патент
№ RU 2704027
МПК G01S5/04

Способ контроля излучения нескольких источников частотно-неразделимых сигналов

Авторы:
Артемов Михаил Леонидович Афанасьев Олег Владимирович Артемова Екатерина Сергеевна
Все (5)
Номер заявки
2019115106
Дата подачи заявки
17.05.2019
Опубликовано
23.10.2019
Страна
RU
Как управлять
интеллектуальной собственностью
Чертежи 
4
Реферат

Изобретение относится к области радиотехники и может быть использовано в многоканальных моноимпульсных обнаружителях-пеленгаторах систем радиомониторинга для решения задач радиоконтроля источников радиоизлучений. Достигаемый технический результат - повышение эффективности контроля излучения нескольких источников частотно-неразделимых сигналов. Указанный результат достигается за счет стабилизации уровня правильной идентификации и снижения уровня ложной идентификации источников радиоизлучения, расположенных вблизи заданных направлений, в реальных условиях при неизвестной интенсивности шума и различии амплитуд принятых сигналов с выходов антенн с произвольными характеристиками направленности антенных элементов. Способ справедлив для антенной системы с произвольной структурой и характеристиками направленности антенных элементов, в результате чего обеспечивается инвариантность решающей статистики к изменению соотношений уровней сигналов в каналах, в том числе обусловленных взаимными влияниями в антенной системе. 4 ил.

Формула изобретения

Способ контроля излучения нескольких источников частотно-неразделимых сигналов, включающий прием радиоизлучения с помощью N антенн и N-канального приемного устройства, где N>2, вычисление максимального значения углового спектра по возможным направлениям прихода радиоволны, вычисление значения углового спектра принятых радиосигналов с заданных направлений, формирование решающей статистики в виде отношения разности следа от произведения матрицы взаимных энергий на обратную матрицу коэффициентов корреляции шума и максимального значения углового спектра к разности следа от произведения матрицы взаимных энергий на обратную матрицу коэффициентов корреляции шума и значения углового спектра принятых радиосигналов с заданного направления и сравнение ее с порогом, выбираемым исходя из критерия Неймана-Пирсона и обеспечивающим требуемую вероятность правильной идентификации, по результатам чего судят о приходе радиоизлучений с заданных направлений, отличающийся тем, что формируют многосигнальный угловой спектр, максимальное значение которого вычисляют как квадратный корень следа квадрата произведения матрицы взаимных энергий на обратную матрицу коэффициентов корреляции шума; вычисляют значения углового спектра принятых радиосигналов с заданных направлений как след от произведения двух матриц, при этом одну матрицу формируют как произведение матрицы комплексных коэффициентов направленности антенной системы и обратной матрицы Фишера оценок комплексных амплитуд напряженностей электрического поля принимаемых радиоволн на эрмитово сопряженную матрицу комплексных коэффициентов направленности антенной системы, а другую матрицу формируют как произведение трех матриц: обратной матрицы коэффициентов корреляции шума, матрицы взаимных энергий, обратной матрицы коэффициентов корреляции шума; матрицу Фишера оценок комплексных амплитуд напряженностей электрического поля принимаемых радиоволн вычисляют как произведение эрмитово сопряженной матрицы комплексных коэффициентов направленности антенной системы и обратной матрицы коэффициентов корреляции шума и матрицы комплексных коэффициентов направленности антенной системы, при этом решающая статистика инвариантна к структуре и характеристикам направленности антенных элементов антенной системы; обеспечивают одновременный контроль в текущей полосе мгновенного анализа нескольких источников радиоизлучения в реальных условиях функционирования многоканального обнаружителя-пеленгатора, характеризующихся различными уровнями принимаемых сигналов и наличием межканальной корреляции аддитивного шума с неизвестной интенсивностью.

Описание

[1]

Изобретение относится к области радиотехники и может быть использовано в многоканальных моноимпульсных обнаружителях-пеленгаторах (ОП) систем радиомониторинга для решения задач радиоконтроля источников радиоизлучений (ИРИ).

[2]

В реальных условиях имеет место многолучевое распространение сигнала. Для повышения показателей эффективности радиомониторинга задача контроля нескольких источников частотно-неразделимых сигналов при наличии преднамеренных помех является весьма актуальной. В общем случае будем считать, что если спектральные компоненты радиоволн попадают в один и тот же элемент разрешения ОП по частоте (например, элементарный частотный канал преобразования Фурье), то такие источники радиосигналов частотно-неразделимые для данного ОП.

[3]

Известны способы радиоконтроля пеленгования источников радиоизлучения, основанные на азимутальном пеленговании ИРИ и представленные в [1], в которых рассматривается задача идентификации в одноэтапном варианте непосредственно по сигналам антенн , принимаемым на фоне независимых шумов одинаковой дисперсией σ2 в каналах приема интенсивности. Правило идентификации ИРИ в шумах известной и неизвестной интенсивности предполагает сравнение решающих статистик с пороговым уровнем h:

[4]

, (1)

[5]

, (2)

[6]

где – максимальные значения углового спектра принятых сигналов,

[7]

Z(θ0) – значения углового спектра принятых радиосигналов с заданного направления,

[8]

θ – направление азимута на ИРИ,

[9]

E – суммарная энергия принятых радиосигналов,

[10]

h – порог, выбираемый исходя из критерия Неймана-Пирсона и обеспечивающий требуемую вероятность правильной идентификации.

[11]

Однако указанные способы контроля излучения источника в заданном направлении предполагают выполнение процедуры пеленгования, что сопряжено с использованием значительных объемов памяти, приводящим к снижению быстродействия систем радиоконтроля.

[12]

Наиболее близким к предлагаемому способу является [2], используемый далее в качестве прототипа и предполагающий оценивание значения глобального максимума углового спектра, измерение значения углового спектра принятых радиосигналов с заданного направления и сравнение с порогом, по результатам чего судят о приходе радиоизлучения с заданного направления.

[13]

Данный способ предполагает выполнение следующих процедур:

[14]

1. Прием радиоизлучения с помощью N антенн и N-канального приемного устройства.

[15]

2. Синхронное преобразование радиосигналов всех каналов приема с получением их квадратурных составляющих, перемножение отсчетов радиосигналов на их сопряженные значения, накопление результатов перемножения за время наблюдения по совокупности антенн. Мгновенное значение радиосигнала n-й антенны, n = 0…N-1 в момент времени τ = 0,1,2,… представляет собой смесь принятого радиосигнала источника радиоизлучения и шума:

[16]

(3)

[17]

где – комплексная огибающая радиосигнала в фазовом центре антенной решетки,

[18]

θn, βn – азимут и угол места направления на источник излучения соответственно,

[19]

– вектор аддитивного шума.

[20]

1. Вычисление значений энергий и взаимной энергий радиосигналов, принятых антеннами по формулам

[21]

(4)

[22]

(5)

[23]

2. Измерение значений углового спектра принятых радиосигналов с заданного направления путем взвешенного суммирования энергии и взаимной энергии с весами, определяемыми характеристиками направленности антенн по формуле

[24]

, (6)

[25]

где – комплексный коэффициент направленности n-й антенны,

[26]

En – энергия радиосигнала, принятого n-й антенной,

[27]

– взаимная энергия радиосигналов, принятых антеннами с номерами n и n',

[28]

1. Вычисление максимального значения углового спектра Z(θmax,βmax) по возможным направлениям прихода радиоволны по формуле

[29]

. (7)

[30]

2. Вычисление значения углового спектра Z(θ0,β0) с заданного направления прихода радиоволны по формуле

[31]

(8)

[32]

2. Формирование решающей статистики Λ как отношения разности суммарной энергии сигналов (E) и максимального значения углового спектра Z(θmax,βmax) к разности суммарной энергии и значения углового спектра принятых радиосигналов с заданного направления Z(θ0,β0):

[33]

, (9)

[34]

где E – суммарная энергия принятых радиосигналов,

[35]

Z(θmax,βmax) – максимальное значение углового спектра принятых сигналов,

[36]

Z(θ0,β0) – значения углового спектра принятых радиосигналов с заданного направления.

[37]

1. Сравнение решающей статистики Λ с порогом h.

[38]

2. Принятие решения о наличии радиоизлучения с заданного направления в случае выполнения неравенства

[39]

Λ > h (10)

[40]

Если порог h превышен, принимают решение о наличии радиоизлучения с заданного (эталонного) направления, в противном случае – о приходе радиоизлучения с направления, отличного от эталонного.

[41]

Основными недостатками аналога и прототипа является:

[42]

1. Предполагается решение задачи контроля одного источника излучения в заданном направлении. В реальных условиях функционирования обнаружителя-пеленгатора, в сложной электромагнитной обстановке при наличии нескольких источников частотно-неразделимых сигналов актуальной является задача одновременного контроля излучения нескольких источников.

[43]

2. Решающая статистика (9) прототипа справедлива, когда антенны обнаружителя-пеленгатора являются идентичными и ненаправленными, а их диаграммы направленности имеют единичную амплитуду, не зависящую от направления прихода радиоволны ИРИ, и описываются функциями вида

[44]

, (11)

[45]

где R – радиус антенной системы,

[46]

λn – длина волны излучения,

[47]

ϕl(θ,β) – фазирующая функция, зависящая от параметров конфигурации антенной системы,

[48]

θ – азимут направления на источник,

[49]

i – мнимая единица.

[50]

В общем случае при наличии взаимных влияний в антенной системе обнаружителя-пеленгатора, а также в случае использования амплитудно-направленных антенных элементов другого типа использование решающей статистики (9) становится несправедливым и приводит к ухудшению показателей эффективности способа-прототипа.

[51]

1. Выражение (9) для решающей статистики обнаружения не учитывает наличие межканальной корреляции спектральных отсчетов временных реализаций, обусловленных наличием в реальных условиях внешних помех.

[52]

2. Для технической реализации способа-прототипа необходимо обеспечить согласованный прием сигнала контролируемых ИРИ с шириной их спектра, однако большинство современных обнаружителей-пеленгаторов являются широкополосными, с полосой мгновенного анализа, на несколько порядков превышающей ширину сигнала, что требует выполнение дополнительной процедуры обнаружения сигнала в спектральной области. Использование дополнительного узкополосного приемника для решения задачи контроля приводит к существенному усложнению аппаратуры.

[53]

3. Способ не обеспечивает контроль источников частотно-неразделимых сигналов.

[54]

Задачей, на решение которой направлено данное изобретение, является повышение эффективности контроля излучения нескольких источников частотно-неразделимых сигналов с помощью многоканальных моноимпульсных обнаружителей-пеленгаторов с произвольной структурой и характеристиками направленности антенной системы.

[55]

Достигаемый технический результат – повышение эффективности идентификации нескольких источников частотно-неразделимых сигналов за счет стабилизации уровня правильной идентификации и снижения уровня ложной идентификации источников радиоизлучения, расположенных вблизи заданных направлений в реальных условиях, при неизвестной интенсивности шума и различии амплитуд принятых сигналов с выходов антенн с произвольными характеристиками направленности антенных элементов.

[56]

В результате решения поставленной задачи предлагаемый способ контроля излучения нескольких источников частотно-неразделимых сигналов включает выполнение следующих процедур:

[57]

1. Прием радиоизлучения с помощью N антенн и N-канального приемного устройства.

[58]

2. Синхронное преобразование радиосигналов всех каналов приема с получением их квадратурных составляющих, перемножение отсчетов радиосигналов на их сопряженные значения, накопление результатов перемножения за время наблюдения по совокупности антенн. Мгновенное значение радиосигнала n-й антенны, , в момент времени τ=0,1,2,… представляет собой смесь принятого радиосигнала источника радиоизлучения и шума:

[59]

(12)

[60]

где – комплексные амплитуды радиосигналов,

[61]

– матрица, составленная из азимутов и углов места направления на источники частотно-неразделимых сигналов,

[62]

(θ β)T – оператор транспонирования,

[63]

– комплексный коэффициент направленности n-й антенны,

[64]

– вектор аддитивного гауссовского шума с матрицей коэффициентов корреляции (в случае некоррелированного шума матрица становится диагональной единичной матрицей).

[65]

1. Формирование матрицы взаимных энергий, накопленных по спектральным компонентам радиосигнала в каждом измерении комплексных амплитуд сигналов и последующее суммирование матриц по формуле

[66]

, (13)

[67]

где – оператор эрмитово сопряжения.

[68]

2. Для каждого контролируемого частотного участка выделяемой полосы мгновенного анализа выполняется измерение значений многосигнального углового спектра с учетом межканальной корреляции спектральных отсчетов временных реализаций по формуле:

[69]

, (14)

[70]

где

[71]

,

[72]

,

[73]

,

[74]

– матрица Фишера (оценок комплексных амплитуд напряженностей электрического поля принимаемых радиоволн),

[75]

– оператор следа матрицы.

[76]

1. Вычисление максимального значения многосигнального углового спектра по возможным направлениям прихода радиоволны по формуле

[77]

. (15)

[78]

2. Вычисление значения многосигнального углового спектра с заданных направлений прихода радиоволны по формуле

[79]

. (16)

[80]

3. Формирование решающей статистики как отношения разности следа от произведения матрицы взаимных энергий на обратную матрицу коэффициентов корреляции шума, , и максимального значения многосигнального углового спектра к разности следа от и значения многосигнального углового спектра принятых радиосигналов с заданного направления

[81]

, (17)

[82]

где – максимальное значения многосигнального углового спектра принятых сигналов,

[83]

– значения многосигнального углового спектра принятых радиосигналов с заданного направления.

[84]

1. Сравнение решающей статистики Λ с порогом h.

[85]

2. Принятие решения о наличии радиоизлучения с заданного направления в случае выполнения неравенства Λ > h.

[86]

Если порог h превышен, принимают решение о наличии радиоизлучения с заданного (эталонного) направления, в противном случае – о приходе радиоизлучения с направления, отличного от эталонного.

[87]

Предлагаемый способ контроля излучения нескольких источников частотно-неразделимых сигналов лишен перечисленных выше недостатков прототипа, а именно:

[88]

1. Предлагаемый способ позволяет решить задачу идентификации нескольких источников радиоизлучения.

[89]

2. Решающая статистика (17) предлагаемого способа справедлива в случае антенной системы с произвольной структурой и характеристиками направленности антенных элементов, в частности, в используемом в прототипе предположении, что антенны обнаружителя-пеленгатора являются идентичными и ненаправленными. Это позволяет использовать предлагаемый способ в реальных условиях функционирования обнаружителей-пеленгаторов, когда имеют место взаимные влияния антенн друг на друга.

[90]

3. Выражение (17) для решающей статистики контроля излучения нескольких источников частотно-неразделимых сигналов предлагаемого способа учитывает наличие межканальной корреляции спектральных отсчетов временных реализаций, обусловленных наличием в реальных условиях внешних помех, что позволяет при разработке обнаружителей-пеленгаторов проводить анализ достижимых показателей эффективности обнаружения сигналов ИРИ в условиях насыщенной электромагнитной обстановки, а также учитывать наличие корреляции помех в реальных условиях функционирования обнаружителей-пеленгаторов.

[91]

1. Прием сигнала осуществляется в широкой полосе частот мгновенного анализа, что дает возможность одновременного контроля нескольких ИРИ в заданном направлении.

[92]

2. В случае выполнения неравенства (10) (принятие решения о наличии излучения нескольких источников частотно-неразделимых сигналов) накопление матрицы взаимных энергий в каждом измерении комплексных амплитуд сигналов выполнятся по правилу ( – матрица взаимных энергий, накопленная по результатам предыдущих процедур идентификации, – матрица взаимных энергий, вычисленная при выполнении текущей процедуры идентификации источника радиосигнала с заданных направлений), что повышает вероятность правильной идентификации излучения источника с заданного направления за счет увеличения объема наблюдаемых данных.

[93]

Предложенный способ обеспечивает возможность одновременного контроля нескольких источников частотно-неразделимых сигналов с обеспечением стабилизации уровня правильной идентификации и снижение уровня ложной идентификации источников радиоизлучения, расположенного вблизи заданных направлений, а так же при неизвестной интенсивности шума.

[94]

Схема для реализации предлагаемого способа представлена на фиг. 1.

[95]

Устройство, реализующее предложенный способ, содержит:

[96]

1.1-1.N – многоканальная антенная система,

[97]

2 – радиоприемное устройство,

[98]

3 – измеритель энергии,

[99]

4 – блок определения модуля,

[100]

5 – коммутатор,

[101]

6 – запоминающее устройство (ЗУ),

[102]

7 – анализатор многосигнального углового спектра,

[103]

8 – устройство определения максимума,

[104]

9.1, 9.2 – запоминающие ячейки,

[105]

10 – накапливающий сумматор,

[106]

11 – решающее устройство,

[107]

12 – аналого-цифровой преобразователь (АЦП),

[108]

13 – оперативное запоминающее устройство,

[109]

14.1, 14.2 – умножители,

[110]

15.1, 15.2 – накапливающие сумматоры.

[111]

Устройство работает следующим образом.

[112]

Антенны 1.1…1.N подключены к входам радиоприемного устройства 2 и через его выход к входам измерителя энергии 3, первый выход которого через блок определения модуля 4 соединен с первым входом коммутатора 5 и непосредственно со вторым его входом. Выход коммутатора 5 подключен к первому входу анализатора многосигнального углового спектра 7, ко второму входу которого подключен второй выход измерителя энергии 3, а к третьему входу – выход запоминающего устройства 6. Выход анализатора многосигнального углового спектра 7 соединен с входом устройства определения максимума 8 и входом запоминающей ячейки 9.1. Устройство определения максимума 8 своим выходом подключено к входу запоминающей ячейки 9.2. Второй выход измерителя энергии 3 соединен с входом накапливающего сумматора 10. Выходы запоминающей ячейки 9.1, запоминающей ячейки 9.2 и накапливающего сумматора 10 подключены соответственно к первому, второму и третьему входам решающего устройства 11. Аналого-цифровой преобразователь 12 в составе измерителя энергии 3 со стороны выходов соединен с соответствующими входами оперативного запоминающего устройства 13, первый выход которого подключен к первому входу умножителя 14.1, а второй – ко второму входу умножителя 14.1, первому и второму входу умножителя 14.2, выход умножителя 14.1 соединен с входом накапливающего сумматора 15.1, а выход умножителя 14.2 – с входом накапливающего сумматора 15.2. Выходы накапливающих сумматоров 15.1, 15.2 являются первым и вторым выходами измерителя энергии 3, а выходы решающего устройства 11 – выходом устройства в целом. Еще по одному выходу накапливающих сумматоров 15.1 и 15.2 могут использоваться дополнительно.

[113]

Число антенн 1.1, 1.2 … 1.N составляет N ≥ 3. Радиоприемное устройство 2 многоканальное, число каналов равно числу антенн N. Измеритель энергии 3 обеспечивает измерение энергии радиосигналов, принятых каждой антенной, и взаимной энергии радиосигналов пар различных антенн. Аналого-цифровой преобразователь 12 в составе измерителя энергии 3 рассчитан на синхронное преобразование радиосигналов всех каналов приема с получением их квадратурных составляющих с записью результатов в оперативное запоминающее устройство 13. Анализатор углового спектра 7 обеспечивает измерение значений углового спектра по формуле (14).

[114]

Устройством определения максимума 8 вычисляется максимальное по возможным направлениям прихода радиоволн значение по формуле (15) и фиксируется в запоминающей ячейке 9.2. Измеренное значение многосигнального углового спектра в заданном направлении заносится в запоминающую ячейку 9.1 в момент поступления его с выхода анализатора многосигнального углового спектра 7. По результатам выполненных измерений в решающем устройстве 11 определяют разность следа (суммы диагональных элементов) квадрата нормированной матрицы взаимных энергий и максимального значения многосигнального углового спектра, разность квадрата следа данной матрицы и значения многосигнального углового спектра принятых радиосигналов с заданных направлений, а также отношение этих разностей с образованием решающей статистики по формуле (17). На завершающей стадии отношение разностей сравнивают с порогом, формула (18). Если порог h превышен, принимают решение о приходе радиоизлучения с заданных направлений, а в противном случае о приходе радиоизлучения с направлений, отличных от эталонных.

[115]

РЕАЛИЗАЦИЯ

[116]

На фиг. 2-4 представлены результаты статистического моделирования для семиэлементной эквидистантной кольцевой антенной решетки при отношении радиуса ЭКАР к длине волны, равном единице, и отношении сигнал/шум 10 дБ в пакете моделирования Matlab. Рассмотрен случай контроля излучения двух некогерентных источников частотно-неразделимых сигналов. При статистическом моделировании характеристик контроля излучения двух источников частотно-неразделимых сигналов число статистических испытаний выбиралось равным 108, количество накоплений матрицы взаимных энергий полагалось равным 3. Азимутальные направления принимались равными 0 градусов на первый источник, 15 градусов на второй источник, угол места 0 градусов. Матрица, характеризующая направления на источники излучения, имеет вид

[117]

.

[118]

В случае наличия двух направлений (J = 2), матрица Фишера (оценок амплитуд напряженностей комплексных амплитуд электрического поля принимаемых частотно-неразделимых сигналов) примет вид

[119]

, (19)

[120]

а обратная ей матрица корреляции данных оценок

[121]

(20)

[122]

Двухсигнальный пеленгационный рельеф (14) записывается как

[123]

, (21)

[124]

где введена функция пространственной корреляции двух плоских волн

[125]

. (22)

[126]

В том случае, когда внутренние шумы приемных каналов независимы и одинаковы по интенсивности, матрица корреляции становится диагональной, многосигнальный угловой спектр имеет вид

[127]

. (23)

[128]

В каждом статистическом эксперименте по одинаковым исходным данным вычислялись величины, соответствующие решающей статистике предложенного способа, формула (17):

[129]

.

[130]

В качестве примера, при проведении моделирования формировался коррелированный вектор гауссовского шума с матрицей корреляции, элементы которой имеют вид

[131]

.

[132]

Матрица имеет вид:

[133]

(24)

[134]

На фиг. 2 приведены зависимости вероятности идентификации двух источников частотно-неразделимых сигналов к эталонам от угловых расстояний до него, при этом , с шагом ( – угловое расстояние до ИРИ). Матрица корреляции Q – единичная.

[135]

На фиг. 3 приведены зависимости вероятности P идентификации двух источников частотно-неразделимых сигналов к эталонам от угловых расстояний до него, при этом , с шагом Матрица корреляции Q – единичная.

[136]

На фиг. 4 приведены зависимости вероятности идентификации двух источников частотно-неразделимых сигналов к эталонам от угловых расстояний до него, при этом , с шагом

[137]

Порог принятия решения об отождествлении двух источников частотно-неразделимых сигналов с контролируемыми, для обеспечения вероятности правильной идентификации 0,98 равен 0,9.

[138]

Из представленных зависимостей (фиг. 2, 3) видно, что вероятность идентификации двух источников частотно-неразделимых сигналов мене 0,1 достигается при угловых расстояниях более 16 градусов. При рассмотрении зависимости (фиг. 4) вероятности идентификации двух источников частотно-неразделимых сигналов при влиянии матрицы коэффициентов межканальной корреляции аддитивного шум (24), вероятность правильной идентификации менее 0,1 достигается при угловых расстояниях более 30 градусов.

[139]

Предлагаемый способ контроля излучения нескольких источников частотно-неразделимых сигналов обеспечивает повышение эффективности идентификации нескольких источников частотно-неразделимых сигналов за счет стабилизации уровня правильной идентификации и снижения уровня ложной идентификации источников радиоизлучения, расположенных вблизи заданных направлений, в реальных условиях неизвестной интенсивности шума и различии амплитуд принятых сигналов с выходов антенн с произвольными характеристиками направленности антенных элементов. Способ справедлив для АС с произвольной структурой и характеристиками направленности антенных элементов, в результате чего обеспечивается инвариантность решающей статистики к изменению соотношений уровней сигналов в каналах, в том числе обусловленных взаимными влияниями в антенной системе.

[140]

ИСТОЧНИКИ ИНФОРМАЦИИ

[141]

1. Уфаев В.А. Способы определения местоположения и пространственной идентификации источников радиоизлучений, М.: Воронеж, 2017. с.235-239.

[142]

2. Патент РФ №2294546 «Способ идентификации радиоизлучения» / Уфаев В.А., 2005.

Как компенсировать расходы
на инновационную разработку
Похожие патенты