патент
№ RU 2164215
МПК C01B15/10

СПОСОБ ПОЛУЧЕНИЯ ГРАНУЛИРОВАННОГО ПЕРКАРБОНАТА НАТРИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Авторы:
Ефимов Ю.Т. Трофимов В.Н. Кисин В.И.
Все (11)
Номер заявки
99124696/12
Дата подачи заявки
29.11.1999
Опубликовано
20.03.2001
Страна
RU
Как управлять
интеллектуальной собственностью
Чертежи 
2
Реферат

[49]

Изобретение предназначено для химической промышленности и может быть использовано при получении моющих и отбеливающих средств. В реактор 1 подают растворы H2O2 и Na2CO3. Полученный в реакторе перкарбонат натрия подают в двухшнековый смеситель 2. В смеситель 2 предварительно загружают затравочные частицы (ретур) перкарбоната натрия с размером 0,1 - 0,3 мм. В смесителе 2 затравочные частицы увлажняются и увеличиваются, перемешиваются и перемещаются к сушилке 3. Ось смесителя 2 расположена под углом 10 - 30o к газораспределительной решетке 5 сушилки 3. Часть высушенных гранул через патрубок 6 возвращается в смеситель 2, 0,01 - 0,05 частей высушенных гранул выводят из сушилки 3 в классификатор 4. Среднюю фракцию с размером частиц 0,1 - 1,0 мм из промежуточной части классификатора 4 направляют через инжектор 18 в накопитель готовой продукции. Крупные фракции измельчают в мельнице 15, смешивают с мелкими фракциями и возвращают в смеситель 2 в качестве добавки к ретуру. Насыпная плотность гранул - 1,02 - 1,25 г/см3, массовая доля активного кислорода 13,1 - 15%, массовая доля потерь при высушивании 0,8 - 1,56%, снижены энергетические затраты. 2 с. и 6 з.п.ф-лы, 2 ил., 1 табл.

Формула изобретения

1. Способ получения гранулированного перкарбоната натрия, заключающийся в том, что растворы перекиси водорода и соды приводят в контакт с ретуром в виде гранул перкарбоната натрия, перемешивают их и подвергают сушке, часть высушенных гранул разделяют по размерам частиц для получения целевого продукта, отличающийся тем, что остальную часть высушенных гранул используют в качестве ретура непосредственно после сушки.

2. Способ по п.1, отличающийся тем, что на разделение отбирают гранулы в количестве 1/100 - 1/20 части от всего количества высушенных гранул.

3. Способ по п.1 или 2, отличающийся тем, что после разделения частицы крупной фракции дробят, смешивают с частицами мелкой фракции и добавляют эту смесь к ретуру, а частицы средней фракции отбирают в качестве целевого продукта.

4. Способ по любому из пп.1 - 3, отличающийся тем, что в качестве целевого продукта отбирают частицы размером 0,1 - 1,0 мм.

5. Установка для получения гранулированного перкарбоната натрия, содержащая последовательно соединенные систему подачи реагентов, смеситель, сушилку и средство для разделения гранул на фракции, линия отвода одной из фракций которого является линией отвода целевого продукта, отличающаяся тем, что смеситель сообщен с сушилкой в зоне выгрузки гранул.

6. Установка по п. 5, отличающаяся тем, что смеситель выполнен в виде двухшнекового транспортера, шнеки которого имеют возможность вращения в противоположных направлениях.

7. Установка по п.6, отличающаяся тем, что ось двухшнекового транспортера расположена под углом 10 - 30° к газораспределительной решетке сушилки, патрубок ввода высушенных гранул размещен в нижней части смесителя, патрубок вывода влажных гранул, сообщающий смеситель с сушилкой, размещен в верхней части смесителя, а система подачи реагентов выполнена в виде реактора, установленного на смесителе и соединенного с ним в его нижней части выше патрубка ввода высушенных гранул.

8. Установка по п.6 или 7, отличающаяся тем, что шнеки смесителя выполнены с пазами, распределенными по его длине.

Описание

[1]

Группа изобретений относится к области неорганической химии, а именно к производству гранулированного перкарбоната натрия, применяющегося в качестве компонента моющих и отбеливающих средств, и может быть использовано в химической промышленности при производстве товаров бытовой химии.

[2]

Известен способ получения гранулированного перкарбоната натрия, заключающийся в том, что растворы перекиси водорода и соды приводят в контакт с ретуром в виде гранул перкарбоната натрия, перемешивают их и подвергают сушке в кипящем слое, высушенные гранулы разделяют по размерам частиц для получения целевого продукта. При этом в качестве ретура используют тонкодисперсный продукт, унесенный отработанным теплоносителем и отделенный от него в циклоне, среднюю фракцию гранул после их разделения по размерам, а также продукт дробления крупной фракции (патент ФРГ N 2250720, G 01 В 15/10, 1973).

[3]

Известна также установка для осуществления данного способа, включающая последовательно соединенные систему подачи реагентов, смеситель, сушилку и классификатор, линия отвода одной из фракций которого является линией отвода целевого продукта (см. там же).

[4]

Известные способ и устройство требуют значительных энергозатрат на возврат части гранул перкарбоната (ретура) в сушилку.

[5]

Технический результат предложенных способа и устройства заключается в снижении энергетических затрат путем непосредственного возвращения значительной части горячих гранул в качестве ретура обратно в смеситель, что не требует использования специальных перемещающих средств и исключает остывание ретура и затраты на его нагрев.

[6]

Технический результат достигается тем, что в способе получения гранулированного перкарбоната натрия, заключающемся в том, что растворы перекиси водорода и соды приводят в контакт с ретуром в виде гранул перкарбоната натрия, перемешивают их и подвергают сушке, часть высушенных гранул разделяют по размерам частиц для получения целевого продукта, остальную часть высушенных гранул используют в качестве ретура непосредственно после сушки.

[7]

Кроме того, на разделение отбирают гранулы в количестве от 1/100 до 1/20 части от всего количества высушенных гранул.

[8]

Кроме того, после разделения частицы крупной фракции дробят, смешивают с частицами мелкой фракции и добавляют эту смесь к ретуру, а частицы средней фракции отбирают в качестве целевого продукта.

[9]

Кроме того, в качестве целевого продукта отбирают частицы размером от 0,1 до 1,0 мм.

[10]

Технический результат достигается также тем, что в установке для получения гранулированного перкарбоната натрия, содержащей последовательно соединенные систему подачи реагентов, смеситель, сушилку и средство для разделения гранул на фракции, линия отвода одной из фракций которого является линией отвода целевого продукта, смеситель сообщен с сушилкой в зоне выгрузки гранул.

[11]

Кроме того, смеситель может быть выполнен в виде двухшнекового транспортера, шнеки которого имеют возможность вращения в противоположных направлениях.

[12]

Причем ось двухшнекового транспортера расположена под углом от 10 до 30o к газораспределительной решетке сушилки, патрубок ввода высушенных гранул размещен в нижней части смесителя, патрубок вывода влажных гранул, соединенный с сушилкой, размещен в верхней части смесителя, а система подачи реагентов выполнена в виде реактора, установленного на смесителе и соединенного с ним в его нижней части выше патрубка ввода высушенных гранул.

[13]

Кроме того, шнеки смесителя могут быть выполнены с пазами, распределенными по его длине.

[14]

На фиг.1 показана схема установки для получения гранулированного перкарбоната натрия. На фиг.2 показано выполнение шнеков смесителя.

[15]

Установка для получения гранулированного перкарбоната натрия включает последовательно соединенные систему подачи реагентов в виде реактора 1, смеситель 2, сушилку 3 кипящего слоя и средство для разделения гранул на фракции по размерам частиц - классификатор 4. Реактор 1 имеет корпус с верхними штуцерами для ввода жидких реагентов и штуцер для вывода реакционной массы с распределителем-оросителем пленочного типа. Реактор 1 установлен непосредственно на смесителе 2.

[16]

Смеситель 2 представляет собой двухшнековый транспортер, оснащенный двигателем с регулируемым числом оборотов шнеков, и состоит из корпуса, в котором размещены два шнека, вращающиеся в противоположных направлениях. При этом на транспортирующей части (лопасти) каждого шнека вырезаны пазы в виде сегментов или секторов (фиг.2), распределенных по длине шнека и обеспечивающих при вращении шнеков как поступательное, так и поперечное перемещение транспортируемой массы, за счет чего гранулы приобретают правильную шарообразную форму, более прочную к истиранию. Смеситель 2 примыкает непосредственно к сушилке 3, так что ось транспортера расположена под углом 10-30o к плоскости газораспределительной решетки 5.

[17]

Смеситель 2 сообщен с сушилкой 3 патрубком 6 ввода высушенных гранул, размещенным в нижней части смесителя 2 в зоне вывода гранул в классификатор 4, и патрубком 7 вывода влажных гранул, размещенным в верхней части смесителя 2. Реактор 1 соединен со смесителем 2 в его нижней части выше патрубка 6.

[18]

Сушилка 3 прямоугольного сечения оснащена газораспределительной решеткой 5 непровального типа с зазорами 3,0; 2,5; 2,0 мм. Газораспределительная решетка 5 выполнена таким образом, что живое сечение убывает по мере сушки и продвижения продукта к зоне выгрузки.

[19]

Реактор 1, смеситель 2 и сушилка 3 скомпонованы между собой так, что представляют собой единый модуль, обеспечивающий минимальные транспортные пути, и возврат горячего ретура, что позволяет значительно снизить энергетические затраты на перемещение гранул и на нагрев ретура.

[20]

Узел пылеулавливания соединен с сушилкой 3 линией 8 и включает каскад аппаратов очистки газов от пыли (циклопов 9 и 10), из которых сухой пылеобразный перкарбонат натрия после улавливания возвращается в смеситель 2 по линиям 11 и используется в качестве ретура, а очищенный воздух выбрасывается в атмосферу.

[21]

Классификатор 4 представляет собой двухступенчатое вибросито, которое соединено линией 12 с сушилкой 3 в зоне выгрузки гранул и из которого в качестве целевого продукта по линии 13 отбирается средняя целевая фракция, крупная фракция по линии 14 подается в мельницу 15, а мелкая фракция объединяется с фракцией после размола и по линии 16 направляется обратно в смеситель 2 в качестве ретура.

[22]

Способ получения гранулированного ПКН на данной установке осуществляется следующим образом.

[23]

Грануляция перкарбоната натрия (ПКН) осуществляется путем наращивания слоев ПКИ на затравочных частицах, которыми заполняется смеситель 2 и сушилка 3. В качестве затравочных частиц используют ретур-гранулы и тонкодисперсные частицы (пыль) ПКН, возвращенные в модуль смеситель 2 - сушилка 3.

[24]

В сушилке 3 из частиц ПКН потоком теплоносителя горячего воздуха удаляется влага в режиме кипящего слоя. Отработанный воздух по газоходу - линии 8 поступает в узел пылеулавливания. Из циклопа 9 очищенный воздух выбрасывается в атмосферу, а уловленная пыль по линии 11 возвращается на вход смесителя 2.

[25]

На вход смесителя 2 поступает также измельченный ПКН из дополнительного циклона 10 по линии 11. У входа в смеситель 2 происходит смешение пылевидного и измельченного перкарбоната натрия, образующих затравочные частицы. При сухом перемешивании последних в смесителе 2 осуществляется предварительное обкатывание частиц ПКН и равномерное распределение пыли и очень мелких фракций по поверхности более крупных затравочных частиц, что обеспечивается сочетанием их продольного и поперечного перемещения вследствие описанной выше формы шнеков.

[26]

В реактор 1 через штуцеры подаются потоки соответствующим образом подготовленных водных растворов кальцинированной соды и перекиси водорода. Полученная при их перемешивании реакционная масса по линии 17 через ороситель-распределитель пленочного типа поступает в смеситель 2.

[27]

В смесителе 2 реакционная масса распределяется по поверхности затравочных частиц и смачивает на их поверхности мелкие частицы ПКН. Процесс влажного смешения продолжается не более 30-40 секунд, после чего влажные гранулы по патрубку 7 выводятся в сушилку 3.

[28]

Газораспределительная решетка 5 сушилки 3 на входном участке (со стороны патрубка 7) имеет увеличенное живое сечение и дополнительный поддув дымовыми газами, что способствует быстрому распределению увлажненного материала по ширине сушилки 3. Повышенное живое сечение газораспределительной решетки 5 на входном участке сушилки 3 препятствует накоплению крупных частиц продукта у входа в сушилку 3.

[29]

Одна часть высушенных гранул ПКН из сушилки 3 по патрубку 6 возвращаются в смеситель 2, а другая часть по линии 12 поступает в классификатор 4. Из промежуточной части классификатора 4 средняя фракция по линии 13 поступает в инжектор 18, откуда потоком сжатого воздуха направляется в накопитель готовой продукции.

[30]

Крупные фракции из классификатора 4 по линии 14 поступают в мельницу 15. Измельченный ПКН смешивается с мелкими фракциями и поступает в инжектор 19, откуда потоком сжатого воздуха он направляется в дополнительный циклон 10 и после него снова возвращается в смеситель 2 по линии 11.

[31]

Способ получения гранулированного перкарбоната натрия включает следующие операции при следующих режимах.

[32]

Приготавливают водный раствор кальцинированной соды, стабилизированной полифосфатом натрия и сухим сульфатом магния при 50 - 70oC, фильтруют его и смешивают с раствором жидкого стекла при 50 - 70oC.

[33]

ПКН получают в реакторе 1 путем взаимодействия стабилизированного раствора соды с 30-50%-ным раствором перекиси водорода при мольном соотношении сода:перекись водорода равном 1,0:1,5.

[34]

Далее осуществляется кристаллизация и гранулирование полученного ПКН. Для этого раствор ПКН подают в двухшнековый смеситель 2, заполненный сухим горячим ретуром, в качестве которого используются готовые гранулы перкарбоната натрия.

[35]

Гранулы ретура смачиваются раствором перкарбоната натрия до влажности 3 - 10%, перемешиваются, увеличиваясь в размере за счет наращивания оболочки и перемещаются к зоне сушки. Образующиеся влажные гранулы непрерывно подаются в сушилку 3 кипящего слоя.

[36]

Сушка осуществляется при 170 - 400oC и разрежении 0,1 - 0,5 кПа (30 - 60 мм рт. ст.).

[37]

Часть высушенных гранул (от 1/100 до 1/20 части т.е. от 1 до 5% от всей массы) выводится и направляется на классификатор 4. Остальная часть гранул (не менее 95%) возвращается в смеситель 2 в качестве ретура.

[38]

Выведенный продукт на классификаторе 4 разделяется на три части: частицы более 1,0 мм, частицы менее 0,1 мм и товарная фракция (целевой продукт) - частицы размером от 0,1 до 1,0 мм.

[39]

Частицы размером более 1 мм направляются в дробилку (мельницу 15), смешиваются с частицами менее 0,1 мм и возвращаются в смеситель 2.

[40]

Товарная фракция отправляется на фасовку.

[41]

Таким образом, возврат горячего ретура в объеме не менее 95% от массы продукта, находящегося в сушилке, обратно в цикл обеспечивает снижение энергетических затрат на единицу продукции за счет полной утилизации тепла. Возврат ретура непосредственно после сушки по короткому пути обеспечивает увеличение числа циклов "смачивание - сушка" гранулы в единицу времени. Общее число циклов для каждой гранулы достигает 18-20, в результате чего гранула ПКН приобретает большое число оболочек, что обеспечивает их высокую прочность (каждая плотность на уровне 1150 - 1250 кг/м3) и максимальное сродство к основным компонентам CMC непылящей формы, а также обеспечивает сохранение устойчивости отбеливающего средства в процессе хранения за счет сохранения содержания активного кислорода, т.е. не происходит потери активности отбеливающего агента.

[42]

Увлажнение до 3 - 10% обеспечивают меньше потери от разложения перекиси и увеличение прочности гранул. Многократная обкатка гранул вследствие особой формы шнеков обеспечивает правильную форму гранул и повышенную прочность к истиранию.

[43]

Пример осуществления способа.

[44]

Готовят водный раствор кальцинированной соды (Na2CO3) с добавками стабилизаторов - полифосфата натрия, сульфата магния семиводного и жидкого стекла (силиката натрия) следующего состава, мас. %
Кальцинированная сода - 20
Сульфат магния семиводный - 0,06
Полифосфат натрия - 0,2
Силикат натрия - 0,8
Вода - Остальное
Готовят водный 35%-ный раствор перекиси водорода.

[45]

В установку для гранулирования, состоящую из сушилки для сушки в кипящем слое площадью 2,5 м2 и двухшнекового смесителя, загружают 800 кг затравочных частиц (ретура), представляющих собой готовый перкарбонат натрия с размером частиц 0,1 - 0,3 мм. Создают разрежение с помощью вентилятора и по штуцеру - подают дымовые газы с температурой 200oC. Поддерживают разрежение в сушильной камере 50 мм вод.ст., сопротивление кипящего слоя 210 мм вод.ст. и температуру слоя 70oC. При этих параметрах начинают дозировку компонентов.

[46]

В реактор для получения ПКН подается раствор перекиси водорода с объемным расходом 116 дм3/ч (49 кг/ч 100%) и раствор кальцинированной соды со стабилизаторами с объемным расходом 420 дм3/ч (101 кг/ч 100%), где в течение 5-8 с происходит образование ПКН. Раствор ПКН по специальному распределителю подается в двухшнековый смеситель. В смесителе происходит увлажнение затравочных частиц раствором ПКН до влажности 3 - 8% и нарастание размера частиц. В двухшнековом смесителе идет интенсивное перемешивание и перемещение увлажненного ПКН к зоне сушки. Через загрузочное окно влажный продукт подается на решетку сушилки, где происходит сушка ПКН в токе дымовых газов. Продольное перемещение продукта по сушилке обеспечивается направленным движением дымовых газов и изменением живого сечения решетки (Равномерно уменьшается в 1,5 раза).

[47]

Высушенные частицы (массовая доля потерь при высушивании не более 3%) массой 160 кг/ч выводится из зоны сушки и направляется на классификацию.

[48]

Поток разделяется на три составляющих: частицы более 1 мм (через дробилку) и менее 0,1 мм возвращаются в двухшнековый смеситель, а целевой продукт массой 150 кг/ч (кажущаяся плотность 1100) направляется на фасовку. Остальной продукт возвращается в качестве затравочных частиц в двухшнековый смеситель. Массовая доля активного кислорода по фракциям распределяется как показано в таблице.

Как компенсировать расходы
на инновационную разработку
Похожие патенты