патент
№ RU 2403642
МПК G21G1/12

СПОСОБ ПОЛУЧЕНИЯ ИЗОТОПА УРАНА-237

Авторы:
Белов Анатолий Георгиевич Дмитриев Сергей Николаевич Густова Марина Владимировна
Все (4)
Номер заявки
2009113076/07
Дата подачи заявки
07.04.2009
Опубликовано
10.11.2010
Страна
RU
Как управлять
интеллектуальной собственностью
Чертежи 
1
Реферат

Изобретение относится к области радиохимии, а именно к способам получения и разделения изотопов. Изобретение может быть использовано в практике производства изотопов для радиохимии, радиобиологии и радиоэкологии. Соединения урана в смеси с гидратированной двуокисью марганца типа криптомелана облучают тормозным излучением микротрона. Средний пробег ядер отдачи урана-237 обеспечивает их выход из материнского вещества и имплантацию в частицы вещества-акцептора, роль которого играет криптомелан. После облучения мишень обрабатывают водой для растворения исходного соединения урана. Отделяют осадок криптомелана, содержащий ядра отдачи урана-237, и растворяют его в присутствии восстановителя. Уран-237 выделяют из раствора известными радиохимическими методами. Изобретение направлено на получение препарата изотопа урана-237 с высокой удельной активностью и радиоизотопной чистотой. 3 з.п. ф-лы, 1 ил.

Формула изобретения

1. Способ получения изотопа урана-237, заключающийся в облучении соединений природного или обогащенного урана-238 в смеси с веществом-поглотителем потоком гамма-квантов, избирательном растворении только соединения урана-238 и выделении чистого препарата урана-237, отличающийся тем, что в качестве вещества, выполняющего функцию поглощения ядер отдачи урана-237, выбирают гидратированную двуокись марганца типа криптомелана.

2. Способ по п.1, отличающийся тем, что перед облучением вещество, выполняющее функцию поглощения ядер отдачи урана-237, смачивают раствором соединения урана и затем высушивают.

3. Способ по п.1, отличающийся тем, что количество соединения урана и криптомелана выбирают в весовом соотношении 1:5-1:10.

4. Способ по п.1, отличающийся тем, что в качестве избирательно растворяющего только соединение урана-238 используют водный раствор.

Описание

[1]

Изобретение относится к области радиохимии, а именно к способам получения и разделения изотопов. Изобретение может быть использовано в практике производства изотопов для радиохимии, радиобиологии и радиоэкологии. Ядерно-физические характеристики изотопа урана-237: период полураспада - 6,75 суток; способ распада - γ-распад с основными энергиями фотонов: 59,5 кэВ (33,5%) и 208,0 кэВ (21,7%); - наличие достаточно интенсивных характеристических рентгеновских линий: 101,1 кэВ (25,6%), 97,1 кэВ (15,9%), 114 кэВ (6%) делают его весьма удобным для применения в качестве отметчика при изучении химического поведения и миграции изотопов урана в различных лабораторных и природных системах. Однако на сегодняшний день не существует удобных методов получения изотопа урана-237, поэтому в настоящее время он практически нигде не используется.

[2]

Известен способ [1] получения изотопа урана-237 (237U), заключающийся в использовании альфа-распада (α) изотопа плутония-241 (241Pu):241Pu(α)→237U.

[3]

Недостатком способа [1] является то, что241Pu является весьма редким искусственным изотопом и поэтому не может быть практически использован для получения237U.

[4]

Известен способ получения изотопа237U путем облучения гамма-квантами (γ) урана-238 (238U) по реакции238U (γ, n)237U [2]. При этом разделение изотопов238U и237U в данной методике не производится.

[5]

Недостатком данного способа является то, что в процессе облучения получается смесь изотопов:238U и237U. Для отделения237U от большой массы238U необходимо использовать дорогие и энергоемкие физические методы разделения изотопов, масс-сепараторы [3]. Процесс очень длительный, требует больших энергетических затрат, так как разделение масс, отличающихся всего на 1, представляет определенную трудность.

[6]

Наиболее близким по достигаемому положительному эффекту к предлагаемому способу является возможность получения237U в реакции гамма-облучения238U на микротроне (прототип) [4]:238U (γ, n)237U. В качестве мишени используют высокодисперсный порошок соединения урана в смеси с порошкообразным веществом, выполняющим функцию поглощения ядер отдачи237U. Веществом, выполняющим функцию поглощения ядер отдачи237U, является смесь фторидов щелочноземельного и редкоземельного элементов.

[7]

Недостатком данного способа является то, что размер частиц порошков должен быть не более 1 мкм. Веществом, выполняющим функцию поглощения ядер отдачи237U, является смесь в определенном соотношении. Процесс подготовки мишени для облучения является сложным и трудоемким. Избирательное растворение соединений урана-238 в смеси фторидов щелочноземельного и редкоземельного элементов не обеспечивает достаточно полного разделения изотопов237U и238U, которое не превышает двух-трех порядков. Для исследования поведения урана в различных химических и биологических системах требуется более высокая удельная активность трассера урана-237. Для растворения фторидов элементов после облучения необходимо вводить окислители и борную кислоту, что приводит к уменьшению выхода конечного продукта, урана-237.

[8]

Технической задачей изобретения является увеличение удельной активности237U и упрощение процедуры подготовки мишени и выделения237U.

[9]

Техническая задача решается предложенным способом, заключающимся в том, что соединение природного или обогащенного238U в смеси с веществом-поглотителем облучают потоком гамма-квантов, избирательно растворяют только соединение238U и затем выделяют чистый препарат237U, при этом в качестве вещества-поглотителя ядер отдачи237U используют гидратированную двуокись марганца типа криптомелана, указанное вещество перед облучением смачивают раствором соединения урана и высушивают, количество соединения урана и криптомелана выбирают в весовом соотношении 1:5-1:10, а в качестве избирательного растворителя для соединения урана-238 используют водный раствор.

[10]

Существенные отличия предлагаемого способа от прототипа заключаются в том, что вещество, выполняющее функцию поглощения ядер отдачи237U, перед облучением смачивают раствором соединения урана и высушивают. В результате смачивания вещества раствором соединения урана образуется более равномерная и полная смесь соединения урана с веществом, выполняющим функцию поглощения ядер отдачи237U и позволяющим таким образом отделить образующиеся в процессе облучения ядра237U от материнского вещества238U. После облучения смесь помещают в жидкость, избирательно растворяющую только соединение урана-238, что позволяет перевести материнское вещество в раствор и удалить. Нерастворившийся порошок вещества-поглотителя, содержащий ядра отдачи237U, отделяют, растворяют и затем выделяют из раствора237U известным радиохимическим методом. В качестве вещества, выполняющего функцию поглощения ядер отдачи237U, выбирают гидратированную двуокись марганца типа криптомелана, что позволяет более эффективно удерживать имплантированные в частицы порошка вещества-поглотителя ядра отдачи237U за счет расположения в туннелях (каналах), которые обеспечивают высокую ионообменную селективность к ионам, имеющим эффективный ионный радиус около 1,3-1,5 Å [5]. Количество соединения урана и криптомелана выбирают в весовом соотношении 1:5-1:10, чтобы частицы материнского вещества были по возможности полнее окружены со всех сторон частицами вещества-поглотителя. При этом образующиеся в процессе облучения ядра отдачи покидают пределы материнского вещества и имплантируются в частицы вещества-поглотителя.

[11]

Совокупность всех существенных признаков позволяет увеличить удельную активность препарата237U и упростить отделение его от238U.

[12]

Положительным эффектом предлагаемого способа является получение препарата237U без носителя материнского урана.

[13]

Сущность способа заключается в следующем: гидратированную двуокись марганца типа криптомелана, смачивают раствором соединения урана, высушивают, помещают в мишенное устройство и облучают гамма-квантами тормозного излучения микротрона. В результате ядерной реакции238U (γ, n)237U образуются ядра отдачи237U в низшем валентном состоянии (III, IV), которые имплантируются в криптомелан. После облучения смесь обрабатывают водой для растворения соединений урана (VI) и отделяют нерастворимый осадок, содержащий237U (IV), от раствора с помощью центрифугирования или фильтрации через ядерный фильтр. Затем растворяют осадок, содержащий237U, в 1 М HNO3 в присутствии 1,5% перекиси водорода (H2O2) и выделяют из раствора237U известным радиохимическим методом.

[14]

Пример выполнения способа

[15]

Предлагаемый способ был использован при получении раствора изотопа237U при облучении азотнокислого уранила (UO2(NO3)2). Криптомелан (100 мг) смачивают раствором UO2(NO3)2 (20 мг), высушивают, помещают в мишенное устройство и облучают тормозным излучением микротрона МТ-25 при среднем токе электронов 15 мкА и максимальной энергии электронов 24,5 МэВ в течение 1 часа. После облучения смесь обрабатывают 20 мл воды. Раствор подвергают центрифугированию. При этом ядра237U, полученные в результате ядерной реакции, остаются имплантированными в осадке криптомелана. Осветленный раствор, содержащий исходный азотнокислый уранил, сливают. Оставшийся осадок растворяют в 5 мл 1 М раствора азотной кислоты (HNO3) в присутствии 1,5% перекиси водорода (H2O2) путем нагревания на водяной бане до 60°С. После этого проводят осаждение двуокиси марганца, добавляя 10 мг бромата калия (KBrO3) [6].237U при этом остается в растворе, который после центрифугирования отделяют от осадка путем декантации. Полученный раствор упаривают, переводят237U в форму хлорида и в виде 10% раствора 9 М HCl в этаноле элюируют через колонку с анионообменной смолой Dowex 1×8.237U сорбируется на колонке и затем смывается 1 М раствором HNO3 [7]. Полученный раствор можно использовать в радиохимических исследованиях. Вся процедура занимает не более трех часов. Удельная активность237U в результате выполнения предлагаемого способа увеличивается в 106 раз.

[16]

В Приложении на чертеже представлен спектр гамма-излучения полученного изотопа237U, снятый на гамма-спектрометре с использованием HPGe-детектора с разрешением 1,5 КэВ на линии 1,33 МэВ. Приведенный спектр содержит только линии237U, что подтверждает высокую радиохимическую чистоту полученного препарата изотопа237U.

[17]

Источники информации

[18]

1. Александров Б.М., Ильятов К.В., Крижанский Л.М., Кривохатский А.С., Сковородкин Н.В., Преображенский Б.К. Изотопный генератор237U, основанный на241Pu, АЭ. (Jul 1978). v.45(1) с.66-67.

[19]

2. Gosman A.; Klisky V.; Kaspar J.; Vodolan P. Preparation and application of237U for the study of heterogeneous isotope exchange on an ion exchanger J. Radioanal. Nucl. Chem. Articles. (Apr 1988). v.121 (2) p.375-383.

[20]

3. Химия актиноидов. Ред. Дж.Кац, Г.Сиборг и Л.Морсс, т.1, “Мир”, М., 1991, с.188.

[21]

4. Патент №2262759 от (заявка 2003133380/06,) 18.11.2003 г. Способ получения радиоизотопа урана-237. Густова М.В., Дмитриев С.Н., Маслов О.Д., Молоканова Л.Г., Оганесян Ю.Ц., Сабельников А.В. Бюл. №29, 20.10.2005.

[22]

5. Tsujl М., Abe М. Solvent Extraction and Ion Exchange, 2. 1984, p.253.

[23]

6. Bigliocca C., Girardi F., Panly J., Sabbioni E. Radiochemical Separation by Adsorption on Manganese Dioxide. Anal. Chem. V.39, No. 13, 1967, p.1634-1639.

[24]

7. Гусева Л.И., Тихомирова Г.С. Одновременное определение природных и искусственных актиноидов в объектах окружающей среды с использованием ионитов и растворов минеральных кислот. Радиохимия, 1994, Т.36, вып.1, С.51-56

Как компенсировать расходы
на инновационную разработку
Похожие патенты