[116]

Проведенные экспериментальные серии позволяют заключить, что предложенный способ адсорбционного удаления сераорганических соединений из жидкого углеводородного топлива (бензиновой, керосиновой и дизельной фракций) эффективно реализуется при атмосферном давлении при условии, что каждый адсорбент работает в определенном диапазоне температур, при котором достигается его наибольшая эффективность. Для реализации способа в качестве адсорбентов приемлемо использование алюмо-никель(или кобальт)-молибденового катализатора гидроочистки (представляющего собой по составу смесь оксидов молибдена, никеля (или кобальта) и алюминия), цеолиты типа NaX и ZSM, материалы, содержащие оксиды алюминия, цинка и меди.

Как компенсировать расходы
на инновационную разработку
Похожие патенты