патент
№ RU 2016129
МПК C22C38/50

СТАЛЬ

Авторы:
Зарина Ж.А. Пославский А.В. Ривкин С.И.
Все (12)
Номер заявки
5007835/02
Дата подачи заявки
22.07.1991
Опубликовано
15.07.1994
Страна
RU
Как управлять
интеллектуальной собственностью
Чертежи 
1
Реферат

[26]

Изобретение относится к металлургии сплавов, а именно к термоулучшаемой хладостойкой стали, применяемой для изготовления конструкций горнодобывающей техники, работающей в условиях Крайнего Севера. С целью повышения предела выносливости в сочетании с хорошей свариваемостью сталь дополнительно содержит вольфрам, алюминий, цирконий и азот при следующем соотношении компонентов, мас.%: углерод 0,09 - 0,14; кремний 0,25 - 0,50; марганец 0,60 - 1,0; хром 0,20 - 0,5; никель 1,0 - 1,5; молибден 0,20 - 0,3; медь 0,20 - 0,5; ванадий 0,04 - 0,1; вольфрам 0,005 - 0,01; алюминий 0,015 - 0,035; цирконий 0,002 - 0,012; азот 0,005 - 0,015; железо остальное. 1 табл.

Формула изобретения

СТАЛЬ, содержащая углерод, кремний, марганец, хром, никель, молибден, медь, ванадий, железо, отличающаяся тем, что, с целью повышения предела выносливости в сочетании с хорошей свариваемостью, она дополнительно содержит вольфрам, алюминий, цирконий, азот при следующем соотношении компонентов, мас.%:
Углерод 0,09 - 0,14
Кремний 0,25 - 0,50
Марганец 0,60 - 1,00
Хром 0,20 - 0,50
Никель 1,00 - 1,50
Молибден 0,20 - 0,30
Медь 0,20 - 0,50
Ванадий 0,04 - 0,10
Алюминий 0,015 - 0,035
Цирконий 0,002 - 0,012
Вольфрам 0,005 - 0,010
Азот 0,005 - 0,15
Железо Остальное

Описание

[1]

Изобретение относится к металлургии сплавов, а именно к термоулучшаемым хладостойким свариваемым сталям, применяемым для изготовления конструкций горнодобывающей техники, работающей в условиях Крайнего Севера.

[2]

Известна вязкая хладостойкая сталь типа 14NiMn6 (стандарт ФРГ, DIN 17.280, содержащая следующие элементы, %: углерод 0,18 кремний 0,35 марганец 1,50 никель 1,70 ванадий 0,05 железо остальное
Недостатком этой стали является то, что данная сталь не обеспечивает необходимого уровня свойств при температуре минус 70оС.

[3]

Широко известна применяемая в экскаваторостроении сталь ИЗ-6 (17СНМД) ТУ 108.11.938-87, содержащая следующие элементы, мас.%: углерод 0,15-0,19 кремний 0,30-0,70 марганец 0,70-0,90 никель 0,90-1,30 молибден 0,17-0,25 медь 0,70-1,0 хром не более 0,30 ванадий 0,03 -0,04 (по расчету) титан 0,03-0,04 (по расчету) железо остальное
Данная сталь сваривается в толщинах до 70 мм, при этом температура предварительного подогрева составляет 250оС.

[4]

Однако, данная сталь имеет низкие значения предела выносливости σ1 = 24.4 кг/мм2.

[5]

Целью данного изобретения является создание термоулучшаемой хладостойкой стали с температурой предварительного подогрева, не превышающей температуру подогрева для стали ИЗ-6 (250оС) и с существенно большим пределом выносливости (31,7-84,0 кг/мм2) вместо 24,6 кг/мм2.

[6]

Указанная цель достигается введением в известную сталь новых легирующих элементов вольфрама, алюминия, циркония, азота, при следующем соотношении компонентов, мас.%: углерод 0,09-0,14 кремний 0,25-0,50 марганец 0, 60-1,00 хром 0,20-0,50 никель 1,00-1,50 молибден 0,20-0,30 медь 0,20-0,50 ванадий 0,04-0,10 алюминий 0,015-0,035 цирконий 0,002-0,012 вольфрам 0,005-0,010 азот 0,005-0,015 железо остальное
Введение углерода в количестве 0,09% выбрано из необходимости обеспечения закаливаемости и прокаливаемости стали в толщинах до 70 мм и достаточно высокого уровня предела выносливости для работы в условиях минусовых температур и знакопеpеменных нагрузок. Верхний предел углерода 0,14% принят из условий обеспечения свариваемости и максимального уровня предела выносливости (при содержании углерода 0,14% после закалки 920 " отпуск 630-640оС предел выносливости составляет 31 кг/мм2), а также достижения необходимой температуры подогрева при сварке.

[7]

Нижний предел содержания кремния 0,25% принят для обеспечения минимальной прокаливаемости и достаточной раскисленности металла. Увеличение содержания кремния до 0,50% обеспечивает довольно высокий уровень прочностных свойств, способствует смягчению зональной и зерноограниченной сегрегаций (в том числе углерода), вследствие чего повышается устойчивость аустенита, а, следовательно, прокаливаемость стали. Введение кремния в пределах от 0,25 до 0,50% обеспечивает возможность получения низкого порога хладоломкости в стали и необходимой температуры подогрева при сварке.

[8]

Марганец в количестве 0,60% выбран из необходимости обеспечения требуемой прокаливаемости и получения необходимого уровня предела выносливости стали.

[9]

Максимальное содержание марганца 1,0% выбрано с условием обеспечения температуры хладостойкости стали и соответственно низкой температуры подогрева при сварке (150оС вместо 190оС у прототипа).

[10]

Хром ухудшает свариваемость стали, увеличивая ее закаливаемость, этим ограничено максимальное его содержание в стали 0,50%. Минимальное содержание хрома 0,2% выбрано для обеспечения необходимых структурных составляющих, обеспечивающих высокий уровень предела выносливости и прокаливаемости стали.

[11]

Никель, как легирующий элемент, повышает сопротивление хрупкому разрушению, повышает пластичность и вязкость, уменьшает чувствительность к концентраторам напряжений и понижает температуру порога хладоломкости, а также повышает прокаливаемость стали за счет более высокой устойчивости аустенита, которая усиливается в присутствии хрома. Минимальное количество никеля 1,00% обеспечивает минимальную прокаливаемость стали снижение порога хладоломкости, а максимальное количество 1,50% - более глубокую прокаливаемость, свариваемость стали, повышает предел выносливости и обеспечивает необходимую темпеpатуру подогрева при сварке.

[12]

Молибден в сочетании с другими легирующими элементами повышает прочностные характеристики стали. Введение минимального содержания молибдена 0,20% выбрано из условия обеспечения высокой прокаливаемости стали и уменьшения склонности к отпускной хрупкости стали. Максимальное содержание молибдена 0,30% повышает отпускоустойчивость стали, обеспечивает сквозную прокаливаемость и хорошую свариваемость стали.

[13]

Введение 0, 2% меди увеличивает коррозионную устойчивость материала, повышая его долговечность. Введение в сталь меди в количестве 0,50% повышает прочностные характеристики стали и предел выносливости, а следовательно срок службы деталей за счет дисперсионного твердения материала, так как медь, находясь в пересыщенном состоянии в твердом растворе с α -железом, упрочняет его на дислокационном уровне. Введение 0,20% меди снижает критическую скорость закалки, увеличивая прокаливаемость стали, содержание 0,5% меди в металле уменьшает подкаливаемость в зоне термического влияния при сварке. Сочетание никеля и меди в указанных количествах позволяет избежать трещинообразования в процессе сварки деталей.

[14]

Введение ванадия ограничено количеством 0,04-0,10% в связи с образованием ванадием с углеродом труднорастворимых карбидов ванадия, что обедняет твердый раствор углеродом, снижая устойчивость аустенита, и, как следствие, уменьшается прокаливаемость стали.

[15]

Введение алюминия в количестве 0,015% улучшает раскисленность стали. Содержание в стали алюминия в количестве 0,035% обеспечивает достаточную прокаливаемость металла и удовлетворительную проработку структуры, что обеспечивает высокий уровень прочностных свойств, а частности, усталостную прочность.

[16]

Цирконий, как и ванадий, образует в стали труднорастворимые карбиды и действие его аналогично, поэтому введение циркония ограничено пределами 0,02-0,012%.

[17]

Введение вольфрама в количеств 0,005% существенно замедляет распад переохлажденного аустенита и повышает прокаливаемость. Введение вольфрама свыше 0,012% вызывает образование труднорастворимых карбидов, что охрупчивает сталь и ухудшает ее свариваемость.

[18]

Азот в стали в количестве 0,005% присутствует в твердом растворе в качестве микролегирующей добавки, что повышает прокаливаемость и механические свойства - ударную вязкость и предел выносливости.

[19]

Верхний предел азота ограничен 0,015% в связи с образованием в стали нитридов алюминия и хрома, в результате чего происходит обеднение твердого раствора легирующими элементами и вызывает снижение прокаливаемости, и требует более высоких температур подогрева при сварке.

[20]

Для получения стали предлагаемого состава были проведены опытные плавки по шести указанным в таблице химическим составам. Сталь выплавлялась в индукционной электропечи.

[21]

При выплавке применялись ферросплавы следующих марок: ферросилиций по ГОСТ 1415-78 марки ФС-45; марганец металлический по ГОСТ 6008-75; феррохром по ГОСТ 4757-79 марки ФХО50А; ферромолибден по ГОСТ 4759-79 марки ФМО52; никель по ГОСТ 849-70; ферротитан по ГОСТ 4761-80 марки ФТ и 40А; феррованадий по ТУ 14-5-98-78 марки ФВД35А; медь по ГОСТ 85 978; ферроалюминоцирконий по ТУ-14-5-40-40-74 марки АУр-1; ферровольфрам по ГОСТ 17293-82 марки ФВ-70.

[22]

Ферросплавы кремния, марганца, ванадия применялись в дробленном виде с фракцией 5-50 мм. Слитки разливались в изложницы по 50 кг.

[23]

Химический состав и свойства известной и предлагаемой сталей приведены в таблице.

[24]

Как следует из таблицы предлагаемая сталь превосходит известную по пределу выносливости в 1,5 раза и требует меньшей температуры подогрева при сварке. Плавка, содержащая легирующие элементы ниже нижнего предела легирования, имеет достаточно высокий предел выносливости (выше, чем у известной стали на 5,4 кгс/мм2) и низкую температуру подогрева при сварке. Однако, при данном содержании - 0, 20% - 0, 58% и - 0,013% сталь будет недораскисленной и могут создаться условия появления пор, как в основном металле, так и в сварном шве. Плавка, выплавленная по химическому составу с превышением верхнего предела легирования, требует высокой температуры подогрева при сварке (выше, чем у известной).

[25]

Технико-экономический эффект выражается в повышении долговечности и улучшении технологии изготовления сварных конструкций за счет уменьшения температуры подогрева при сварке.

Как компенсировать расходы
на инновационную разработку
Похожие патенты