Изобретение относится к производству бутадиен-стирольных каучуков,
получаемых методом эмульсионной (со)полимеризации, в частности к способам выделения их из латексов, и может быть использовано в нефтехимической промышленности. Описан способ получения наполненного
бутадиен-стирольного каучука путем сополимеризации бутадиена со стиролом в эмульсии в присутствии радикальных инициаторов, стопперировании процесса, введении наполнителя и антиоксиданта, дегазации и
выделении каучука из латекса методом коагуляции, отличающийся тем, что в качестве наполнителя и антиоксиданта используют волокнополимерноантиоксидантный композит, полученный предварительным смешением
измельченных разволокненных волокон, с углеводородным раствором низкомолекулярного полимерного материала, полученного на основе кубового остатка очистки возвратного растворителя - толуола производства
полибутадиенового каучука и стирола, содержащего антиоксидант аминного или фенольного типа, перетиром полученного композита, диспергированием его в водной фазе, содержащей поверхностно-активные
вещества, отгонкой низкокипящей углеводородной фракции и введением в количестве 2-6% низкомолекулярного полимерного материала и 0,1-1,0% волокнистого наполнителя на каучук. Технический эффект
- уменьшение потерь каучука, снижение загрязнения окружающей среды и повышение физико-механических показателей вулканизатов. 2 табл.
Способ получения наполненного бутадиен-стирольного каучука путем сополимеризации бутадиена со стиролом в эмульсии в присутствии радикальных инициаторов, стопперирования
процесса, введения наполнителя и антиоксиданта, дегазации и выделения каучука из латекса методом коагуляции, отличающийся тем, что в качестве наполнителя и антиоксиданта используют
волокнополимерно-антиоксидантный композит, полученный предварительным смешением измельченных разволокненных волокон, с углеводородным раствором низкомолекулярного полимерного материала, полученного на
основе кубового остатка очистки возвратного растворителя - толуола производства полибутадиенового каучука и стирола, содержащего антиоксидант аминного или фенольного типа, перетиром полученного
композита, диспергированием его в водной фазе, содержащей поверхностно-активные вещества, отгонкой низкокипящей углеводородной фракции и введением в количестве 2-6% низкомолекулярного полимерного
материала и 0,1-1,0% волокнистого наполнителя на каучук.
Изобретение относится к производству бутадиен-стирольных каучуков, получаемых эмульсионной (со)полимеризацией, в
частности к способам наполнения их на стадии латексов, и может быть использовано в нефтехимической промышленности. Наиболее близким по технической сущности является способ получения
наполненных бутадиен-стирольных каучуков на стадии латекса с использованием в качестве наполнителей нафтеновых, парафиновых масел с последующим выделением наполненного каучука водно-солевыми
растворами и подкисляющим агентом. [Кирпичников П.А., Аверко-Антонович Л.А., Аверко-Антонович Ю.О. Химия и технология синтетического каучука: Учебник для вузов. - 3-е изд., перераб. - Л.: Химия, 1987.
- 424 с., ил.]. Основными недостатками данного способа получения наполненных бутадиен-стирольных каучуков являются: - образование мелкодисперсной крошки каучука, которая
уносится с серумом и промывными водами из цехов выделения, что приводит к снижению производительности процесса; - нарушение стабильности процесса; - загрязнение окружающей
среды каучуковыми продуктами; - невысокая устойчивость термоокислительному воздействию. Задачей, на решение которой направлено данное изобретение, является стабилизация
процесса выделения каучука из латекса, уменьшение потерь каучука с образовавшейся крошкой из цехов выделения, снижение загрязнения окружающей среды каучуковыми продуктами, улучшение
физико-механических показателей вулканизатов. Поставленная задача достигается тем, что в способе получения наполненного бутадиен-стирольного каучука путем сополимеризации бутадиена со
стиролом в эмульсии в присутствии радикальных инициаторов, стопперировании процесса, введении наполнителя и антиоксиданта, дегазации и выделении каучука из латекса методом коагуляции, согласно
изобретения в качестве наполнителя и антиоксиданта используют волокнополимерноантиоксидантный композит, полученный предварительным смешением измельченных разволокненных волокон, с углеводородным
раствором низкомолекулярного полимерного материала, полученного на основе кубового остатка очистки возвратного растворителя - толуола производства полибутадиенового каучука и стирола, содержащего
антиоксидант аминного или фенольного типа, перетиром полученного композита, диспергированием его в водной фазе, содержащей поверхностно-активные вещества, отгонкой низкокипящей углеводородной фракции
и введением в количестве 2-6% низкомолекулярного полимерного материала и 0,1-1,0% волокнистого наполнителя на каучук. Предлагаемый способ получения наполненного бутадиен-стирольного
каучука позволяет стабилизировать процесс коагуляции, уменьшить потери каучука, снизить загрязнение окружающей среды и повысить физико-механические показатели вулканизатов. Способ
осуществляется следующим образом Сополимеризацию бутадиена со стиролом осуществляют в батарее, состоящей из 10-12 полимеризационных аппаратов, в присутствии инициаторов радикального
типа (например гидропероксида пинана). После достижения конверсии 65-70% в систему вводится стоппер радикального процесса (нитрит натрия, ронгалит и др.) и полученный латекс подается на дегазацию, где
происходит отгонка незаполимеризовавшихся мономеров (стирол, бутадиен и других низкокипящих продуктов. Из отделения дегазации латекс поступает на коагуляцию, где смешивается с масляноантиоксидантной
эмульсией и агентами, обеспечивающими выделение каучука из латекса (водный раствор хлорида натрия и серной кислоты). Образующаяся крошка каучука подается на промывку, обезвоживание, сушку и упаковку
(Распопов И.В., Никулин С.С., Гаршин А.П. и др. Совершенствование оборудования и технологии выделения бутадиен-(α-метил)стирольных каучуков из латексов. М.: ЦНИИТЭ-нефтехим, 1997. 68 с.).
Данный процесс соответствует ограничительной части формулы изобретения. Низкомолекулярный полимерный материал (НПМ) получали сополимеризацией непредельных соединений
(4-винилциклогексена; циклододекатриена-1,5,9; н-додекатетраена-2,4,6,10), содержащихся в кубовом остатке очистки возвратного растворителя - толуола со стиролом в присутствии алюмосиликатных
катализаторов. Данный процесс был реализован в промышленных масштабах, а получаемый НПМ использовался в производстве лакокрасочных материалов (Сидоров С.Л., Шаповалова Н.Н., Молодыка А.В. и др.
// Производство и использование эластомеров. 1993. N 4. С.11-14). Свойства НПМ полученного на основе кубового остатка очистки возвратного растворителя - толуола производства полибутадиенового каучука
и стирола: цвет по йодометрической шкале (ИМШ) - 200-500; массовая доля остаточного стирола - не более 0,1%; содержание связанного стирола - 65-70%; условная вязкость по ВЗ-4 - 42-46 с, молекулярная
масса - 1300-1700. Волокнистые материалы, являющиеся отходами различных производств (обрезки тканей, нитей, путанки и др.), подвергают разволокнению и измельчению до размера 2-10 мм и
смешивают с углеводородным раствором низкомолекулярного полимерного материала (НПМ), полученного на основе кубового остатка очистки возвратного растворителя - толуола и стирола, содержащего аминные
или фенольные антиоксиданты. Полученный композит перемешивают на высокоскоростной мешалке в течение 10-15 минут при 60-90°С и подвергают дополнительному перетиру в течение 1-3 часов. В
результате данных технологических операций происходит втирание масла в волокнистый материал и его обезвоживание. Полученный композит при постоянном высокоскоростном перемешивании диспергируется в
водной фазе, содержащей поверхностно-активные вещества при 40-60°С в течение 1-3 часов. Дозировку волокнистого наполнителя выдерживают 0,1-1,0% на каучук, НПМ - от 2 до 6% на каучук. Применение
более высоких дозировок волокнистого наполнителя (более 1,0% на каучук) приводит к резкому увеличению вязкости системы, что отрицательно влияет на ее подвижность и транспортабельность по
трубопроводам. После отгонки низкомолекулярной углеводородной фракции (растворителя, незаполимеризовавшихся мономеров и других низкокипящих продуктов) водноволокнополимерноантиоксидантную дисперсию
(ВВПАД) смешивают с латексом СКС-30 АРК. Каучуковый латекс, содержащий ВВПАД, подают на коагуляцию. Бутадиен-стирольный латекс СКС-30 АРК, содержащий ВВПАД, заливают в емкость для
коагуляции, снабженную перемешивающим устройством и помещенную в термостат для поддержания заданной температуры. Выдерживают при заданной температуре 10-15 минут, вводят коагулирующий агент - 24%
водный раствор хлорида натрия и перемешивают 5-10 минут. Процесс выделения завершают вводом 2% водного раствора серной кислоты. рН коагуляции выдерживают 2,0-2,5. Образующийся коагулюм отделяют от
серума, промывают водой и высушивают при температуре 80-85°С. Полноту коагуляции оценивают визуально серум прозрачный - коагуляция полная), а также по массе образующегося коагулюма. Способ поясняется следующими примерами Сополимеризация бутадиена со стиролом осуществляется по непрерывной схеме на батарее, состоящей из 12 полимеризаторов. В первый по ходу
процесса полимеризатор подается водная и углеводородная фазы (смесь 70% бутадиена и 30% стирола), радикальный инициатор (гидропероксиды изопропилбензола, пинана и др.) и регулятор молекулярной массы
(третичный додецилмеркаптан). Дополнительные количества регулятора молекулярной массы вводятся в процесс перед пятым и девятым полимеризаторами. Полимеризаторы оборудованы мешалками. Сополимеризацию
бутадиена со стиролом проводят при 4-8°С. Процесс ведут до конверсии 65-68%. При выходе из последнего полимеризатора латекс непрерывно заправляется стоппером - раствором диметилдитиокарбаматом
натрия с нитритом натрия. Заправленный стоппером латекс проходит через фильтр и направляется на отгонку незаполимеризовавшихся мономеров в верхнюю часть колонны предварительной дегазации, где
происходит отгонка основного количества бутадиена. После колонны предварительной дегазации латекс направляется в вакуумный отгонный аппарат, где происходит отгонка стирола и оставшегося бутадиена.
Латекс из отделения дегазации подается на коагуляцию. В емкость, снабженную перемешивающим устройством, вводят 70 г НПМ, 30 г растворителя (толуол) и антиоксиданты аминного или
фенольного типа в количествах, соответствующих требованиям ТУ на выпускаемую марку каучука. Смесь при постоянном перемешивании нагревают до температуры 60-90°С и вводят волокнистый наполнитель
(хлопок, вискоза, капрон), подвергнутый разволокнению и измельчению, перемешивают полученную смесь еще 10-15 минут. Перетир полученного композита проводят в шаровой мельнице в течение 1-3 часов. После
перетира полученный композит смешивают с водным раствором, содержащим поверхностно-активные вещества - канифольное мыло, мыла на основе жирных кислот, таллового масла в количествах 6% и лейканол 0,5%
на диспергируемую фазу и гомогенизируют в течение 1-3 часов при 40-60°С на оборудовании, снабженном высокоскоростным перемешивающим устройством. Одновременно с этим проводят отгонку под
вакуумом легкокипящей углеводородной фракции (растворителя -толуола и др.) из полученной дисперсии. Сухой остаток находится в пределах 30-50%. Полученную дисперсию подают на смешение с
латексом бутадиен-стирольного каучука СКС-30 АРК в емкость для коагуляции, снабженную перемешивающим устройством и помещенную для поддержания заданной температуры в термостат. Выдерживают при заданной
температуре 10-15 минут и при постояном перемешивании вводят 24% водный раствор хлорида натрия. Для завершения процесса коагуляции вводят подкисляющий агент, в виде 1-2% водного раствора серной
кислоты. Расход серной кислоты - 15,0 кг/т каучука. рН коагуляции 2-2,5. После коагуляции образующийся коагулюм отделяют от серума, промывают водой и высушивают при температуре 80-85°С. Полноту
коагуляции оценивают визуально (серум прозрачный - коагуляция полная), а также по массе образующегося коагулюма. В таблице 1 приведены примеры по влиянию температуры, дозировки НПМ и
волокнистого материала (% на каучук) на процесс выделения каучука из латекса. Экспериментальные данные, представленные в табл.1, показывают, что дополнительное введение ВВПАД в латекс перед подачей
его на коагуляцию позволяет повысить массу (выход, %) образующегося коагулюма, что может быть связано как с дополнительным введением НПМ и волокнистого материала, а также за счет уменьшения потерь с
образующейся мелкодисперсной крошкой, уносимой со стадии выделения и отмывки серумом и промывными водами. Выделенная после коагуляции крошка каучука СКС-30 АРК, наполненная НПМ и
волокнистыми наполнителями, подвергалась сушке в сушильном шкафу при температуре 80-85°С. В дальнейшем на основе наполненного каучука СКС-30 АРК была приготовлена резиновая смесь по стандарной
рецептуре и вулканизаты на ее основе. В таблице 2 приведены показатели каучуков, резиновых смесей и вулканизатов стандартных резин на основе выделенных каучуков СКС-30 АРК. Из приведенных результатов видно, что дополнительное введение в состав образующегося коагулюма волокнополимерного композита из расчета волокнистого материала в количестве 0,1-1,0% на каучук и
НПМ в количестве 2-6% на каучук позволяет получить наилучший эффект, заключающийся в достижении максимального выхода коагулюма и улучшении таких свойств вулканизатов как сопротивление многократному
растяжению, тепловое старение и температуростойкость.
Таблица 1 Влияние дозировки волокнистого наполнителя и НПМ, температуры коагуляции на расход хлорида натрия и выход
образующегося коагулюма Номер опытов 1 2 3 4 5 6 7 8 9 10 11 Массовая доля волокна, % на каучук: Хлопкового 0 0,05 0,1 0,5 1,0 1,2 - - 0,5 0,5 0,5 Вискозного 0 - - - - - 0,5 - - - - Капронового 0 - - - - - - 0,5 - - - Массовая доля НПМ, %
на каучук 0 1 2 4 6 8 4 4 4 4 4 Температура коагуляции, °С 60 60 60 60 60 60 60 60 40 80 60 Расход хлорида натрия, кг/т
каучука 175 175 176 179 174 178 178 175 176 177 175 Выход образующегося
коагулюма, мас.% 94,7 94,8 96,1
97,5 97,1 97,7 96,3 97,4 97,0 96,9 97,6 Массовая доля
антиоксиданта, %: ВТС-150 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,
2 1,2 1,2 -
ВС-30А - - - - - - - - - - 1,5 Таблица 2 Свойства каучуков, резиновых смесей и вулканизатов приготовленных на основе каучука СКС-30 АРК, наполненного НПМ с волокнистыми наполнителями Показатели Вид волокнистого наполнителя и его дозировка, % на каучук Контроль, масло ПН-6 без волокна хлопок вискоза капрон 0,1 0,5 1,0 0,1 0,5 1,0 0,1 0,5 1,0 2,0 4,0 6,0 Дозировка НПМ, % на каучук - - - 2,0 4,0 6,0 2,0 4,0 6,
0 2,0 4,0 6,0
Вязкость по Муни Каучука 53,0 50,0 47,0 53,5 50,5 48,0 52,0 49,5 47,5 54,0 53,0 49,0 резиновой смеси 56,
0 55,0 52,0 58,0 57,0 55,0 56,0 55,0 52,0 60,0 59,0 55,0 Пластичность по
Карреру р/см усл.ед. 0,36 0,38 0,41 0,36 0,38 0,40 0,33
0,35 0,36 0,34 0,35 0,39 Условная прочность при растяжении, МПа 24,1 22,0 20,7 26,7 25,2 24,2 26,9 25,1 23,9 27,1 25,8 24,6 Относительное удлинение при разрыве, % 660 690 680 670
670 710 650 680 690 660 685 700 Относительная
остаточная деформация, % 11 12 12 10 10 10 12
11 10 12 11 12 Сопротивление многократному растяжению, тыс.циклов 62,9 60,2 64,2 65,1 72,5 69,8 66,9 75,1 76,8 82,6 79,3 77,0 Коэффициент старения (100°С, 72 ч): - по прочности 0,50 0,49 0,52 0,58 0,61 0,62 0,60 0,63 0,59 0,68 0,66 0,71 - по относительному удлинению 0,35 0,37 0,34 0,38 0,40
0,42 0,37 0,41 0,40 0,42 0,41 0,43