патент
№ RU 2647071
МПК C22F1/18

СПОСОБ ТЕРМОМЕХАНИЧЕСКОЙ ОБРАБОТКИ ТИТАНОВЫХ СПЛАВОВ

Авторы:
Арисланов Аскаджон Абдурасулович Путырский Станислав Владимирович Яковлев Анатолий Львович
Все (5)
Номер заявки
2016128782
Дата подачи заявки
14.07.2016
Опубликовано
13.03.2018
Страна
RU
Как управлять
интеллектуальной собственностью
Реферат

Изобретение относится к области металлургии, в частности к высокотемпературной термомеханической обработке титановых сплавов. Способ термомеханической обработки титановых сплавов включает многократные нагревы до температуры выше и ниже температуры полиморфного превращения, деформации, охлаждения до комнатной температуры и последующее старение. Первый нагрев осуществляют до температуры на 230-370°С выше температуры полиморфного превращения, выдерживают, проводят деформацию со степенью деформации 25-60% и охлаждение. Второй нагрев осуществляют до температуры на 90-200°С выше температуры полиморфного превращения, выдерживают, проводят деформацию со степенью деформации 25-60% и охлаждение. Третий нагрев осуществляют до температуры на 10-100°С ниже температуры полиморфного превращения, проводят деформацию и охлаждение. Четвертый нагрев осуществляют до температуры на 100-220°С выше температуры полиморфного превращения, выдерживают, проводят деформацию и охлаждение. Пятый нагрев осуществляют до температуры на 20-70°С ниже температуры полиморфного превращения, проводят деформацию со степенью деформации 60-90% и охлаждение. Шестой нагрев осуществляют до температуры на 20-70°С ниже температуры полиморфного превращения, проводят деформацию со степенью деформации 20-40% и охлаждение. Повышаются значения ударной вязкости, удельной работы разрушения образца с трещиной при ударном изгибе, малоцикловой усталости, относительного сужения и прочности. 3 з.п. ф-лы, 1 табл.

Формула изобретения

1. Способ термомеханической обработки титановых сплавов, включающий многократные нагревы до температуры выше и ниже температуры полиморфного превращения, деформации, охлаждения до комнатной температуры и последующее старение, отличающийся тем, что первый нагрев осуществляют до температуры на 230-370°С выше температуры полиморфного превращения, выдерживают в течение 1-4 часа, проводят деформацию со степенью деформации 25-60% и охлаждение, второй нагрев осуществляют до температуры на 90-200°С выше температуры полиморфного превращения, выдерживают в течение 3-40 мин, проводят деформацию со степенью деформации 25-60% и охлаждение, третий нагрев осуществляют до температуры на 10-100°С ниже температуры полиморфного превращения, проводят деформацию и охлаждение, четвертый нагрев осуществляют до температуры на 100-220°С выше температуры полиморфного превращения, выдерживают в течение 3-60 мин, проводят деформацию и охлаждение, пятый нагрев осуществляют до температуры на 20-70°С ниже температуры полиморфного превращения, проводят деформацию со степенью деформации 60-90% и охлаждение, шестой нагрев осуществляют до температуры на 20-70°С ниже температуры полиморфного превращения, проводят деформацию со степенью деформации 20-40% и охлаждение.

2. Способ по п. 1, отличающийся тем, что после третьего нагрева до температуры на 10-100°С ниже температуры полиморфного превращения проводят деформацию со степенью деформации 10-40%.

3. Способ по п. 1 или 2, отличающийся тем, что после четвертого нагрева до температуры на 100-220°С выше температуры полиморфного превращения проводят деформацию со степенью деформации 20-80%.

4. Способ по п. 1 или 2, отличающийся тем, что многократные нагревы ведут со скоростями 0,06-0,10°С/с, а охлаждения - со скоростями 0,7-5,2°С/с.

Описание

[1]

Изобретение относится к области цветной металлургии, в частности к высокотемпературной термомеханической обработке титановых сплавов, проводимой с целью повышения уровня механических свойств поковок и штамповок, а также готовых изделий из них.

[2]

Эффективность использования высокотемпературной термомеханической обработки титановых сплавов для улучшения комплекса свойств титановых сплавов связана с их способностью не только к деформационному упрочнению, но и к термическому упрочнению, обусловленному распадом метастабильных фаз, фиксируемых ускоренным охлаждением после завершения горячей деформации. Термомеханическая обработка титановых сплавов обеспечивает более высокий комплекс механических свойств по сравнению с термической обработкой. Рациональный выбор для использования титановых сплавов в областях современного производства неразрывно связан с анализом их поведения при конкретных условиях эксплуатации. Наиболее часто встречающимся критичным параметром при эксплуатации деталей из титановых сплавов является работа при циклических нагрузках. В связи с этим важными эксплуатационными свойствами титановых сплавов считаются ударная вязкость, удельная работа разрушения образца с трещиной при ударном изгибе и усталостная выносливость при знакопеременном нагружении.

[3]

Из уровня техники известен способ обработки полуфабрикатов из титановых сплавов путем многократных нагревов до температуры выше и ниже температуры полиморфного превращения, в частности с первым нагревом до температуры на 250-350°С выше температуры полиморфного превращения, деформаций, охлаждений до комнатной температуры и последующего старения. Деформацию после первого нагрева ведут со степенью 30-50%, охлаждают, повторно нагревают до температуры на 100-180°С выше температуры полиморфного превращения, деформируют со степенью 30-50%, охлаждают, нагревают до температуры на 10-70°С ниже температуры полиморфного превращения, охлаждают, нагревают до температуры на 120-200°С выше температуры полиморфного превращения, деформируют, охлаждают, нагревают до температуры на 20-60°С ниже температуры полиморфного превращения, деформируют со степенью 65-80%, охлаждают, повторно нагревают до температуры на 20-60°С ниже температуры полиморфного превращения, деформируют со степенью 20-35% и охлаждают (SU 1061510 опубл., 10.10.2015, C22F 1/18).

[4]

К недостаткам данного способа относятся недостаточные характеристики ударной вязкости (KCU) и удельной работы разрушения образца с трещиной при ударном изгибе (KCT) после обработки полуфабрикатов из титановых сплавов данным способом.

[5]

Известен способ термомеханической обработки титановых сплавов, включающий нагрев сплава до температуры выше 900°С, резкое охлаждение, холодную деформацию и старение при температуре 200-600°С от 10 секунд до 10 минут (US 2014290811 опубл., 02.10.2014, С22С 14/00).

[6]

Ближайшим аналогом заявленного изобретения является способ термомеханической обработки титановых сплавов и изделий из них, включающий многократные нагрев изделий из титановых сплавов до температуры выше и ниже температуры полиморфного превращения и деформацию в процессе охлаждения до температуры ниже температуры полиморфного превращения, выдержку и охлаждение, термомеханическую обработку проводят в шесть стадий, при этом на первых стадиях осуществляют: нагрев до температуры (Тпп+120-Тпп+270)°С, деформацию со степенью 50-70% при охлаждении до (Тпп-40-Тпп-100)°С; нагрев до температуры (Тпп+60-Тпп+160)°С, деформацию со степенью 40-60% при охлаждении до (Тпп-100-Тпп-180)°С; нагрев до температуры (Тпп-20-Тпп-40)°С, деформацию со степенью 10-30% при охлаждении до (Тпп-40-Тпп-160)°С; нагрев до температуры (Тпп+20-Тпп+50)°С, деформацию со степенью 40-60% при охлаждении до (Тпп-110-Тпп-130)°С; нагрев до температуры (Тпп+20-5-Тпп+50)°С, деформацию со степенью 30-70% при охлаждении до (Тпп-110-Тпп-130)°С; на шестой стадии проводят нагрев до (Тпп-400-Тпп-500°С) с выдержкой в течение 5-20 ч, где Тпп - температура полиморфного превращения (RU 2219280, опубл., 20.12.2003, C22F 1/18). Однако значения прочности, малоцикловой усталости, относительного удлинения, а также характеристики ударной вязкости (KCU) и удельной работы разрушения образца с трещиной при ударном изгибе (КСТ) после обработки полуфабрикатов из титановых сплавов данным способом все еще недостаточно высоки.

[7]

Технической задачей заявленного изобретения является разработка способа высокотемпературной термомеханической обработки титановых сплавов, обеспечивающих повышение характеристик, ресурса и надежности деталей и узлов летательных аппаратов.

[8]

Технический результат заявленного изобретения заключается в повышении характеристик ударной вязкости, удельной работы разрушения образца с трещиной при ударном изгибе, а также значений малоцикловой усталости, относительного сужения и прочности.

[9]

Повышение ресурса и надежности деталей и узлов летательных аппаратов.

[10]

Технический результат заявленного изобретения достигается тем, что способ термомеханической обработки титановых сплавов включает многократные нагревы до температуры выше и ниже температуры полиморфного превращения, деформации, охлаждения до комнатной температуры и последующее старение. Первый нагрев осуществляют до температуры на 230-370°С выше температуры полиморфного превращения, выдерживают в течение 1-4 часа, проводят деформацию со степенью деформации 25-60% и охлаждение. Второй нагрев осуществляют до температуры на 90-200°С выше температуры полиморфного превращения, выдерживают в течение 3-40 мин, проводят деформацию со степенью деформации 25-60% и охлаждение. Третий нагрев осуществляют до температуры на 10-100°С ниже температуры полиморфного превращения, проводят деформацию и охлаждение. Четвертый нагрев осуществляют до температуры на 100-220°С выше температуры полиморфного превращения, выдерживают в течение 3-60 мин, проводят деформацию и охлаждение. Пятый нагрев осуществляют до температуры на 20-70°С ниже температуры полиморфного превращения, проводят деформацию со степенью деформации 60-90% и охлаждение, шестой нагрев осуществляют до температуры на 20-70°С ниже температуры полиморфного превращения, проводят деформацию со степенью деформации 20-40% и охлаждение.

[11]

Предпочтительно после третьего нагрева до температуры на 10-100°С ниже температуры полиморфного превращения проводят деформацию со степенью деформации 10-40%. После четвертого нагрева до температуры на 100-220°С выше температуры полиморфного превращения проводят деформацию со степенью деформации 20-80%.

[12]

В варианте выполнения многократные нагревы ведут со скоростями 0,06-0,10°С/с, а охлаждения - со скоростями 0,7-5,2°С/с.

[13]

В процессе первичного нагрева до температуры на 230-370°С выше температуры полиморфного превращения и выдержки 1-4 часа создается гомогенный β-твердый раствор. Деформацией 25-60% после первого и второго нагревов в β-области создается химический состав высокой степени однородности и исключается поверхностное растрескивание. При ограниченном времени выдержки 3-40 минут после нагрева до температуры на 90-200°С выше температуры плавления и 3-60 минут после нагрева до температуры на 100-200°С выше температуры плавления не происходит роста β-зерен. Деформацией после третьего и четвертого нагревов достигается создание высокой степени однородности макроструктуры. Деформацией со степенью 60-90% после пятого и шестого со степенью 20-40% нагревов достигается создание однородной мелкодисперсной микроструктуры. Нагрев со скоростью 0,06-0,10°С/с и охлаждение со скоростью 0,7-5,2°С/с обеспечивает требуемую степень метастабильности α- и β-твердых растворов.

[14]

Заявленный способ термомеханической обработки обеспечивает получение однородной регламентированной структуры; повышение характеристик работоспособности: ударную вязкость на 11,3-27,4%, удельную работу разрушения образца с трещиной при ударном изгибе на 20-35%, значения малоцикловой усталости на 5,3-21,3%, относительного сужения на 2,8-28,6% и прочности на 11,5-23,0%.

[15]

Примеры осуществления изобретения

[16]

Пример 1

[17]

Термомеханическую обработку проводят по следующему способу: нагрев до температуры деформирования со скоростью 0,06°С/с; охлаждение со скоростью 0,7°С/с; выдержка 1 час; I деформация - 30% при tпп +240°C; выдержка 5 мин; II - 25% при tпп +90°C; III - 20% при tпп -15°C; выдержка 7 мин; IV - 20% при tпп +110°C; V - 60% при tпп -20°C; VI - 20% при tпп -20°C; старение.

[18]

Пример 2

[19]

Термомеханическую обработку проводят по следующему способу: нагрев до температуры деформирования со скоростью 0,08°С/с; охлаждение со скоростью 5°С/с; выдержка 3 часа; I деформация - 55% при tпп +370°C; выдержка 30 мин; II деформация - 60% при tпп +200°C; III деформация - 40% при tпп -90°C; выдержка 50 мин; IV деформация - 80% при tпп +200°C; V деформация - 85% при tпп -70°C; VI дeфopмaция - 40% при tпп -70°C; старение.

[20]

Пример 3

[21]

Термомеханическую обработку проводят по следующему способу: нагрев до температуры деформирования со скоростью 0,09°С/с; охлаждение со скоростью 3°С/с; выдержка 2 часа; I деформация - 40% при tпп +290°C; выдержка 18 мин; II - 45% при tпп +140°C; III - 30% при tпп -50°C; выдержка 25 мин; IV - 40% при tпп +160°C; V - 70% при tпп -40°C; VI - 30-% при tпп -45°C; старение.

[22]

В таблице 1 приведены сравнительные характеристики механических свойств и предела выносливости после обработки по способу-прототипу и заявленному способу (примеры 1-3).

[23]

[24]

Как видно из таблицы 1, заявленный способ термомеханической обработки титановых сплавов повышает ударную вязкость на 11,3-27,4%, удельную работу разрушения образца с трещиной при ударном изгибе на 20-35%, значение малоцикловой усталости на 5,3-21,3%, относительного сужения на 2,8-28,6% и прочности на 11,5-23,0%.

[25]

Заявленный способ может быть применен в цветной металлургии при производстве титановых сплавов.

Как компенсировать расходы
на инновационную разработку
Похожие патенты