патент
№ RU 2217505
МПК C21B13/14

СПОСОБ ПЕРЕРАБОТКИ НИКЕЛЬСОДЕРЖАЩЕГО ЖЕЛЕЗОРУДНОГО СЫРЬЯ

Авторы:
Леонтьев Л.И. Салихов З.Г. Карабасов Ю.С.
Все (13)
Номер заявки
2002107340/02
Дата подачи заявки
22.03.2002
Опубликовано
27.11.2003
Страна
RU
Как управлять
интеллектуальной собственностью
Реферат

[34]

Изобретение относится к области металлургии, в частности к процессам металлизации и получения ферросплавов, в частности - ферроникеля. Способ включает загрузку никельсодержащего железорудного сырья в печь металлизации, металлизацию за счет горячих восстановительных газов, получаемых в газификаторе с жидкой расплавленной ванной при газификации угля и углеродсодержащих материалов с дополнительным получением в газификаторе полупродукта и шлака, которые используют в качестве дополнительной шихты в дуговой электропечи , и плавку в дуговой электропечи. Для процесса восстановления и металлизации никельсодержащего железорудного сырья в печи металлизации используют горячие восстановительные газы с температурой 1100-1400oС. Изобретение позволяет удешевить процесс выплавки ферроникеля путем применения дешевых углей или углесодержащих материалов для частичной замены электроэнергии, а также увеличить содержание никеля в ферроникеле за счет дополнительного восстановления газообразным восстановителем с температурой 1100-1400oС и применения магнитной сепарации металлизированного сырья. Кроме того, резко уменьшается длина зоны восстановления в печах металлизации, что приводит к сокращению габаритов агрегатов, в частности длины вращающихся трубчатых печей, со снижением тепловых потерь, капитальных и эксплуатационных затрат. 7 з.п.ф-лы, 1 ил.

Формула изобретения

1. Способ переработки никельсодержащего железорудного сырья с получением ферроникеля, включающий загрузку никельсодержащего железорудного сырья в печь металлизации, металлизацию за счет горячих восстановительных газов, получаемых в газификаторе с жидкой расплавленной ванной при газификации угля и углеродсодержащих материалов с дополнительным получением в газификаторе полупродукта и шлака, которые используют в качестве дополнительной шихты в дуговой электропечи, и плавку в дуговой электропечи, отличающийся тем, что для процесса восстановления и металлизации никельсодержащего железорудного сырья в печи металлизации используют горячие восстановительные газы с температурой 1100-1400°С.

2. Способ по п.1, отличающийся тем, что восстановление никельсодержащего железорудного сырья проводят в печи металлизации в виде вращающейся трубчатой печи с восстановлением никеля одновременно как за счет газообразного восстановителя в виде восстановительного газа, так и твердого восстановителя в виде углеродсодержащих материалов.

3. Способ по п.1, отличающийся тем, что для плавки в дуговой электропечи используют металлизированный никельсодержащий продукт из печи металлизации, дополнительно обогащенный методом магнитной сепарации.

4. Способ по п.1, отличающийся тем, что в электропечи для дополнительного восстановления никеля из шлаковой фазы в металл используют газ, выходящий из печи металлизации.

5. Способ по п.1, отличающийся тем, что для регулирования температуры горячих восстановительных газов, получаемых в газификаторе, используют газ, выходящий из печи металлизации.

6. Способ по п.1, отличающийся тем, что для дополнительного рафинирования ферроникеля в электропечи используют кислород,

7. Способ по п.1, отличающийся тем, что в газификаторе с жидкой расплавленной ванной дополнительно используют надшлаковую коксовую или графитовую кусковую насадки.

8. Способ по п.1, отличающийся тем, что в качестве дополнительной шихты в газификаторе с жидкой расплавленной ванной используют никельсодержащую пыль отходящих газов печи металлизации.

Описание

[1]

Изобретение относится к металлургии, в частности процессам металлизации и ферросплавному производству.

[2]

Известен способ выплавки ферроникеля [1, с. 286], при котором переработку окисленных никелевых руд ведут в рудно-термических печах. Технологическая схема производства ферроникеля из окисленных никелевых руд включает агломерацию, сушку или прокаливание руды с частичным восстановлением оксидов железа и никеля до металлов в трубчатых вращающихся печах, плавку горячего огарка (700-900oС) на ферроникель в руднотермической печи в присутствии восстановителя, рафинирование и обогащение первичного ферроникеля в конвертере. Однако этот процесс очень энергоемкий, он включает такие энергоемкие процессы, как плавку в рудно-электротермической печи, кроме того, для нагрева оксидов металла во вращающейся трубчатой печи требуется использовать дополнительное топливо (природный, коксовый газ, угольная пыль и т.д.).

[3]

Основным недостатком этого процесса является значительный расход электроэнергии в руднотермической печи как на процесс плавления огарка, так и на процесс восстановления в руднотермической печи никеля и железа, так как процессы восстановления в трубчатой вращающейся печи при этом развиваются недостаточно.

[4]

Известен также способ выплавки ферроникеля в доменной печи [2, с. 72], однако при этом используется дорогостоящий кокс, причем удельный расход кокса достигает 1000 кг/т чугуна. Кроме того, при этом способе экологические выбросы достигают значительных величин из-за наличия агломерационного и коксового производства, дающих наибольшее значение вредных выбросов в атмосферу.

[5]

Известен также способ частичного восстановления окатышей, причем процесс восстановления происходит в шахтной печи путем использования восстановительных газов, получаемых в газификаторе с жидкой ванной [3]. При этом способе возможно использование для газификации и процессов восстановления дешевого углеродосодержащего материала, как правило, это низкосортные угли. Однако в этом случае требуется специальный процесс получения окисленных окатышей, не предусмотрено использование никель-железосодержащих материалов, а температура газа, подаваемого в шахтную печь, составляет 850-900oС.

[6]

Известен также способ бескоксовой переработки ванадийсодержащего рудного сырья с получением легированной ванадием стали [4], в котором из ванадийсодержащего сырья дополнительно получают ванадий полупродукт и шлак в плавильном газификаторе с жидкой ванной при газификации угля и углеродсодержащих материалов с одновременным получением горячего восстановительного газа, который с температурой 850-1050oС и с расходом 2000-2700 м3/т сырья подают в шахтную печь для металлизации ванадийсодержащего сырья, при этом получаемый ванадийсодержащий полупродукт и шлак используют в качестве дополнительной металлошихты для процесса плавки в дуговой печи. Кроме того, экспортный газ из печи металлизации используют в качестве дополнительного топлива в электропечи. Однако в этом случае для процессов восстановления рудного сырья используются лишь восстановительные газы, температура восстановительного газа 850-1050oС, что не обеспечивает эффективное протекание процессов в случае получения ферроникеля (при одновременном восстановлении никеля и железа). Кроме того, в газификаторе с жидкой ванной не используется надшлаковая коксовая или графитовая кусковая насадка, что затрудняет процесс получения восстановительных газов нужной повышенной температуры. Не предусмотрены и использование никель-железосодержащих материалов, продувка металла в электропечи для рафинирования никеля и использование экспортного газа для дополнительного восстановления никеля в электропечи.

[7]

Таким образом, известен способ выплавки ферроникеля, принятый за прототип [1, с. 286] , при котором проводится получение горячего огарка в трубчатой вращающейся печи, а плавку горячего огарка и восстановительные процессы проводят на ферроникель в рудно-термической печи в присутствии восстановителя.

[8]

Однако недостатком этого способа является высокая энергоемкость процесса, включающего плавку в рудно-электротермической печи в присутствии восстановителя и необходимость использования дополнительного топлива во вращающейся печи (природного, коксового газа, угольной пыли и т.д.). При этом дорогостоящая электрическая энергия расходуется как на процесс плавления твердой фазы, так и на эндотермические процессы восстановления никеля. Требуется также дополнительное обогащение ферроникеля в конвертере. Кроме того, вследствие наличия окислительной атмосферы во вращающейся трубчатой печи происходит неконтролируемое горение твердого восстановителя в шихте с образованием диоксида углерода, что резко замедляет процессы восстановления и требует значительного - до 60-80 м удлинения трубчатых печей. При горении твердого восстановителя в шихте температура в слое самопроизвольно и неконтролируемо изменяется, что не позволяет выдерживать оптимальную температурную траекторию по длине зоны восстановления, необходимую для эффективного протекания восстановительных процессов, а при повышении температуры образуются настыли и происходит снижение стойкости футеровки печи. Чрезмерно большая протяженность зоны восстановительных процессов и большая длина печей приводит к значительным капитальным и эксплуатационным затратам, дополнительным потерям тепловой энергии через кладку печи, затрудняет процессы автоматизации и управления.

[9]

Задачей предлагаемого изобретения является удешевление процесса получения ферроникеля, снижение энергоемкости процесса и вредных выбросов в атмосферу, а также уменьшение капитальных и эксплуатационных затрат. Техническим результатом предлагаемого изобретения является повышение никеля в ферроникеле.

[10]

Решение задачи достигается тем, что никельсодержащие железорудные материалы (например, содержащие хромоникелевую руду или концентрат с содержанием никеля свыше 0,4-0,5% и железа 35-50%) проходят восстановительную стадию металлизации в печи металлизации, например во вращающейся трубчатой печи или в шахтной печи, при этом используется двойной восстановитель - как углеродосодержащие твердые материалы, например, уголь или коксик (в шихте), так и дополнительно горячие восстановительные газы в атмосфере печи, получаемые при газификации дешевых углеродосодержащих материалов, например, угля или любых углеродсодержащих отходов в жидкой расплавленной ванне. При этом температура горячих восстановительных газов, поступающих из газификатора для восстановления никелевой руды, составляет значительно большую величину, чем в способах [3, 4] - 1100-1400oС, что обеспечивает нагрев никельсодержащих железорудных материалов и эффективное одновременное протекание процессов восстановления как никеля, так и железа, необходимых для получения ферроникеля. Указанная температура восстановительных газов обеспечивается на выходе из газификатора с жидкой расплавленной ванной. Газификатор при этом работает в смешанном режиме - с одновременным получением горячих восстановительных газов (ГВГ), металлического полупродукта (чугуна) и шлака. С целью стабилизации теплового режима газификатора и увеличения степени восстановления никеля дополнительно используется над шлаковым слоем кусковая коксовая или графитовая насадка. При загрузке в газификатор в качестве рудной части никельсодержащего железорудного сырья и материалов обеспечивается получение полупродукта с содержанием никеля до 5-10% и шлака с содержанием никеля 0,05-0,5%. В печи металлизации восстановительный газ используется на поддержание температуры материала в пределах 1000-1100oС, что обеспечивается за счет температуры поступающего горячего восстановительного газа 1100-1400oС, а также на восстановление никеля (до 90-95%) и железа (60-80%) по реакциям:
NiO + СО-->Ni + СО2, (1)
1/3 Fe2O3 + СО-->2/3 Fe + СO2, (2)
NiO + Н2-->Ni + H2O, (3)
1/3 Fe2O3 + Н2-->2/3 Fe + H2O (4)
Кроме того, в трубчатой печи обеспечивается и дополнительное твердофазное восстановление никеля и железа за счет загружаемых углеродосодержащих твердых материалов (уголь, коксик) по реакциям:
NiO + С-->Ni + СО, (5)
FeO + С-->Fe + СО (6)
Для эффективного протекания процессов восстановления никель-железосодержащего сырья требуется поддержание температуры восстановительного газа в пределах 1100-1400oС. Тогда по условиям теплопередачи в печи температура никельсодержащего железорудного материала обеспечивается в пределах 1000-1100oС. При более низкой температуре газа-восстановителя и соответственно материала уменьшается степень восстановления никеля и железа [5, с. 324]. При более высокой температуре материала (>1400oС) появляется опасность его размягчения и образования настылей [5, с. 325]. При температуре отходящих из газификатора газов более 1400oС для снижения его температуры перед подачей в печь металлизации до необходимого уровня предусмотрено использование в качестве охладителя части очищенного после восстановления газа.

[11]

Создание в трубчатой печи восстановительной атмосферы при использовании горячих восстановительных газов обеспечивает резкое в 1,5-2,0 раза повышение эффективности протекания восстановительных процессов как за счет использования двойного восстановителя - газообразного и твердого, так и за счет предотвращения окислительного горения твердого восстановителя в шихте печи.

[12]

После обжига восстановленная никелевая руда (губка) поступает в электропечь. В электропечь также подается жидкий полупродукт из газификатора с жидкой ванной и никельсодержащий шлак. Кроме того, в топливно-кислородных горелках используется кислород и часть газа, выходящего из печи металлизации (экспортного газа) для снижения расхода электроэнергии и продувки металла для дополнительного восстановления никеля за счет оксида углерода экспортного газа и для очистки получаемого ферроникеля от примесей при продувке кислородом.

[13]

В газификатор с жидкой ванной загружается никельсодержащее железорудное сырье, например хромоникелевая руда с содержанием никеля свыше 0,4-0,5%, а также любые никельсодержащие материалы с содержанием никеля до 70%.

[14]

Кроме того, в газификатор подаются углеродсодержащие материалы, например уголь или любые углеродсодержащие отходы. В газификаторе с жидкой ванной происходит жидкофазное восстановление никеля и железа по реакциям типа (5) и (6).

[15]

Для дополнительного увеличения содержания никеля в получаемом ферроникеле и повышения марочности ферроникеля дополнительно вводится следующая технологическая цепочка. Полученная в трубчатой печи никелевая губка охлаждается, измельчается и подвергается сепарации в слабом магнитном поле с дополнительным обогащением металлизированным никелем. Полученный концентрат загружается в электропечь или другой сталеплавильный агрегат, а бедная никелевая губка направляется в газификатор с жидкой ванной.

[16]

При этом выдерживаются следующие параметры технологического процесса.

[17]

Основным продуктом плавки в электропечи или в другом агрегате является ферроникель с содержанием никеля более 3,5-4,0%. При этом металлическая часть шихты включает никелевую губку (губчатый ферроникель), полученный во вращающейся трубчатой печи или в шахтной печи с содержанием никеля свыше 0,4-0,5%, а также никельсодержащего полупродукт с содержанием никеля свыше 2-10% и шлак с содержанием никеля свыше 0,05-0,5%, полученные в газификаторе с жидкой ванной при его работе в смешанном режиме (с одновременным получением восстановленного газа, металлического полупродукта и шлака).

[18]

С целью дополнительного повышения содержания никеля в ферроникеле после получения металлизированной губки в трубчатой печи проводится ее охлаждение, измельчение и магнитная сепарация. Тогда в качестве металлической части шихты электропечи используется никельсодержащий отсепарированный концентрат с содержанием никеля свыше 2-10% и также никельсодержащий полупродукт и шлак.

[19]

В электропечь также подается часть экспортного газа, выходящего из трубчатой печи, и кислорода для сжигания в топливно-кислородных горелках из расчета получения тепловой мощности до трети от электрической мощности печи, а также для дополнительного восстановления никеля из шлаковой фазы за счет оксида углерода экспортного газа.

[20]

При этом металлическая часть шихты состоит из трубчатого ферроникеля с содержанием никеля свыше 0,4-0,5%, никельсодержащего отсепарированного концентрата губчатого ферроникеля с содержанием никеля свыше 2-10%, получаемого после магнитной сепарации обожженной в трубчатой печи никелевой руды, а также никельсодержащего полупродукта с содержанием никеля свыше 2-10% и никельсодержащего шлака с содержанием никеля 0,05-0,5%, полученные в газификаторе с жидкой ванной при его работе в смешанном режиме (с одновременным получением восстановительного газа, металлического полупродукта и шлака).

[21]

В газификатор с жидкой ванной загружают углеродсодержащий материал, например уголь или любые углеродсодержащие отходы с расходом в пересчете на энергетический уголь 0,5-0,6 кг/м3 восстановительного газа, а также никель-железосодержащее рудное сырье, например, хромоникелевая руда, никельсодержащие агломерат, окатыши или брикеты с содержанием никеля свыше 0,5%, а также любые никельсодержащие материалы с содержанием никеля до 70%. Кроме того, в газификатор загружается отсепарированная бедная никелевая губка, получаемая в качестве остатка после магнитной сепарации обожженной в трубчатой печи никелевой руды.

[22]

В печь металлизации, например в трубчатую или шахтную печь, загружается никельсодержащее железорудное сырье, например хромоникелевая руда, никельсодержащий агломерат или окатыши с содержанием никеля свыше 0,4-0,5%, а процесс восстановления проводят горячим восстановительным газом с температурой 1100-1400oС и содержанием СО = 40-60%, Н2 = 25-35%, получаемого в газификаторе с жидкой ванной до степени металлизации никеля 90-95%, железа - 60-80% и расходом восстановительного газа 1500-2200 м3/т полупродукта. Кроме того, для увеличения степени восстановления в шихту печи металлизации добавляют твердый восстановитель - уголь или коксик в количестве до 2-3% от массы шихты. При необходимости увеличения содержания никеля в ферроникеле в блоке магнитной сепарации никельсодержащая губка, полученная в печи металлизации, подвергается охлаждению, измельчению и магнитной сепарации. При этом отсепарированный концентрат поступает в электропечь или другую сталеплавильную печь, а бедный никелем остаток после сепарации поступает в газификатор с жидкой ванной.

[23]

На чертеже представлено устройство, реализующее предлагаемый способ.

[24]

Оно содержит газификатор 1, печь для металлизации 2, электросталеплавильную печь 3, охладитель губки 4, измельчитель губки 5, магнитный сепаратор 6, пылеочиститель 7, бункер пыли 8.

[25]

Устройство работает следующим образом. В газификатор 1 через засыпное устройство подают углеродсодержащий материал 9, например уголь или любые углеродсодержащие отходы, никель-железосодержащее рудное сырье 10, например хромоникелевую руду, агломерат, окатыши или брикеты, а также любые никельсодержащие материалы (шлак, штейн, файнштейн и др.). Кроме того, загружается никельсодержащая пыль 11 из бункера 8 пылеочистки 7. Одновременно через фурмы подается кислород 12. Получаемые в процессе жидкофазного восстановления горячие восстановительные газы 13 подаются в трубчатую печь 2, при необходимости может в трубчатую печь подаваться также воздух для горения 14. С другой стороны (со стороны загрузки) в трубчатую печь 2 подают рудное никель-железосодержащее сырье 15, например хромоникелевую руду или агломерат, а также твердый восстановитель - уголь или коксик 16. Отработанный после восстановительных процессов газ 17 направляется в систему очистки 7. Часть очищенного газа 18 используется для регулирования температуры горячих восстановительных газов перед их подачей в печь для металлизации, часть 19 используется как топливо в электропечи 3, а часть 20 используется для получения пара и электроэнергии как вторичных энергетических ресурсов. Получаемая в пылеулавливателе 7 пыль из бункера 8 направляется в газификатор 1.

[26]

Получаемая в трубчатой или шахтной печи металлизированная никельсодержащая губка 21 направляется в электропечь 3. В случае необходимости увеличения содержания никеля в ферроникеле металлическая губка 21 (на фиг.1 эта технологическая цепочка отмечена пунктиром) направляется в охладитель 4, измельчитель 5 и магнитный сепаратор 6. При этом обогащенная в магнитном сепараторе 6 богатая губка 22 направляется в электропечь, а бедная 23 подается в газификатор. В электропечь 3 таким образом загружается металлизированная никельсодержащая губка 21 (или обогащенная губка 22), полупродукт 24 и шлак 25 из газификатора 1, а также подается экспортный газ 19 и кислород 26. Продуктами электроплавки являются ферроникель 27 и шлак 28.

[27]

Преимуществом данного способа является повышение степени восстановления никеля в печи металлизации за счет высокой температуры восстановительного газа 1300-1400oС и снижение себестоимости за счет замены части электроэнергии, применяемой для рудно-термической восстановительной плавки дешевым углем или любыми углесодержащими продуктами, в том числе отходами. При использовании при плавке в электропечи наряду с твердым металлизированным продуктом жидкого никельсодержащего полупродукта расход электроэнергии дополнительно снижается до 100 кВт•ч при 30-40% жидкого полупродукта в шихте электропечи. Кроме того, концентрация никеля повышается за счет использования тройного комбинированного как газового, так и твердофазного и жидкофазного восстановления оксидов никеля, а также за счет дополнительной магнитной сепарации металлизированной никелевой губки.

[28]

При этом также в 1,5-2 раза снижается требуемая протяженность зоны восстановления (длина, высота печи), что при строительстве и реконструкции агрегатов приведет к соответствующему снижению капитальных и эксплуатационных затрат, а также тепловых потерь.

[29]

Источники информации
1. Тарасов А.В., Уткин Н.И. Общая металлургия. - М.: Металлургия, 1997, 286 с.

[30]

2. Кудинов Д.З., Субботина Н.А., Шаврин С.В. Изменение параметров газа по высоте доменной печи при выплавке чугуна 6% N 1 из бедных силикатно-никелевых руд // Известия вузов. Черная металлургия, 1999, 1. С. 72-73.

[31]

3. Corex(R), Revolution of Ironmaking. Voest Alpine Inolu strianlagtnbau. Linz, 1994. p.21.

[32]

4. Лисиенко В.Г., Роменец В.А., Пареньков А.Е. и др. Способ бескоксовой переработки ванадийсодержащего рудного сырья с получением легированной ванадием стали. Патент на изобретение 2167944 по заявке 98115858 от 11.08.98.

[33]

5. Леонтьев Л.И., Ватолин Н.А., Шаврин С.В., Шумаков Н.С. Пирометрическая переработка комплексных руд. - М.: Металлургия, 1997, 432 с.

Как компенсировать расходы
на инновационную разработку
Похожие патенты