патент
№ RU 2675062
МПК A61F2/08

ИСКУССТВЕННАЯ МЫШЦА ДЛЯ СЕРДЕЧНОЙ ТКАНИ

Авторы:
Терещенко Сергей Андреевич Герасименко Александр Юрьевич Ичкитидзе Леван Павлович
Все (4)
Номер заявки
2017145781
Дата подачи заявки
26.12.2017
Опубликовано
14.12.2018
Страна
RU
Как управлять
интеллектуальной собственностью
Чертежи 
1
Реферат

Изобретение относится к медицинской технике, натотехнологиям, биомедицинским, биомеханическим протезам, может быть применено в робототехнике и актюаторах (приводах). Для создания искусственной мышцы (ИМ), выполняющей механическую функцию поврежденной сердечной ткани, наиболее подходящими являются ИМ на основе ионных электроактивных полимеров (ЭАП), в которых реализуется высокое значение нагрузочной силы при небольшом значении электрического напряжения (1-3 В). В предлагаемой ИМ в качестве заплаты для сердечной ткани на основе ЭАП в заплату толщиной200 мкм капсулируют активные элементы, содержащие электропроводящие слои из композиционного наноматериала толщиной 20-30 мкм, ЭАП и электролит. Причем композиционный наноматериал состоит из 85 мас. % бычьего сывороточного альбумина (БСА), 10 мас. % углеродных нанотрубок (УНТ) и воды. Используемый композитный наноматериал позволяет упростить и удешевить процесс его нанесения на заплату, обладает высокой степенью биосовместимости, не вызывает аллергических реакций. 3 ил.

Формула изобретения

Искусственная мышца в качестве заплаты для сердечной ткани на основе электроактивных полимеров (ЭАП), отличающаяся тем, что в заплату толщиной <200 мкм капсулированы активные элементы, содержащие электропроводящие слои из композиционного наноматериала толщиной 20-30 мкм, ЭАП и электролит, причем композиционный наноматериал состоит из 85 мас. % бычьего сывороточного альбумина, 10 мас. % углеродных нанотрубок и воды.

Описание

[1]

Предлагаемое изобретение относится к области создания искусственной мышцы (ИМ) медицинского назначения и может быть применено как в биомиметических, так и в биомеханических протезах, а также в робототехнике и актюаторах (приводах).

[2]

Одним из методов лечения поздней стадии сердечной недостаточности является трансплантация сердца. Однако, даже при доступности трансплантата (сердце донора, механическое сердце), операция трансплантации сердца очень сложная, инвазивная, рискованная и дорогая процедура. Она продлевает жизнь в среднем меньше чем на 10 лет.

[3]

Пересадка скелетной мышцы в область вокруг сердца, т.е. кардиомиопластика, лишь симптоматически улучшает состояние пациента. Однако процедура пересадки очень сложная и дорогая, подобно трансплантации сердца. Другие методы лечения сердца также не дают существенных улучшений состояния пациента.

[4]

В связи с этим актуальна задача создания искусственной мышцы, выполняющей механическую функцию поврежденной сердечной ткани. Подобные функции выполняют различные приводы, актюаторы и ИМ в технических системах, однако их применения в инвазивных медицинских системах очень осложнены или пока невозможны.

[5]

Действительно, известны многочисленные пневматические и гидравлические приводы и актюаторы - прототипы искусственных мышц [1-5], а также приводы на эффекте памяти формы [6, 7]. Они имеют высокие механические и мощностные показатели, например, их мощность, приведенная на единицу массы, составляет: Pm~1,0 кВт/кг. Это выше, чем у сердечной мышцы человека - Pm~0,33 кВт/кг. Во многих случаях они используются в робототехнике, а в некоторых случаях для создания протезов наружного применения, в частности, для восстановления движения коленного сустава или для усиления работы человеческих конечностей. Эти ИМ имеют большие массо-габариты и не пригодны в качестве инвазивных имплантируемых медицинских изделий.

[6]

Известна ИМ мышца из композиционного материала в составе различных полимеров (нейлон, полиэтилен, полиорганосилоксан и др.) и нитей интерметаллида (Ni-Ti - нитинол) [8]. Такая ИМ работает при нагреве и охлаждении полимера и имеет замедленное действие и гистерезисы. Возможно, такие материалы перспективны к применению в робототехнике и в неинвазивном протезировании, но в инвазивной имплантации неприемлемы, ввиду опасности перегрева окружающих тканей.

[7]

Существуют широкий класс электроактивных полимеров (ЭАП), которые активно исследуются с целью создания на их основе ИМ. Некоторые ЭАП чувствительны к сильному электрическому полю, имеют высокие коэффициенты полезного действия, но питаются высоковольтным напряжением (≥1 кВ), и их инвазивное использование в человеческом теле в качестве ИМ не является безопасным и удобным [9].

[8]

Так называемые ионные ЭАП активизируются переносом ионов. В них реализуется высокое значение нагрузочной силы при небольшом значении электрического напряжения 1-3 В [10]. ИМ на основе ионного ЭАП содержит: полимер, электролит, электроды и другие элементы. Из них основным является активный элемент (АЭ), состоящий из слоя различных материалов, чередующихся в виде «сэндвича»: металл, полимер, электролит, полимер, металл. Все составные части (материалы, конструкции) требуют оптимального подбора, чтобы данный тип ИМ на базе ионного ЭАП имел удовлетворяющие степени безопасности и биосовместимости для ее инвазивного применения.

[9]

Наиболее близким к предлагаемому изобретению относится патент «Искусственные сфинкторы и искусственные мышцы на основе электроактивных полимеров», содержащий ионные электроактивные полимеры, на поверхностях которых нанесены металлические электроды, заплату для сердечней ткани в виде многочисленных активных элементов [11]. Для повышения степени биосовместимости в предложенной ИМ в качестве электродов на поверхностях АЭ используются слои из благородных металлов (Au, Pt, Pd, Ag и т.д.). Недостатками являются сложность нанесения слоев, труднодоступность и дороговизна благородных металлов.

[10]

Задача предлагаемого изобретения состоит в улучшение биосовместимости материалов и удешевления процесса нанесения электропроводящего биосовместимого композиционного наноматериала.

[11]

Поставленная задача решается тем, что в искусственной мышце в качестве заплаты для сердечной ткани на основе электроактивных полимеров (ЭАП), в заплату толщиной ≤200 мкм капсулируются активные элементы, содержащих электропроводящие слои из композиционного наноматериала толщиной 20-30 мкм, ЭАП и - электролит, причем композиционный наноматериал состоит из 85 мас. % бычьего сывороточного альбумина, 10 мас. % углеродных нанотрубок и воды.

[12]

Предложенная ИМ для сердечной ткани представляет собой заплату, накладываемую на место, где повреждена сердечная ткань. На фиг. 1 показан эскиз сердца 1 и ИМ виде заплаты 2 на сердечной ткани. ИМ может деформироваться вместе с сердечной тканью и тем самым будет заменять (восстанавливать) механическое движение поврежденной сердечной ткани. На фиг. 2 приведен ориентировочный внешний вид заплаты, во внутрь которой капсулированы АЭ и другие элементы. Заплата состоит: 3 - многочисленные АЭ, 4 - шина для питания и управления АЭ, 5 - разъем для соединения источника питания и система управления. Толщина заплаты находится в области ≤200 мкм. Другие размеры и форму заплаты подбирают соответственно размерам и формы поврежденной поверхности сердечной ткани, на которой заплата накладывается. На фиг. 3 изображен разрез одного АЭ, где 6 - изолирующий слой, 7 - электропроводящие слои из композиционного наноматериала БСА/УНТ, 8 - ЭАП, 9 - электролит.

[13]

Принцип работы АЭ заключается в следующем. После подачи электрического питания на электродах 7 через 8 и 9 проходит ионный ток. Ионы на одном из электродов 7 собираются одной полярности, т.е. происходит окисление, а на другом собираются ионы другой полярности и происходит восстановление. Следовательно, производится изгиб полоски АЭ в сторону катода, т.е. деформируется АЭ и то место сердечной ткани, на котором он расположен.

[14]

Важной частью АЭ являются электроды, через которые подаются электрические сигналы на ЭАП. В прототипе используются электроды из слоев благородных металлов, которые позволяют получить высокие значения удельной проводимости. Необходимое условие - низкое поверхностное сопротивление электрода RSe=R⋅S (R - сопротивление, S - площадь поверхности) - позволяет не препятствовать прохождению высокого значения импульса тока через АЭ и получению высокой мощности деформации. Действительно, максимальная удельная проводимость большинства ионных полимеров находится на уровне σр≤10 См/м и, с учетом приблизительной толщины полимера dp~50 мкм, его поверхностное сопротивление приблизительно будет равно RSp~0,5 μОм⋅м2. С учетом тех фактов, что АЭ состоит из двух ЭАП и электролита, а также может присутствовать контактное сопротивление между различными поверхностями (металл/полимер; электролит/полимер), реальное значение поверхностного сопротивления АЭ может быть в несколько раз выше, чем оценочное RSp. Однако возможное поверхностное сопротивление электрода на уровне RSe≤0,05 μОм⋅м2 практически не ограничит импульс тока и соответственно мощность деформации АЭ, поскольку RSe<<RSp.

[15]

Приготовление дисперсии композиционного наноматериала БСА/УНТ и нанесение из него электропроводящих слоев на АЭП рассмотрен в примере 1.

[16]

Пример 1. Композиционный наноматериал БСА/УНТ имел в составе: БСА - фирма-производитель "AMFESCO" (USA) [12]; УНТ - одностенные углеродные нанотрубки (ОУНТ), фирма производитель "UglerodChg" [13], или многостенные углеродные нанотрубки (МУНТ) типа «Таунит-МД», фирма производитель «ООО НаноТехцентр», г. Тамбов [14].

[17]

В дистиллированной воде добавляется УНТ и дисперсия, тщательно перемешивается в магнитной мешалке в течение 4 ч. Водная дисперсия с УНТ диспергируется в ультразвуковом (УЗ) диспергаторе (Qsonica модель Q700) в течение 30 мин. В дальнейшем к дисперсии добавляется БСА и перемешивается в магнитной мешалке в течение 4 ч. Полученная водная дисперсия БСА/УНТ декантируется в течение 24 часов и перед нанесением на поверхность полимера она снова перемешивается в магнитной мешалке в течение 30 мин, и диспергируется в УЗ бане в течение 30 мин. Водная дисперсия содержит 15 мас. % БСА, 1,5 мас. % УНТ и остальная - вода, однако в слоях после сушки соотношение составных частей существенно меняется.

[18]

Дисперсия БСА/УНТ наносится на поверхности полимера методом шелкографии. Также дисперсии БСА/УНТ и УНТ наносятся на стеклянные пластинки, которые считаются контрольными. Образовавшиеся слои на полимерах и стеклянных пластинках сушатся при комнатной температуре. Сопротивление слоев определяется четырехзондовым методом. Из данных сопротивления и геометрических размеров слоев определяется их удельная объемная проводимость σ. Толщина слоев находится в области d ~ 5-30 мкм.

[19]

После сушения слои теряют влагу и приобретают состав: 85 мас. % БСА/10 мас. % ОУНТ или 85 мас. % БСА/10 мас. % МУНТ, остальная - вода (влага).

[20]

Пример 2. Основным АЭ использовался сухой ЭАП виде полиэтиленоксид (ПЭО). На поверхностях слоя ПЭО методом шелкографии или пульверизатором наносился дисперсия БСА/УНТ. Масса слоев контролировался методом взвешивания, что позволяло контролировать их толщину с точностью ±15%. В дальнейшем слои сушились в нормальных условиях в течение 100-120 мин. Полученные слои на поверхностях ПЭО служили проводящими электродами, и в целом такие образцы ЭАП представляли собой прототипами ИМ.

[21]

Отметить, что в композиционном наноматериале БСА/УНТ следует прилагать нанотрубки в области 2-10 мас. % УНТ. Действительно, при росте концентрации УНТ наноматериал постепенно теряет эластичность, т.е. увеличивается его модуль упругости Е и при >> 10 мас. % УНТ она может превосходить значение EH~200 кПа для человеческой кожной и мышечной тканей [15]. Следовательно, ИМ на основе такого композитного наноматериала не приемлемо так, как для его эффективной работы требуется выполнения условие Е≤EH. При концентрациях ≤2 мас. % УНТ значительно уменьшается удельная электропроводность наноматериала, поэтому эффективность ИМ на его основе резко подает.

[22]

Максимальное значение σ≈500 См/м получены для слоев d~20 мкм в составе 85 мас. % БСА/10 мас. % ОУНТ. С учетом данных σ и d для слоя БСА/УНТ следует поверхностное сопротивление RS~0,04 μОм⋅м2. Это имеет такой же порядок, как RSe≈0,05 μОм⋅м2, необходимый для электрода находящегося на поверхности полимера. Для слоев d~30 мкм составом 85 мас. % БСА/10 мас. % МУНТ получены σ≈400 См/м, что дает значение RS~0,075 μОм⋅м2.

[23]

Несколько более высокое значение RS~0,075 μОм⋅м2в слоях содержащих МУНТ относительно RSe≈0,05 μОм⋅м2 для слоев с ОУНТ вызвано тем обстоятельством, что одностенные нанотрубки обладают более высокой удельной проводимостью, чем многостенные нанотрубки. Индивидуальные УНТ имеют σ≥107 См/м, а контрольные слои из УНТ - σ≥105 См/м. В самом деле, матрица БСА в отсутствии нанотрубок практически не проводит электричество - ее объемная удельная проводимость σ≤10-6 См/м. После добавления наполнителя виде УНТ матрица БСА приобретает высокое значение σ, и поэтому слои композитного наноматериала БСА/УНТ становятся электропроводящими.

[24]

Таким образом, предложенные слои толщинами 20-30 мкм на основе биосовместимого композиционного наноматериала БСА/УНТ имеют высокую проводимость (низкое поверхностное сопротивление) и могут выполнять функцию электродов в искусственной мышце на основе ионного ЭАП.

[25]

Предложенная ИМ с электродами из основы биосовместимого композиционного наноматериала БСА/УНТ имеет существенные преимущества относительно ИМ с электродами из благородных металлов.

[26]

В предложенной заявке для образования электропроводящих слоев водная дисперсии БСА/УНТ наносится на ЭАП практически любыми способами, которые применяются для нанесения лакокрасочных материалов. Самым простым и доступным является шелкография, что подобно нанесению дисперсии с помощью кисти. В прототипе наиболее простым способом получения металлических слоев на АЭП считается процедура «Внедрение частиц металла в полимер». Она состоит из следующих шагов:

[27]

- полимер вымачивается в растворе соли Pt(NH3)4Cl2;

[28]

- потом наносится восстановительный раствор борогидрид натрия NaBH4;

[29]

- для ускорения восстановления также добавляют гидразин H2N-NH2 и гидроксиламин NH2OH.

[30]

Несмотря на то, что в прототипе рассмотренная процедура нанесения металлических электродов является самой простой, все-таки она гораздо сложнее, дороже и медлительнее, чем способ нанесения электродов в предложенной заявке.

[31]

К важным преимуществам относится: дешевизна материалов БСА и УНТ. В частности, Цена композита БСА/УНТ в основном определяется ценой УНТ. Например, для МУНТ≤100 руб./г. Поскольку в композит БСА/УНТ входит небольшая часть УНТ, тогда для него возможная цена может быть ≤10 руб./г. Используемые в прототипе благородные металлы гораздо дороже, например, цена золота ≥1200 руб./г.

[32]

В случае разрушения заплаты электроды АЭ могут соприкасаться с тканью и физиологической жидкостью. В этом случае важным становиться степень биосовместимости. В предложенной заявке используемый композитный наноматериал БСА/УНТ имеет высокую степень биосовместимости, так как состоит из биологического материала БСА, используемого в медицине как лекарственный препарат, а также из небольшого количество УНТ, которые в композите под влиянием БСА функционализируются и практически не уходят из матрицы БСА. Применяемые благородные металлы в прототипе могут вызвать аллергические реакции и их степень биосовместимости является невысокой.

[33]

Таким образом, поставленная задача выполнена: улучшена биосовместимости материалов и удешевлена процесс нанесения электропроводящего биосовместимого композиционного наноматериала.

[34]

ИСТОЧНИКИ ИНФОРМАЦИИ:

[35]

1. G. Waycaster, S. Wu, X. Shen, "A pneumatic artificial muscle actuated above-knee prosthesis", Dynamic Systems and Control Conference, vol. 1, pp. 12-15, 2010.

[36]

2. Y. Park, B. Chen, D. Young, "Bio-inspired active soft orthotic device for ankle foot pathologies", International Conference on Intelligent Robots and Systems, 2011.

[37]

3. D. Ferris, J. Czerniecki, B. Hannaford, "An ankle-foot orthosis powered by artificial pneumatic muscles", Journal of Applied Biomechanics, vol. 21, pp. 189-197, 2005.

[38]

4. G. Andrikopoulos, G. Nikolakopoulos, S. Manesis, " A Survey on applications of Pneumatic Artificial Muscles", Mediterranean Conference on Control & Automation, 2011.

[39]

5. R. Tiwari, M. Meller, K. Wajcs, C. Moses, I. Reveles, E. Garcia, "Hydraulic artificial muscles", Journal of Intelligent Material Systems and Structures, vol. 23, no. 3, pp. 301-312, 2012.

[40]

6. S. Mirvakili, A. Ravandi, I. Hunter, C. Haines; N. Li, J. Foroughi, S. Naficy, G. Spinks; R. Baughman, J. Madden, "Simple and strong: Twisted silver painted nylon artificial muscle actuated by Joule heating", Electroactive Polymer Actuators and Devices, vol. 9056, 2014.

[41]

7. S. Mirvakili, I. Hunter, "Multidirectional Artificial Muscles from Nylon", Advanced Materials, vol. 29, no. 4, 2017.

[42]

8. Патент РФ 2563815

[43]

9. Патент РФ 2577923

[44]

10. V. Palmre, D. Pugal, K. Kim, K. Leang, K. Asaka, A. Aabloo, "Nanothorn electrodes for ionic polymer-metal composite artificial muscles ", Scientific Reports, vol. 4, 2014.

[45]

11. Патент US 7128707 (прототип)

[46]

12. http://www.amresco-inc.com/ALBUMIN-BOVINE-0332.cmsx

[47]

13. http://sk.ru/net/1120187/

[48]

14. http://www.nanotc.ru/producrions/87-cnm-taunit

[49]

15. Liang X., and Boppart S.A. / Biomechanical Properties of In Vivo Human Skin From Dynamic Optical Coherence Elastography // IEEE Transactions on Biomedical Engineering, 2010, 57(4), pp. 953-959. DOI: 10.1109/TBME.2009.2033464.

Как компенсировать расходы
на инновационную разработку
Похожие патенты