патент
№ RU 2454466
МПК C21C5/52

СПОСОБ МОДИФИЦИРОВАНИЯ СТАЛЕЙ И СПЛАВОВ

Авторы:
Котов Александр Николаевич Чепурин Анатолий Васильевич Кривенко Георгий Георгиевич
Все (5)
Номер заявки
2010153410/02
Дата подачи заявки
28.12.2010
Опубликовано
27.06.2012
Страна
RU
Как управлять
интеллектуальной собственностью
Чертежи 
4
Реферат

[51]

Изобретение относится к области металлургии, в частности к литейному производству, и может быть использовано для получения литых высоколегированных сталей и жаропрочных сплавов. Способ включает получение расплава металла или сплава в плавильном агрегате, выпуск его в ковш, ввод в расплав модификаторов. В качестве модификаторов используют нанопорошки карбонитрида титана и карбида вольфрама в равных долях в диапазоне 5-10 вес.%, которые смешивают с никелевым порошком. Смесь компактируют и вводят в расплав перед окончанием плавки или в струю расплава при его выпуске в количестве 0,03-0,45% от массы расплава. 4 ил., 1 табл.

Формула изобретения

Способ модифицирования жаропрочного сплава на никелевой основе, включающий получение расплава металла или сплава в плавильном агрегате, выпуск его в ковш, ввод в расплав модификаторов, отличающийся тем, что в качестве модификаторов используют нанопорошки карбонитрида титана и карбида вольфрама в равных долях в диапазоне 5-10 вес.%, которые смешивают с никелевым порошком, после чего смесь компактируют и вводят в расплав перед окончанием плавки или в струю расплава при его выпуске в количестве 0,03-0,45% от массы расплава.

Описание

[1]

Изобретение относится к области металлургии, в частности к литейному производству, и может быть использовано для получения литых высоколегированных сталей и жаропрочных сплавов.

[2]

Из уровня техники известно, что с целью измельчения структуры и повышения механических свойств литых деталей в процессе плавки или при заливке в формы в расплав вводят специальные добавки (модификаторы), которые обеспечивают формирование мелкокристаллического строения отливки. Модификаторы обычно вводят в пределах сотых или десятых долей процента от массы расплава.

[3]

В последнее время в качестве модификаторов находят применение ультрадисперсные порошки и нанопорошки химических соединений, которые представляют собой сверхмелкозернистые кристаллические образования. Данные соединения обладают уникальными физико-химическими и механическими свойствами, существенно отличающимися от свойств материалов того же химического состава, но более крупных структур.

[4]

Модифицирование расплавов такими модификаторами позволяет существенно повысить эксплуатационные характеристики изделий, получаемых из отливок.

[5]

Известен способ модифицирования стали нитридами, включающий расплавление шихты, введение в расплав ферросплава, содержащего нитриды ниобия, раскисление и разливку стали, причем совместно с нитридами ниобия дополнительно вводят нитриды циркония при соотношении в ферросплаве Zr:Nb 1:10-20, причем ферросплав вводят в виде порошка с размером частиц 0,5-3,0 мм непосредственно после раскисления стали (см. опубликованная заявка №94037421, кл. C21C 5/52, 1996 г.).

[6]

В результате анализа известного способа необходимо отметить, что использование в качестве модификаторов нитридов циркония с размерами частиц 0,5-3,0 мм не позволяет получить равномерно распределенную мелкозернистую структуру отливок, что отрицательно сказывается на свойствах литых деталей.

[7]

Известен способ получения монокристальных отливок преимущественно из жаропрочных никелевых сплавов, включающий приготовление расплава, модифицирование его смесью порошков тугоплавкого соединения и одного из металлов, образующих с ним устойчивые химические соединения, в количестве не более 0,1% от массы обрабатываемого расплава, заливку расплава в литейную форму, нагретую до температуры выше температуры ликвидуса сплава, и направленную кристаллизацию, причем модифицирование расплава смесью порошков ведут в количестве не менее 0,03% от массы обрабатываемого расплава, затем его закристаллизовывают, получая шихтовую заготовку, вновь нагревают до 1500-1740°C и проводят дополнительное модифицирование той же смесью порошков в количестве 0,01 0,1% от массы обрабатываемого расплава, после чего доводят температуру расплава до 1650-1750°C и перед заливкой в литейную форму выдерживают 0,5-10,0 мин, при этом в качестве порошков тугоплавкого соединения используют карбиды, и/или нитриды, и/или карбонитриды, и/или оксикарбонитриды титана или ниобия.

[8]

Патент РФ №2068317, кл. B22D 27/04, 1994 г. - наиболее близкий аналог.

[9]

В результате анализа известного способа необходимо отметить, что он весьма сложен в осуществлении и не позволяет получить отливки высокого качества вследствие неравномерного распределения модификаторов по объему отливки.

[10]

Техническим результатом заявленного изобретения является усовершенствование способа модифицирования сталей и сплавов, позволяющего получать отливки с заданными высокими механическими свойствами за счет использования определенных модификаторов и формирования равномерного распределения их в объеме расплава и сохранение полученных свойств при высоких температурах.

[11]

Указанный технический результат обеспечивается за счет того, что в способе модифицирования жаропрочного сплава на никелевой основе, включающем получение расплава металла или сплава в плавильном агрегате, выпуск его в ковш, ввод в расплав модификаторов, новым является то, что в качестве модификаторов используют нанопорошки карбонитрида титана и карбида вольфрама в равных долях в диапазоне 5-10 вес.%, которые смешивают с порошков никелевой матрицы, после чего смесь компактируют и вводят в расплав перед окончанием плавки или в струю расплава при его выпуске в количестве 0,03-0,45% от массы расплава.

[12]

Сущность заявленного способа поясняется приложенными к материалам заявки материалами, на которых:

[13]

на фиг.1 - компактированные модификаторы;

[14]

на фиг.2 - дендритная структура литого сплава ЖС3-ДК после его модифицирования;

[15]

на фиг.3 - макроструктура сечения отливок, (вверху - отливка без модификаторов (№2), внизу - отливка с модификаторами (№1), (а) - сечение отливок; (б) - цельные отливки;

[16]

на фиг.4 - электронная сканирующая микроскопия литого сплава ЖС3-ДК после травления реактивом Марбле. Ячеистая структура матрицы и карбидное включение;

[17]

таблица - результаты сравнения структур немодифицированной и модифицированной отливок, представленных на фиг.3.

[18]

Способ осуществляют следующим образом

[19]

Для осуществления способа первоначально подготавливают модификаторы, которые подают в расплав в компактированном виде (фиг.1).

[20]

Модификаторы компактируют путем вакуумного спекания или холодного прессования. Перед компактированием готовится смесь порошков матричного металла и нанопорошков модификаторов, в которой количество последних находится в равных долях в диапазоне 5-10% вес. В качестве матричного порошка используется порошок никеля марки НПЭ с размером частиц 10-50 мкм.

[21]

В качестве модификаторов используют ультрадисперсные порошки и нанопорошки, полученные методом плазмохимического синтеза, а именно, карбид вольфрама (WC) и карбонитрид титана (TixCyNz).

[22]

Применение карбонитрида титана и карбида вольфрама в смеси с никелевой матрицей обеспечивает высокий модифицирующий эффект при низкой стоимости сырья.

[23]

Применение модификаторов в компактированном виде обусловлено тем, что частицы нанопорошков с размерами менее 60-70 нм легко слипаются, их окисление начинается при сравнительно низких температурах, а также они плохо смачиваются жидким металлом. Несмотря на высокую плотность (от 1380 кг/м3) нанопорошки легко образуют в воздухе пылевидную взвесь, которая при определенных условиях самовозгорается и взрывается. Все это делает нежелательным введение модификаторов в расплавы в виде нанопорошков.

[24]

Осуществляют расплавление шихты в сталеплавильном агрегате. Ведут плавку с соответствии с технологическим процессом плавки. При выпуске расплава или перед окончанием плавки (за 3-7 минут до ее окончания) соответственно в струю выпускаемого расплава или расплав в компактированном виде вводят модификаторы - кабонитрид титана и карбид вольфрама в равных долях в количестве 0,03…0,45% от массы расплава.

[25]

Как показали эксперименты, введение в расплав модификаторов в количестве 0,03-0,45% от массы расплава приводит к существенному изменению как получаемой структуры, так и морфологии и топографии карбидной фазы. При этом происходит резкое измельчение макрозерна, устраняется столбчатость зерен и разнозернистость. Дендритная структура литого металла (фиг.2) тонкая и однородная по сечению слитка. Карбиды в жаропрочных сплавах типа ЖС3-ДК приобретают компактную равноосную форму и равномерно распределены по объему зерна.

[26]

При увеличении количества модификатора выше указанного верхнего предела макрозерно измельчается, увеличивается общая протяженность границ зерен, снижается граничная концентрация элементов-упрочнителей границ зерен и, в итоге, жаропрочность отливки может снижаться.

[27]

При уменьшении количества модификаторов менее 0,03% резко снижается модифицирующий эффект.

[28]

Сущность заявленного способа будет далее понятна из приведенного ниже примера.

[29]

Были проведены пробные плавки материала - сплава ЖС3-ДК с модификатором и без модификатора.

[30]

Загружали шихту в тигель. Загрузку шихты в тигель производили в следующей последовательности. На дно тигля укладывали никель (50-60% от взвешенного расчетного количества), вольфрам, молибден, хром, кобальт, остальной никель.

[31]

Упакованные в алюминиевую фольгу (углерод, титановую губку, алюминий, лигатуру никель-бор, мишметалл, нанолигатуру) помещали в дозатор, подвешивая их в указанной последовательности снизу вверх.

[32]

Плавку вели при разряжении 10-3 мм рт.ст. и максимальной для конкретной загрузки мощности.

[33]

Во время плавки включали подогрев форм в камере до температуры 500-700°C.

[34]

После полного расплавления загруженной в тигель шихты расплав нагревали до температуры 1590-1650°C и проводили рафинирование. После этого на зеркало металла присаживали углерод и выдерживали расплав.

[35]

Доводили температуру расплава до 1450-1500°C (замер температуры производили оптическим пирометром) и присаживали титан. Выдерживали расплав.

[36]

При температуре расплава 1450-1490°C присаживали алюминий, выдерживали расплав.

[37]

Доводили температуру расплава до 1550-1570°C и вводили из дозатора лигатуру никель-бор и мишметалл. Выдерживали расплав в течение 3-5 мин, после чего сливали расплав в форму.

[38]

В принципе, это стандартный технологический процесс получения данного сплава.

[39]

Для получения модифицированного материала все действия осуществляли аналогично описанному выше. Дополнительно, после выдержки расплава при его разливке в струю расплава вводили модификаторы в количестве 0,23% от массы расплава в виде прессованных таблеток.

[40]

После окончания разливки отключали нагрев. Выдержка кокилей (форм) в вакууме составляла 2 часа. Исследовали полученные отливки.

[41]

Результаты микроструктурного исследования показали, что основные фазы в структуре сплава ЖС3-ДК-карбиды и γ-фаза. В немодифицированном сплаве включения карбидов в виде каркасов располагаются преимущественно по границам зерен и имеют большую протяженность. Карбиды подобной морфологии оказывают отрицательное влияние на свойства сталей и сплавов. В результате модифицирования карбиды приобретают компактную полиэдрическую форму и равномерно распределены по объему зерна.

[42]

В таблице и на фиг.3 представлены в сравнении структура немодифицированного и модифицированного сплава.

[43]

Сравнением структур модифицированной (1) и немодифицированной (2) отливок, представленных на фиг.3, установлено:

[44]

- размер зерна в отливке с модификаторами (1) меньше, чем у серийной отливки по всем исследуемым зонам (таблица);

[45]

- макроструктура модифицированной отливки плотная, литейные дефекты отсутствуют.

[46]

Подтверждением эффекта модифицирования сплава ЖС3-ДК введением модификаторов TiC+WC и WC+Ti(CN) является более высокий уровень прочностных свойств материала модифицированных отливок по сравнению с немодифицированными.

[47]

При испытании полученных материалов установлено повышение механических характеристик материала модифицированных отливок. Так, введение модификаторов (WC+TiCN), в количестве 0,45% от металлозавалки повысило предел прочности отливки на 15%, относительное удлинение на 138%, ударную вязкость на 100% по сравнению с соответствующими характеристиками немодифицированных отливок.

[48]

На фиг.4 представлена сканирующая электронная микроскопия литого модифицированного сплава ЖС3-ДК. Отчетливо видно ячеистое строение матрицы с расположенными в ней углублениями, имеющими форму, близкую к квадрату, с размерами ячейки менее чем 500х500 нм, из чего можно сделать вывод, что данные частицы являются γ'-фазой типа (Ni,Co)3, когерентно связанной с матрицей.

[49]

Таким образом, введение модификаторов в металл или сплав не приводит к изменению химического состава отливок сплава ЖС3-ДК. Прочностные и пластические характеристики в результате введения в расплав модификаторов возрастают.

[50]

Таблица
№ отливкиРазмер зерна, балл
Обод (сечение толщиной 2 мм)Лопатка (сечение толщиной 5 мм)Диск (сечение толщиной 20 мм)Ступица (сечение толщиной 30 мм)
13455
25677

Как компенсировать расходы
на инновационную разработку
Похожие патенты