патент
№ RU 2111169
МПК C01G43/06

СПОСОБ ФТОРИРОВАНИЯ МЕТАЛЛИЧЕСКОГО УРАНА ДО ГЕКСАФТОРИДА УРАНА

Авторы:
Хохлов В.А. Хандорин Г.П. Мариненко Е.П.
Все (16)
Номер заявки
97101671/25
Дата подачи заявки
04.02.1997
Опубликовано
20.05.1998
Страна
RU
Как управлять
интеллектуальной собственностью
Реферат

[24]

Изобретение относится к технологии фторирования металлического урана до гексафторида урана и может быть использовано при решении задачи перевода оружейного (высокообогащенного) металлического урана в энергетический (низкообогащенный). Фторирование осуществляется разбавленным фтором в смеси с аргоном, азотом и/или гексафторидом урана при температуре 623-773 К и пониженном давлении в две стадии при циркуляции газовой смеси. На первой стадии осуществляют фторирование металлического урана при парциальном фторе (2,0-15,0)•102 Па и линейной скорости фторирующей смеси в зоне реакции 7-12 м/с, а на второй стадии проводят дополнительную обработку продуктов, содержащих промежуточные фториды урана, при парциальном давлении фтора (2-30)•102 Па. Процесс проводят при общем давлении (6-8)•103 Па. 1 з.п. ф-лы, 1 ил.

Формула изобретения

1. Способ фторирования металлического урана до гексафторида урана разбавленным фтором, взятым в смеси в аргоном, азотом и/или гексафторидом урана, при температуре 623 - 773 К и пониженном давлении, отличающийся тем, что процесс проводят в две стадии, при этом на первой стадии поддерживают парциальное давление фтора (2,0 - 15,0) • 102 Па и линейную скорость фторирующей смеси в зоне реакции 7 - 12 м/с, а на второй стадии продукты реакции, содержащие промежуточные фториды урана, подвергают дополнительной обработке фтором при его парциальном давлении (2 - 30) • 102 Па.

2. Способ по п. 1, отличающийся тем, что процесс проводят при общем давлении (6 - 8) • 103 Па.

Описание

[1]

Изобретение относится к технологии фторирования металлического урана и его сплавов до гексафторида урана. Разработка технологии прямого фторирования металлического урана до гексафторида урана стала особенно актуальной в связи с решением задачи перевода оружейного (высокообогащенного по изотопу235U металлического урана в низкообогащенный (энергетический) гексафторид урана. Технологические особенности этого процесса заключаются в специфических характеристиках реакции урана с фтором. Во-первых, поскольку уран является очень активным металлом-восстановителем, а фтор - сильнейшим окислителем, реакция между ними сопровождается выделением большого количества тепла [1, 2], избыток которого необходимо выводить из зоны реакции. Во-вторых, при взаимодействии металлического урана с фтором кроме гексафторида урана образуются практически все возможные низшие фториды урана (UF3, UF4-x, UnF4n+1). Промежуточные фториды урана общей формулы UnF4n+1 могут образовываться также (по данным [3]) в результате взаимодействия гексафторида и тетрафторида урана. Низшие промежуточные фториды выносятся из зоны реакции и отлагаются в коммуникациях после фторатора, приводя к их забивкам, как в виде самостоятельной твердой фазы (UF3, UF4-x, UF4, так и вследствие диспропорционирования промежуточных фторидов урана [1]:

Таким образом, при фторировании металлического урана фтором до гексафторида урана должны быть решены две основных проблемы:
- регулирование процесса, т.е. поддержание стабильного теплового режима в зоне фторирования;
- превращение промежуточных фторидов урана, образующихся в результате протекания параллельных реакций в системе уран-фтор-гексафторид урана, в гексафторид урана.

[2]

Известны способы фторирования металлического урана в жидких фторирующих средах - трифториде хлора, трифториде брома, разбавленных фтористым водородом и гексафторидом урана, с рециркуляцией неиспользованной части фторирующего реагента и части полученного гексафторида урана [1]. Использование жидких фторирующих сред способствует улучшению условий отвода тепла от реагирующей поверхности через жидкую фазу к охлаждаемым стенкам реактора. Промежуточные фториды урана оставались в жидкой фазе до полного превращения их в гексафторид урана, который частично растворялся в жидкой фазе, а частично возгонялся с отходящими газами. По завершении процесса гексафторид урана выделяли из жидкой фазы и подвергали очистке. Как показали опыты [1], в случае возникновения контакта металлического урана с парами галогенфторидов реакция становится неуправляемой, вплоть до взрывного характера (особенно если уран имеет высокоразвитую поверхность). Кроме того, весьма затруднено разделение образующихся сложных смесей фторидов.

[3]

Известен способ фторирования сплавов высокообогащенного урана, заключающийся в растворении сплава в расплавленной смеси фторида натрия и тетрафторида циркония с продувкой через расплав вначале фтористого водорода, а затем одного из фторирующих реагентов - фтора, трифторида хлора или трифторида брома [1]. Промежуточные фториды урана остаются в расплаве до их полного превращения в гексафторид урана при обработке фторирующими реагентами. Непреодоленным недостатком этого способа оказалась сильная коррозия оборудования при температуре 873-973 K.

[4]

Известен способ фторирования металлического урана, в котором задача отвода тепла реакции урана с фтором решена путем разбавления фтора газом, обладающим высокой удельной теплоемкостью, - гелием, а также проведением процесса в кипящем слое частиц фторида кальция при линейной скорости 0,122 - 0,183 м/с и парциальном давлении фтора 5,0•103 - 5, 0•104 Па [2]. Недостатки способа связаны с техникой кипящего слоя: это необходимость фильтрации сильнозапыленного и высокоагрессивного газового потока, выходящего из фторатора, и потери урана с отработанным материалом кипящего слоя.

[5]

Известен способ фторирования урансодержащих материалов разбавленным фтором (смесью фтора с аргоном, азотом и/или гексафторидом урана) при температуре 723 - 823 K с принудительной циркуляцией фторирующей газовой смеси [4] . Процесс ведут сначала разбавленным, а затем чистым фтором. Этот способ по сущности наиболее близок к заявленному и принят за прототип. Недостатком этого способа является то, что он также не решает проблем, обусловленных присутствием промежуточных фторидов урана в газовом потоке после операции фторирования, в случае применения его к фторированию металлического урана.

[6]

Задачей изобретения является разработка способа фторирования металлического урана, обеспечивающего заданную скорость процесса, стабильность теплового режима и отсутствие промежуточных фторидов урана в газовом потоке после операции фторирования.

[7]

Поставленная задача решается тем, что в способе фторирования металлического урана разбавленным фтором (например смесью фтора с аргоном, азотом, гелием и/или гексафторидом урана) при температуре 623 -773 K и пониженном давлении процесс проводят в две стадии, при этом на первой стадии поддерживают парциальное давление фтора (2,5 - 15,0)•102 Па, и линейную скорость фторирующей смеси 7-12 м/с, а полученные газообразные продукты реакции, содержащие промежуточные фториды урана, подвергают дополнительной обработке фтором при парциальном давлении фтора (2 - 30)•102 Па.

[8]

Процесс предпочтительно проводят при общем давлении в реакторе (6 - 8)•103 Па.

[9]

Особенностью поддержания заданного теплового режима в заявленном способе является отвод тепла реакции урана с фтором не через стенку реактора, а фторирующим газовым потоком. Нашими исследованиями установлено, что устойчиво поддерживать стационарный тепловой режим в реакторе и регулировать скорость процесса путем изменения парциального давления фтора во фторирующем газовом потоке можно только в том случае, если процесс фторирования урана протекает в кинетической области гетерогенного реагирования. Это условие реализуется при такой гидродинамической обстановке в зоне реакции, когда линейная скорость газового фторирующего потока относительно свободного сечения реактора составляет величину не менее 7 м/с. В этом случае процесс взаимодействия поверхности металлического урана с фтором определяется скоростью химической реакции
U+3F2→ UF6
и не зависит от скорости подвода молекул фтора к поверхности металла. При этом концентрация фтора на реагирующей поверхности примерно равна его концентрации в ядре фторирующего газового потока.

[10]

Значение скорости газового потока в зоне реакции металлического урана с фтором, равная 7 м/с, является нижним пределом этого параметра в заявляемом способе.

[11]

При снижении скорости потока менее 7 м/с тепловой режим в зоне фторирования становится неустойчивым и реакция "срывается" в диффузионную область гетерогенного реагирования, характеризующуюся для процесса реагирования металлического урана с фтором высокими (вплоть до плавления урана) температурами.

[12]

Верхний предел скорости прохождения фторирующей газовой смеси через реакционную зону (12 м/с) обусловлен тем, что выше этого значения тепловой режим также становится неустойчивым, но "в обратную сторону": газовый поток переохлаждает зону реагирования урана с фтором и гасит реакцию.

[13]

Типичная зависимость температуры в зоне реакции от скорости фторирующего газового потока показана на чертеже.

[14]

Другим параметром, влияющим на тепловой режим и скорость фторирования урана, является парциальное давление фтора во фторирующей газовой смеси. Нами установлено, что оптимальные значения этого параметра лежат в интервале 2,5•102 - 15, 0•102 Па, когда основными продуктами являются гексафторид и пентафторид урана. Снижение этой величины менее 2,5•102 Па приводит к образованию в зоне фторирования преимущественно низших, нелетучих фторидов, что резко снижает выход гексафторида урана в целевой продукт. Повышение же парциального давления фтора в смеси, подаваемой на фторирование урана, сверх 15, 0•102 Па приводит к переходу процесса в область, где тепловой режим и скорость реакции урана с фтором не поддаются устойчивому регулированию.

[15]

Задача отсутствия промежуточных фторидов урана в газовом потоке после операции фторирования урана в заявленном способе решается тем, что указанный газовый поток подвергают дополнительному фторированию при парциальных давлениях фтора (2 - 30)•102 Па. При этом промежуточные фториды урана, содержащиеся в газовом потоке, полностью превращают в гексафторид урана. Нижний предел парциального давления фтора (2•102 Па) обусловлен необходимостью гарантированного обеспечения полного превращения промежуточных фторидов урана в гексафторид урана. При снижении этой величины возможны "проскоки" промежуточных фторидов урана через зону дополнительного фторирования. Превышение же парциального давления фтора сверх З0•102 Па нарушает сбалансированность операций фторирования металлического урана и дополнительного фторирования полученного газового потока.

[16]

Способ осуществляют в двухзонном реакторе-фтораторе. В первую зону реактора загружают стружку из металлического урана, вторую зону заполняют насадкой из никелевых колец.

[17]

После вакуумирования в реактор подают заранее приготовленную газовую смесь фтора с гексафторидом урана, в которой парциальное давление фтора составляет (2,5 - 15,0)•102 Па. Вторую зону заполняют насадкой из никелевых колец, нагревают до 673 - 773 K, затем нагревают первую зону до 623 - 673 K. Процесс ведут при циркуляции газовой смеси с линейной скоростью 7 - 12 м/с в расчете на свободное сечение первой зоны. В газовый поток после первой зоны вводят фтор в количестве, обеспечивающем па входе во вторую зону парциальное давление фтора (2 - 30)•10 Па. Газовую смесь, выходящую из второй зоны реактора, направляют на конденсацию части гексафторида урана, после чего газовый поток, содержащий непрореагировавший фтор и несконденсированный гексафторид урана, возвращают в первую зону реакции после предварительной корректировки по фтору, обеспечивающей его парциальное давление в первой зоне (2,5 - 15,0)•102 Па.

[18]

Контроль за процессом ведут по температурам в первой и второй зонах реактора, давлению в реакторе, расходу газовой смеси, поступающей в реактор, и концентрациям фтора в потоках, поступающих в первую и вторую зоны реактора.

[19]

Экспериментальная проверка заявленного способа фторирования металлического урана показала, что его осуществление обеспечивает заданную скорость процесса, стабильность теплового режима и отсутствие промежуточных фторидов урана в газовом потоке после операции дополнительного фторирования.

[20]

Источники информации
1. Столер С., Ричардс Р. Переработка ядерного горючего. - М.: Атомиздат, 1964.

[21]

2. Зуев В. А., Яхонин И.Ф. Кинетика и механизм фторирования соединений урана, плутония и нептуния фтором и галогенфторидами. ВНИИХТ, Информационный выпуск N 12, 1974.

[22]

3. Yahata T., Iwasaki M.J. Nucl. Sci. And Technology, 9(6), 1972.

[23]

4. M. Bourgeois, P. Faugeras. Traitement des combustibles par voie seche Etudes realisees en France. Centre d'etudes nucleaires de Fontenay - aux - Roses, France. 1968.

Как компенсировать расходы
на инновационную разработку
Похожие патенты