Изобретение относится к области регенерации
высококонцентрированных кислых электролитов и может быть использовано для селективного извлечения ионов железа (Fe2+, Fe3+) и хрома (Cr3+, Cr6+) в
гальванических производствах, в частности, растворов химического и электрохимического травления хромсодержащих сталей. В способе регенерации отработанных кислых растворов полирования и травления
хромсодержащих сталей после отделения механических примесей для отделения от ионов хрома (Cr3+, Cr6+) проводят сорбционную очистку хитозаном, затем пропускают раствор через
емкость с кислотоустойчивым полимером, предварительно обработанным в серно-хромовокислой смеси. Далее для извлечения ионов железа (Fe2+, Fe3+) раствор подвергают
электрохимической обработке, заключающейся в катодном восстановлении железа Fe3+ до Fe2+ с последующим осаждением малорастворимого моногидрата сульфата железа при введении
мелкокристаллического сульфата калия в количестве 0,05 - 0,25 моль/л и охлаждении. В качестве кислотоустойчивого твердого полимера используют полиэтилен, полипропилен, полистирол, их сополимеры.
Технический результат от использования изобретения заключается в повышении эффективности очистки высококонцентрированных кислых электролитов, снижении затрат электроэнергии, в возможности разделения
продуктов растворения хромсодержащих сталей. 1 табл.
Способ регенерации отработанных электролитов полирования и травления хромсодержащих сталей, включающий стадию электрохимического
восстановления ионов железа (III) до железа (II) и получение и отделение осадка моногидрата сульфата железа (II), отличающийся тем, что он включает предварительную стадию сорбционного извлечения
ионов
хрома (VI) и хрома (III) из электролита с применением хитозана и кислотоустойчивого твердого полимера, а осадок моногидрата сульфата железа (II) получают путем введения в электролит
мелкокристаллический сульфат калия в количестве 0,05 - 0,25 моль/л.
Изобретение относится к области регенерации
высококонцентрированных кислых электролитов и может быть использовано для селективного извлечения ионов железа (Fe2+, Fe3+) и хрома (Cr3+, Cr6+) в
гальванических производствах, в частности, растворов химического и электрохимического травления и полирования хромсодержащих сталей. Основная причина ухудшения качества полирования
- накопление ионов железа в электролите. Известен способ электрохимической регенерации полировочных и травильных растворов, в частности, методом электродиализа (Федотьев Н.П., Грилихес
С.Я. Электрохимическое травление, полирование и оксидирование металлов. Л.: Машгиз, 1957, с. 97-101). Однако, этот способ обладает рядом недостатков, к основным из которых относятся следующие: 2). Необходимость упаривания раствора. 3). Высокий удельный расход электроэнергии. Известен также
способ
очистки кислых электролитов и сточных вод от ионов хрома за счет обработки природными сорбентами - цеолитами (Патент 2051112, Россия, МКИ6 С 02 F 28. Способ очистки сточных вод oт
ионов
тяжелых металлов и шестивалентного хрома. Непряхин А.Е., Садыкова Н.П., Чайкин В.К., опубл. 27.12.95, Бюл. N 36). Этот способ позволяет повысить степень извлечения ионов железа и хрома, снизить
себестоимость процесса, при этом не требуется затрат электроэнергии. Однако, эти сорбенты достаточно дороги, т.к. в процессе их производства применяются сложные технологические операции (обжиг,
гранулирование и т.п.). Кроме того, возникают трудности с дальнейшей утилизацией отработанных сорбентов. Наиболее близким по технической сущности к предлагаемому изобретению, выбранным
авторами в качестве прототипа, является способ электрохимической регенерации растворов травления и полирования, основанный на восстановлении ионов железа Fe3+ до Fe2+ и хрома
Cr6+ до Cr3+ и отделении осадка малорастворимого в кислых электролитах сульфата железа (II) (Кочергин В.П., Артемова В.А., Самойлова Л.И. /Электрохимическая регенерация
отработанных полировочных растворов с применением ионообменных диафрагм //Труды Воронежского Университета, 1968, вып.2, с. 55-57). Однако использование этою способа в широкой практике
гальванического и других электрохимических производств имеет ряд недостатков: 2). Использование ионообменных диафрагм. 3). Высокий удельный расход электроэнергии на выделение железа в виде
малорастворимого
соединения. Задача изобретения - создание эффективного способа регенерации кислых электролитов полирования и травления хромсодержащих сталей с селективным разделением
продуктов их
растворения - ионов железа и хрома. Технический результат - расширение технологических возможностей способа за счет повышения степени очистки регенерируемых электролитов
и
селективности извлечения ценных компонентов, а также экономии электроэнергии. Указанный результат достигается тем, что в способе регенерации отработанных электролитов полирования и
травления хромсодержащих сталей, включающем стадию электрохимического восстановления ионов железа (III) до железа (II), получение и отделение осадка сульфата железа (II), вводят предварительную
стадию
сорбционного извлечения ионов хрома (VI) и хрома (III) из раствора хитозаном с образованием хелатных комплексов хитозана с ионами хрома, удаляемых из электролита при его пропускании через слой
кислотоустойчивого полимера, после чего проводят электрохимическое восстановление ионов железа (III) до железа (II), затем вводят в электролит добавку сульфата калия в количестве 0,05-0,25 моль/л
перед отделением электролита от образующегося осадка моногидрата сульфата железа (II). Способ осуществляют следующим образом: отработанный кислый электролит полирования или травления
хромсодержащих сталей, содержащий ионы железа (Fe3+, Fe2+) и хрома (Cr6+, Cr3+), из гальванической ванны подают в осветлитель, где охлаждают и отделяют от
взвешенных частиц. Осветленный раствор направляют в сорбционную колонну с хитозаном, а затем пропускают через емкость, заполненную твердым кислотоустойчивым полимером. Далее производят катодное
восстановление ионов железа Fe3+ до Fe2+ в электролизере-регенераторе, после чего в раствор добавляют мелкокристаллический сульфат калия в количестве 0.05-0.25 моль/л и
направляют в кристаллизатор для отделения осадка моногидрата сульфата железа (II). При добавлении в регенерируемый раствор мелкокристаллического сульфата калия в количестве менее 0.05 моль/л
требуемая
степень извлечения ионов железа (II) не достигается. Добавление сульфата калия в количествах свыше 0.25 моль/л экономически нецелесообразно, т. к. не приводит к дальнейшему повышению
степени очистки
раствора. В качестве кислотоустойчивого твердого полимера используют полиэтилен, полипропилен, полистирол, предварительно обработанные в серно-хромовокислой смеси при температуре
60-70o
C. Достигаемый эффект обусловлен полным сорбционным извлечением ионов хрома (VI) и хрома (III) из раствора с применением хитозана и кислотоустойчивого твердого
полимера,
электрохимическим восстановлением ионов железа (III) до железа (II), а на стадии отделения осадка моногидрата сульфата железа - повышением степени осаждения моногидрата сульфата железа при
дозированном введении мелкокристаллического сульфата калия. Предлагаемый способ регенерации кислых электролитов полирования и травления хромистых сталей может быть представлен тремя
стадиями:
Пример 1 осуществления способа: отработанный кислый электролит полирования хромсодержащей стали 30Х13 состава 950 г/л H2SO4 и 750 г/л H2PO4, содержащий
ионы
тяжелых металлов (ИТМ) железа (Fe3+, Fe2+) и хрома (Cr6+, Cr3+), направляли в осветлитель, где охлаждали до температуры 18-20oC и после
отстаивания отделяли от взвешенных частиц. Осветленный раствор пропускали через первую сорбционную колонну с хитозаном со скоростью 1 литр в час, затем фильтровали через вторую сорбционную колонну,
заполненную гранулированным полипропиленом с диаметром гранул 5 мм, предварительно обработанным в серно-хромовокислой смеси при температуре 60oC. Очищенный от ионов хрома
электролит направляли в электролизер-регенератор, где осуществляли катодное восстановление ионов железа Fe3+ до Fe2+ при катодной плотности тока 12 А/дм2 в течение 8
часов. Затем в раствор добавляли мелкокристаллический сульфат калия в количестве 0,05 моль/л и охлаждали до температуры -15oC, после чего отделяли от осадка моногидрата сульфата железа
(II). Степень извлечения ионов железа и хрома определяли по формуле: Примеры 2-5 проводили аналогично примеру 1, пример 6 - согласно прототипу; данные по степени извлечения ионов металлов приведены в таблице. Таким
образом, сочетание сорбционной обработки кислых сред хитозаном с последующим удалением из раствора образующихся хелатных комплексов твердым полимером и электрохимической регенерации раствора с
осаждением осадка малорастворимого моногидрата сульфата железа при дозированном введении мелкокристаллического сульфата калия позволяет повысить степень извлечения ионов железа (II), железа (III) до
92% и 80% соответственно, хрома (III) и хрома (VI) до 100% (в прототипе степень очистки по ионам железа (II), железа (III) составляет 57% и 72% соответственно, по ионам хрома очистка отсутствует);
снизить затраты электроэнергии на стадии электрохимической регенерации, регенерировать высококонцентрированные растворы полирования и травления хромистых сталей без изменения pH среды, селективно
извлекать продукты растворения стали, не загрязнять электролиты посторонними реагентами. Результаты регенерации электролитов полирования хромсодержащих сталей даны в таблице.
1). Низкая степень извлечения железа (менее 30%).
1). Восстановление ионов железа Fe3+ до Fe2+ требует предварительного восстановления ионов
хрома Cr6+ до Cr3+.
1) полное сорбционное извлечение ионов хрома (Cr6+ и Cr3+) с применением хитозана и кислотоустойчивого твердого полимера;
2) катодное восстановление
ионов железа Fe3+ до Fe2+ в электролизере-регенераторе диафрагменного типа;
3) осаждение моногидрата сульфата железа (II) при добавлении сульфата калия.
η = (C
где Cисхi, Cконi - концентрация ионов i-го металла в растворе до и после очистки
соответственно.