Изобретение относится к области авиадвигателестроения, а именно к конструкции сопел турбореактивных двигателей. Сопло содержит неподвижный корпус, снабженный
карданным шарниром, и подвижный корпус, соединенный стойками с подвижной частью карданного шарнира, причем подвижный и неподвижный корпусы сопла контактируют через сферическую обечайку. Для
двухконтурного турбореактивного двигателя стойки и подвижный корпус сопла выполнены полыми. Полость последнего сообщена с окружающей средой, неподвижная и подвижная части карданного шарнира выполнены
в виде полых цилиндров, сообщенных друг с другом каналом, при этом неподвижный цилиндр сообщен с воздушной полостью наружного контура двигателя, а подвижный - через полые стойки с полостью подвижного
корпуса сопла. Изобретение обеспечивает эффективное охлаждение карданного шарнира, нагретого до высоких температур, полых стоек и подвижного корпуса сопла, что способствует уменьшению массы сопла и
повышению надежности его работы. 2 з.п. ф-лы, 1 ил.
1. Всеракурсное реактивное сопло
турбореактивного двигателя, содержащее неподвижный корпус, снабженный карданным шарниром, и подвижный корпус, соединенный стойками с подвижной частью карданного шарнира, причем подвижный и неподвижный
корпусы сопла контактируют через сферическую обечайку, отличающееся тем, что для двухконтурного турбореактивного двигателя стойки и подвижный корпус сопла выполнены полыми, причем полость последнего
сообщена с окружающей средой, неподвижная и подвижная части карданного шарнира выполнены в виде полых цилиндров, сообщенных друг с другом каналом, при этом неподвижный цилиндр сообщен с воздушной
полостью наружного контура двигателя, а подвижный - через полые стойки с полостью подвижного корпуса сопла. 2. Всеракурсное реактивное сопло по п.1,
отличающееся тем, что сферическая обечайка установлена на неподвижном корпусе сопла, а подвижный корпус сопла снабжен кольцом, контактирующим со сферической обечайкой через уплотнение. 3. Всеракурсное сопло по п.1, отличающееся тем, что оно снабжено обтекателем, прикрепленным к подвижному цилиндру карданного шарнира.
Изобретение относится к авиадвигателестроению, а именно к реактивным соплам турбореактивных двигателей (ТРД). Известно всеракурсное реактивное сопло ТРД, содержащее неподвижный корпус, снабженный карданным шарниром, и подвижный корпус, соединенный стойками с подвижной частью карданного шарнира.
Подвижный и неподвижный корпуса сопла контактируют между собой через сферическую обечайку (см. патент США №3438581 класса 239-265.35, опубл. 15.04.1969 г.). Недостаток прототипа состоит
в том, что карданный шарнир, омываемый газами, выходящими из турбины, нагревается до высоких температур. При этом резко увеличивается коэффициент трения трущихся поверхностей в шарнире,
что приводит к его заклиниванию. Задачей изобретения является организация охлаждения карданного шарнира в конструкции всеракурсного реактивного сопла двухконтурного турбореактивного
двигателя (ДТРД). Указанная задача достигается тем, что в известном всеракурсном реактивном сопле ТРД, содержащем неподвижный корпус, снабженный карданным шарниром, и подвижный корпус,
соединенный стойками с подвижной частью карданного шарнира, причем подвижный и неподвижный корпуса сопла контактируют через сферическую обечайку, при использовании его в ДТРД согласно изобретению
стойки и подвижный корпус сопла выполнены полыми, причем полость последнего сообщена с окружающей средой, неподвижная и подвижная части карданного шарнира выполнены в виде полых цилиндров, сообщенных
друг с другом каналом, при этом неподвижный цилиндр сообщен с воздушной полостью наружного контура двигателя, а подвижный - через полые стойки с полостью подвижного корпуса сопла. Такое
выполнение устройства позволяет подвести часть холодного воздуха наружного контура ДТРД к карданному шарниру и транспортировать его через полые стойки к подвижному корпусу сопла, охлаждая таким
образом все элементы сопла. Это приводит к снижению их температуры во время работы двигателя, что позволяет уменьшить их массу и повысить работоспособность карданного шарнира благодаря уменьшению
трения в его подвижных соединениях. На чертеже показан продольный разрез сопла ДТРД. Сопло содержит неподвижный корпус 1, снабженный карданным шарниром 2, и подвижный
корпус 3, соединенный стойками 4 с подвижной частью 5 карданного шарнира 2. Неподвижный корпус 1 снабжен сферической обечайкой 6. Подвижный корпус 3 снабжен кольцом 7, контактирующим со сферической
обечайкой 6 через уплотнительные элементы 8. Подвижная часть 5 карданного шарнира 2 и его неподвижная часть 9 выполнены в виде полых цилиндров, сообщенных друг с другом каналом 10.
Неподвижный цилиндр 9 сообщен с воздушной полостью 11 наружного контура двигателя через полые стойки 12 и канал 13. Подвижный цилиндр 5 сообщен через полые стойки 4 с полостью подвижного корпуса 3
сопла. Сопло снабжено обтекателем 14, прикрепленным к подвижному цилиндру 5 карданного шарнира 2. Во время работы двигателя воздух из наружного контура 11 поступает через полые стойки
12 и канал 13 в полость цилиндра 9, откуда через канал 10 проходит в полость цилиндра 5 и через полые стойки 4 - в полость подвижного корпуса 3 сопла, из которой он выходит через щель.
Таким образом, производится эффективное охлаждение карданного шарнира 2, нагретого до высоких температур, полых стоек 4 и подвижного корпуса 3 сопла. Кроме того, предложенное устройство
благодаря расположению сферической поверхности на неподвижном корпусе позволяет, в отличие от прототипа, исключить возникновение переменных поперечных сил, действующих на карданный шарнир при повороте
сопла. Крепление обтекателя к подвижной части карданного шарнира позволяет уменьшить потери тяги двигателя и снизить температуру карданного шарнира. Изобретение
способствует уменьшению массы сопла и повышению надежности работы сопла и двигателя в целом.