патент
№ RU 2701869
МПК G21F9/16

Алюмофосфатное стекло для иммобилизации радиоактивных отходов

Авторы:
Козлов Павел Васильевич Ремизов Михаил Борисович Беланова Елена Андреевна
Все (18)
Номер заявки
2019109731
Дата подачи заявки
03.04.2019
Опубликовано
02.10.2019
Страна
RU
Дата приоритета
26.04.2024
Номер приоритета
Страна приоритета
Как управлять
интеллектуальной собственностью
Реферат

Изобретение относится к области локализации жидких радиоактивных отходов, в частности к составам для отверждения жидких радиоактивных растворов и пульп путем их остекловывания. Алюмофосфатное стекло для иммобилизации радиоактивных отходов содержит оксид натрия, оксид алюминия, оксид фосфора и примеси оксидов одновалентных и многовалентных элементов (продукты деления и коррозии, а также актиноидов), а также модифицирующую добавку, при следующем соотношении компонентов, масс. %: NaO – 20,0-25,0, AlO– 13,2-15,5, PO– 48,0-55,0, модифицирующая добавка – 2,0-10,0, сумма оксидов отходов, исключая AlO, примеси оксидов одновалентных и многовалентных элементов (продукты деления и коррозии, а также актиноидов) – 5,0-10,7. Изобретение позволяет снижать кристаллизационные эффекты в алюмофосфатных стеклах с отвержденными радиоактивными отходами при тепловом воздействии вблизи температур расстекловывания (450-550 °С). 2 табл.

Формула изобретения

Алюмофосфатное стекло для иммобилизации радиоактивных отходов, содержащее оксид натрия, оксид алюминия, оксид фосфора и примеси оксидов одновалентных и многовалентных элементов (продукты деления и коррозии, а также актиноидов), отличающееся тем, что оно дополнительно содержит модифицирующую добавку, в качестве которой выступает сочетание оксида кремния и оксида урана, при следующем соотношении основных компонентов, масс. %:
Na2O20,0-25,0
Al2O313,2-15,5
P2O548,0-55,0
SiO2 + U3O82,0 -10,0
сумма оксидов отходов, исключая Al2O3, примеси оксидов одновалентных и многовалентных элементов (продукты деления и коррозии, а также актиноидов)5,0-10,7

Описание

Изобретение относится к области локализации жидких радиоактивных отходов, и может быть использовано в атомной энергетике и на радиохимических производствах для отверждения жидких радиоактивных растворов и пульп.

Для отверждения жидких радиоактивных отходов в мировой практике используются различные матричные материалы – битум, цемент, стекло, керамики [Дмитриев С.А., Баринов А.С., Батюхнова О.Г. и др. Технологические основы системы управления радиоактивными отходами – М.: ГУП Мос НПО Радон, 2007. 376 с.]. В качестве наиболее эффективного типа матриц как с точки зрения качественных показателей (химическая, радиационная стойкость, механическая прочность и др.), так и технологичности получения в Российской Федерации и за рубежом признаны стеклоподобные материалы [Соболев И.А., Ожован М.И., Щербатова Т.Д., Батюхнова О.Г. Стекла для радиоактивных отходов – М.: Энергоатомиздат, 1999. 240 с.]. Отечественная практика промышленного применения процесса остекловывания жидких радиоактивных отходов основывается на использовании алюмофосфатных и алюмоборофосфатных стекол [Вашман А.А., Демин А.В., Крылова Н.В. и др. Фосфатные стекла с радиоактивными отходами – М.: ЦНИИатоминформ, 1997. 172 с.].

Эффективность процесса остекловывания определяется как степенью включения в стекло оксидов элементов, содержащихся в жидких радиоактивных отходах, так и соответствием требованиям нормативных документов по химической, термической стойкости и ряду других параметров.

Термическая стойкость остеклованных отходов является весьма критичным фактором с точки зрения обеспечения безопасной локализации радионуклидов. Из результатов исследований известно, что стеклообразные материалы термодинамически неустойчивы и при температурном воздействии склонны к расстекловыванию. Так, фосфатные стекла при температурах более 450 °С склонны к кристаллизации, сопровождающейся увеличением скорости выщелачивания компонентов на 1-2 порядка. У боросиликатных стекол температура кристаллизации несколько выше (около 550 °С) [Вашман А.А., Демин А.В., Крылова Н.В. и др. Фосфатные стекла с радиоактивными отходами – М.: ЦНИИатоминформ, 1997. 172 с.].

Аналогом заявляемого изобретения является приведенный в патенте № 2267178 «Стеклообразующий борофосфатный состав для иммобилизации алюминийсодержащих жидких высокоактивных отходов», 2005, состав для иммобилизации алюминийсодержащих жидких высокоактивных отходов путем остекловывания, содержащий оксид натрия, оксид алюминия, оксид бора, оксид фосфора и естественные примеси оксидов многовалентных элементов, причем он дополнительно содержит оксид лития при следующем соотношении компонентов, масс. %:

Na2O 22,0-26,0
Al2O313,0-28,0
B2O33,0-6,0
P2O538,0-55,0
Li2O 0,5-1,0
Естественные примеси оксидов
многовалентных элементов остальное.

Недостатком данной рецептуры фосфатного стекла является невысокая термическая стойкость стеклянной матрицы, которая может быть существенно улучшена.

Наиболее близким к заявляемому изобретению является стеклообразующий фосфатный состав, приведенный в патенте № 2203513 «Стеклообразующий фосфатный состав для иммобилизации алюминийсодержащих жидких высокоактивных отходов», 2003, содержащий оксид натрия, оксид алюминия, оксид бора, оксид фосфора, оксиды редкоземельных элементов и продукты коррозии, при следующем соотношении компонентов, масс. %:

Na2O 21,0-27,0
Al2O314,0-28,0
B2O33,0-9,0
P2O532,0-50,0
Сумма оксидов металлов,
содержащихся в отходах,
включая Al2O319,0-35,0.

Использование данного борофосфатного состава позволяет на 90-95% снизить кристаллизацию расплава при медленном охлаждении по сравнению с фосфатным, однако, при этом увеличивается скорость выщелачивания цезия (см. ниже таблица 1, строка 1).

Технической задачей изобретения является снижение кристаллизационных эффектов в алюмофосфатных стеклах с отвержденными радиоактивными отходами при тепловом воздействии вблизи температур расстекловывания (450-550 °С), в том числе при медленном охлаждении в диапазоне температур от 1000 до 400 °С. Указанная задача решается тем, что в состав стекломатериала вводятся дополнительно оксиды элементов-модификаторов, в качестве которых выступают оксид кремния и оксид урана, взятые в определенном соотношении. При этом основные технологические (температура варки, вязкость расплава при температуре слива) и нормативные (химическая, радиационная стойкость, однородность) характеристики не только не ухудшаются, но и в ряде случаев улучшаются относительно прототипа. Следует отметить, что необходимый для модификации стекла уран может содержаться как непосредственно в отверждаемых жидких радиоактивных отходах, так и привлекаться из имеющихся в больших количествах отходов обедненного урана (отвалы гексафторида, стружка металлического урана). Указанный подход позволит решать задачу локализации сразу двух групп отходов в одном матричном материале.

Таким образом, в результате реализации предлагаемого изобретения иммобилизация радиоактивных отходов осуществляется в алюмофосфатное стекло, содержащее оксид натрия, оксид алюминия, оксид фосфора и примеси оксидов одновалентных и многовалентных элементов (продукты деления и коррозии, а также актиноидов), а также модифицирующую добавку, при следующем соотношении компонентов, масс. %:

Na2O – 20,0-25,0

Al2O3 – 13,2-15,5

P2O5 – 48,0-55,0

модифицирующая добавка – 2,0-10,0

сумма оксидов отходов, исключая Al2O3, примеси оксидов одновалентных и многовалентных элементов (продукты деления и коррозии, а также актиноидов) – 5,0-10,7.

В качестве модифицирующей добавки используется сочетание оксида кремния и оксида урана при общем содержании от 2,0 до 10,0 масс. %.

Возможность осуществления заявляемого технического решения подтверждается следующими примерами.

Пример 1.

Стеклообразующая система с отходами после упаривания, денитрации, кальцинации, варки и охлаждения образует алюмофосфатное стекло. Результаты лабораторных экспериментов по варке стекла заявленного состава и прототипа приведены в таблице 1.

Все указанные составы стекол хорошо провариваются при температурах от 900 до 1000 °С. Отмечено снижение температуры варки стекол, содержащих добавку модификаторов (SiO2 и U3O8), на 50-150 °С относительно прототипа.

Оптимальный диапазон вязкости расплавов стекол (25-100 Пз) для печей остекловывания прямого электрического нагрева типа ЭП-500 реализуется для исследованных образцов в интервале температур от 777 до 864 °С, что соответствует регламентным значениям температуры слива стекломассы на данных установках. Предложенные модифицирующие добавки расширяют температурный диапазон, соответствующий оптимальному диапазону вязкости алюмофосфатных стекол с имитаторами ВАО, с 65 °С до 87 °С.

Согласно данным сканирующей электронной микроскопии, элементного рентгеноспектрального микроанализа и рентгенодифракционного анализа, введенные в стекло модификаторы практически полностью подавляют процессы кристаллизации стекол при их охлаждении в диапазоне температур от 1000 до 400 °С со скоростью от 10 до 50 °С/час.

Совместное введение таких модификаторов, как SiO2 и U3O8, приводит к повышению относительно прототипа химической стойкости закаленных и отожженных алюмофосфатных стекол в водной среде (раствор-имитатор подземной воды в скальном массиве на участке будущего строительства хранилища РАО в Нижнеканском гранитоидном массиве, после контакта с бентонитом) при 25 °С (метод на основе РСТ-теста).

Пример 2.

Стеклообразующая система с отходами после упаривания, денитрации, кальцинации, варки и охлаждения образует алюмофосфатное стекло. Результаты лабораторных экспериментов по варке стекла заявленного состава и прототипа приведены в таблице 2.

Все указанные составы стекол хорошо провариваются при температурах от 900 до 1000 °С. Отмечено снижение температуры варки стекол, содержащих добавку модификаторов (SiO2 и U3O8), на 50-150 °С относительно прототипа при содержании SiO2 не более 5 % масс.

Согласно данным сканирующей электронной микроскопии, элементного рентгеноспектрального микроанализа и рентгенодифракционного анализа, введенные в стекло модификаторы практически полностью подавляют процессы кристаллизации стекол при их охлаждении в диапазоне температур от 1000 до 400 °С со скоростью от 10 до 30 °С/час.

Как компенсировать расходы
на инновационную разработку
Похожие патенты