патент
№ RU 2509093
МПК C08L89/04

СПОСОБ ПОЛУЧЕНИЯ БИОПОЛИМЕРОВ ИЗ ГИДРОЛИЗАТОВ КЕРАТИНСОДЕРЖАЩЕГО СЫРЬЯ И БИОПОЛИМЕРЫ, ПОЛУЧЕННЫЕ ЭТИМ СПОСОБОМ

Авторы:
Филимонов Иван Сергеевич Трушкин Никита Андреевич Пономарева Ольга Александровна
Все (5)
Номер заявки
2012131067/04
Дата подачи заявки
20.07.2012
Опубликовано
10.03.2014
Страна
RU
Как управлять
интеллектуальной собственностью
Реферат

Изобретение относится к области биохимии и может быть использовано для получения биополимеров из гидролизатов кератинсодержащего сырья. Сущность изобретения состоит в том, что биополимеры получают путем радикальной полимеризации с использованием лакказы в качестве катализатора и глутарового альдегида в качестве сшивающего агента. Техническим результатом является разработка нового способа получения биополимеров из белковых гидролизатов кератинсодержащего сырья. 2 н.п. ф-лы, 3 табл.,7 пр.

Формула изобретения

1. Способ получения биополимера из белковых гидролизатов кератинсодержащего сырья, заключающийся в том, что в водный раствор белкового гидролизата с концентрацией 20-60 мас. % вносят 1,5-3,0 мкг лакказы на 1 мл раствора белкового гидролизата, выдерживают 30-60 мин при температуре 25-50°С, добавляют 25% водный раствор глутарового альдегида до концентрации в реакционной смеси 1-20 мас. %, выдерживают в течение часа при поддержании той же температуры и высушивают до образования полимера при комнатной температуре.

2. Биополимер, полученный способом, охарактеризованным в пункте 1.

Описание

[1]

Изобретение относится к области биохимии и может быть использовано для получения биополимеров из кератинсодержащего сырья.

[2]

На современном этапе развития промышленности биоконверсия возобновляемого сырья становится все более актуальной задачей. При эффективном использовании методов биоконверсии становится возможным производство новых продуктов с добавленной стоимостью из малоценных сырьевых ресурсов. Анализ мирового рынка биотехнологий показывает низкий уровень развития высокоэффективных технологий переработки отходов различного происхождения. В первую очередь это касается отходов животноводческой отрасли агропромышленного комплекса, основная масса которых подвергается захоронению на свалках. Например, существующие технологии переработки кератинсодержащих отходов (шерсть, перо, рога, копыта и т.д.) являются ресурсо- и энергозатратными, а получаемые кормовые добавки - продуктами с очень низкой добавочной стоимостью.

[3]

Все больший интерес во всем мире вызывает создание и исследование биополимеров, что связано с ухудшением экологической обстановки. Одним из основных достоинств данных материалов является возможность биодеградации. Биополимеры могут быть использованы при создании различных упаковок, для нужд агропромышленного комплекса и т.д. Однако наиболее перспективным направлением их использования являются различные области медицины, в том числе создание систем доставки лекарств.

[4]

Задачей изобретения является разработка нового способа биосинтетической и биокаталитической конверсии возобновляемого сырья в полезные продукты с высокой добавленной стоимостью, а именно биополимеры, которые могут быть внедрены в различных отраслях медицины: стоматологии, пластической хирургии и т.д.

[5]

В качестве исходного материала для получения биополимеров используют белковые гидролизаты кератинсодержащего сырья.

[6]

Белковые гидролизаты кератинсодержащего сырья, например пера, получают путем гидротермической обработки в соответствии со следующими технологическими параметрами гидротермического гидролиза:

[7]

- исходная влажность пера - 55%;

[8]

- температура нагрева - 190-200°С;

[9]

- продолжительность нагрева - 90 сек.

[10]

Далее проводится ферментативный гидролиз при температуре 55°С и начальном значении рН реакционной среды 7,2, что соответствует рН- и термооптимумам ферментного препарата Novo-Pro D. Реакционная среда содержала 0,5% сульфита натрия в качестве компонента для расщепления дисульфидных связей в молекуле кератина. Полученный гидролизат представляет собой белково-пептидную смесь.

[11]

Для получения биополимеров могут быть использованы коммерчески доступные белковые гидролизаты, такие как Nutrilan keratin W (Cognis), Keratek Pep (Croda) и др.

[12]

Одним из основных критериев для выбора белковых гидролизатов кератинсодержащего сырья для получения биополимеров является молекулярно-массовое распределение белково-пептидной фракции, представленное в таблице 1.

[13]

Таблица 1
Молекулярно-массовое распределение белково-пептидной фракции белковых гидролизатов кератинсодержащего сырья
Относительное содержание фракций с
соответствующими диапазонами молекулярных масс, %
>10кДа3-10 кДа<3 кДа
6 - 757 - 5934 - 36

[14]

Преобладающими в составе ферментативных гидролизатов кератинсодержащего сырья являются компоненты с молекулярной массой 3-10 кДа. Их относительная доля составляет 57,6-58,5%. Содержание низкомолекулярных компонентов (М.в. <3 кДа) варьирует в пределах 34,3-36,3%, высокомолекулярных белковых компонентов (М.в. >10 кДа) - 6,1-7,3%. Следует отметить высокую воспроизводимость молекулярно-массового распределения ферментативных гидролизатов кератинсодержащего сырья.

[15]

Помимо биодоступности степень гидролиза кератинового сырья определяет растворимость получаемых гидролизатов и их совместимость с различными матрицами. Гидролизаты кератина со средневесовой молекулярной массой менее 4 кДа, как правило, хорошо растворимы в воде в широком диапазоне рН, водно-спиртовых смесях, глицерине и совместимы с различными ПАВ. Гидролизаты кератина с более высокой средневесовой молекулярной массой характеризуются меньшей растворимостью, особенно в присутствии в среде органических растворителей.

[16]

Еще одним критерием выбора белковых гидролизатов кератинсодержащего сырья для получения биополимеров является характеристика их аминокислотного состава.

[17]

При характеристике аминокислотного состава гидролизатов кератинсодержащего сырья определяют содержание свободных и общих аминокислот. Общее содержание аминокислот (за исключением триптофана, цистина и метионина) определяют с использованием аминокислотного анализатора после предварительного кислотного гидролиза в стандартных условиях. Метионин и цистин определяют в форме метионин-сульфона и цистеиновой кислоты с использованием предварительной окислительной обработки реакционной смеси надмуравьиной кислотой и последующего кислотного гидролиза. Содержание триптофана определяют спектрофотометрическим методом (см. Fletouris, D.J., Botsoglou, N.A., Papageorgiou, G.E., Mantis, A.J. Rapid-Determination of Tryptophan in Intact Proteins by Derivative Spectrophotometry // Journal of Aoac International - 1993.- V. 76.- N. 6.- P.1168-1173). Результаты анализа содержания свободных аминокислот в гидролизатах кератинсодержащего сырья представлены в таблице 2.

[18]

Следует отметить, что содержание свободных аминокислот в гидролизатах кератинсодержащего сырья довольно невелико - 3,0-3,1 г/100 г белка (2,8-2,9%). Таким образом, основными компонентами низкомолекулярной фракции (М.в. <3 кДа) гидролизатов являются не свободные аминокислоты, а различные пептиды. Среди свободных аминокислот максимальным содержанием в гидролизатах характеризуются серин и лизин. На их долю суммарно приходится 2/3 от общего содержания свободных аминокислот в исследуемых гидролизатах кератинсодержащего сырья.

[19]

Таблица 2
Содержание свободных аминокислот (г/100 г белка) в белковых гидролизатах кератинсодержащего сырья
Аминокислотаг/100 г белка
Глицин0,08 - 0,10
Алании0,13 - 0,16
Серин0,68 - 0,75
Треонин0,07 - 0,08
Цистин0,00
Метионин0,01
Аспарагин0,11 - 0,12
Аспарагиновая кислота0,13 - 0,15
Глутамин0,08 - 0,09
Глутаминовая кислота0,11 - 0,12
Пролин0,02
Лизин1,26 - 1,36
Аргинин0,03 - 0,04
Гистидин0,01
Валин0,02 - 0,03
Изолейцин0,01 - 0,02
Лейцин0,08 - 0,09
Тирозин0,02 - 0,03
Фенилаланин0,02 - 0,03
Триптофан0,01

[20]

Данные по общему содержанию аминокислот в белковых гидролизатах кератинсодержащего сырья приведены в таблице 3. Среди аминокислот наиболее высоким содержанием в исследуемых гидролизатах характеризуются глутаминовая кислота (15,1 - 15,3 г/100г белка), серин (14,3 - 14,4 г/100 г белка), аспарагиновая кислота (9,3-9,5 г/100 г белка), лейцин (8,5-8,6 г/100 г белка), пролин (7,4-7,7 г/100 г белка). Высокое содержание данных аминокислот, особенно серина, является характерной особенностью кератиновых белков.

[21]

Таблица 3
Содержание общих аминокислот (г/100 г белка) в
белковых гидролизатах кератинсодержащего сырья
Аминокислотаг/100 г белка
Глицин5,62 - 5,81
Алании6,93 - 7,05
Серин14,28 - 14,41
Треонин5,21 - 5,31
Цистин2,14 - 2,36
Метионин0,32 - 0,39
Аспарагиновая кислота9,34 - 9,48
Глутаминовая кислота15,08 - 15,27
Пролин7,39 - 7,72
Лизин2,24 - 2,31
Аргинин5,53 - 5,79
Гистидин0,74 - 0,83
Валин6,49 - 6,66
Изолейцин5,98 - 6,00
Лейцин8,48 - 8,59
Тирозин2,20 - 2,37
Фенилаланин5,12 - 5,37
Триптофан0,63 - 0,71

[22]

Установлено, что преобладающими в составе белковых гидролизатов кератинсодержащего сырья являются компоненты с молекулярной массой 3 - 10 кДа, средняя молекулярная масса составляет 4,70-4,79 кДа. В составе белкового гидролизата кератинсодержащего сырья идентифицировано 119 различных пептидов, размером от 5 до 20 а.о. Предшественниками для 45% пептидов, идентифицированных в составе белкового гидролизата кератинсодержащего сырья, являются различные виды кератина, являющиеся ключевым белком пера птицы. Для остальных пептидов предшественниками являются белки, связанные с β-кератином, гистоновые белки, белки теплового шока, коллаген α-2(I), β-субъединица гемоглобина и ряд других.

[23]

Основные характеристики гидролизата кератинсодержащего сырья приведены выше. В гидролизате содержатся свободные аминокислоты и полипептиды. В том числе, аминокислоты, которые могут участвовать в реакции, катализируемой лакказой.

[24]

Лакказа (n-дифенол: кислородоксидоредуктаза, КФ 1.10.3.2) - фермент, катализирующий реакцию восстановления молекулярного кислорода до воды, минуя стадию образования перекиси водорода с сопутствующим окислением субстрата донора электронов. Лакказы относятся к классу медьсодержащих оксидаз наряду с такими ферментами, как аскорбатоксидаза, церулоплазмин, билирубин оксидаза и феноксазимсинтаза. Лакказа является ферментом, представляющим интерес не только с фундаментальной точки зрения, но и с практической.

[25]

Лакказы широко распространены в природе, что может объясняться разнообразием выполняемых ими физиологических функций. Наиболее изученной растительной лакказой является фермент, выделенный из лакового дерева Rhus vernicifera. Кроме него частично охарактеризованы лакказы из других растений: Rhus succedanea, Acer pseudoplatanus, Pinus taeda, Populus euramericana, Liriodendron tulipifera, Nicotiana tobacco и др.

[26]

В животном царстве лакказы обнаружены в насекомых, таких как Bombyx, Calliphora, Diploptera, Drosophila, Lucilia, Manduca, Musca, Orycetes, Papilio, Phormia, Rhodnius, Sarcophaga, Schistocerca и Tenebrio.

[27]

Большинство описанных в литературе лакказ выделены из высших грибов. Лакказы обнаружены в базидиомицетах, аскомицетах и дейтеромицетах, однако наиболее эффективными продуцентами лакказы являются представители базидиомицетов, относящихся к грибам возбудителям белой гнили древесины.

[28]

В ходе реакции, катализируемой лакказой, происходит окисление донора электронов (в данном случае тирозина) и восстановление молекулярного кислорода до воды. Для восстановления одной молекулы кислорода требуется 4 электрона. Раствор гидролизата представляет собой смесь различных полипептидов и аминокислот, потенциально являющихся субстратами для лакказы, при этом детекция реакции оптическими методами (по изменению спектра) невозможна, поэтому реакцию детектировали амперометрически с использованием платинового электрода Кларка по потреблению растворенного молекулярного кислорода. Одним из важных преимуществ данной методики является возможность наблюдения за реакцией в режиме реального времени.

[29]

Получение биополимеров

[30]

Предварительно был определен диапазон концентраций гидролизата для проведения реакции. Считается, что субстратом для лакказы является аминокислотный остаток тирозина. Общее содержание тирозина в гидролизате 2,2 г на 100 г гидролизата, т.е. для получения раствора гидролизата с концентрацией тирозина 1 мМ нужно растворить 8,33 г сухого гидролизата в объеме 1 литр. Для окисления 1 мМ тирозина необходимо 0,25 мМ молекулярного кислорода, что практически совпадает с концентрацией кислорода в дистиллированной воде при температуре 25°С и нормальном атмосферном давлении.

[31]

Для работы использовали гидролизат из пера птицы, который был получен в виде сухого порошка. Технологический процесс получения гидролизата и его характеристика в целом описаны выше. Растворы гидролизата готовили по навеске. Концентрация гидролизата указывается в виде концентраций аминокислотных остатков тирозина, так как именно они участвуют в реакции радикальной полимеризации. Эта концентрация практически совпадает с концентрацией пептидов в растворе, что следует из среднего содержания остатков тирозина на пептид. 5 г гидролизата на 100 мл раствора соответствует концентрации аминокислотных остатков тирозина [tyr] = 6 мМ.

[32]

Для активации радикальных процессов полимеризации использовали высокоредокспотенциальную лакказу из Т. hirsuta. Данный ферментный препарат представляет собой раствор фермента в 50 мМ калий-фосфатном буферном растворе рН 6,0-7,0. Концентрация препарата фермента составляла 1,8-2,2 мг/мл. Концентрация фермента лакказы в реакционной среде во всех экспериментах составляла 1,5-3 мкг на 1 мл. Активность используемого препарата лакказы должна составлять не менее 1,2 - 1,5 мккат/мг белка (Катал (кат) - единица измерения активности катализатора в системе СИ. Если присутствие катализатора увеличивает скорость химической реакции на один моль в секунду, то активность данного количества данного катализатора равна одному каталу).

[33]

Измерение активности лакказы проводили амперометрически по убыли кислорода при следующих условиях: 0,1 М Na-ацетатный буфер (рН=4,5), 25°С, [ABTS] = 500 мкМ, [O2] = 270 мкМ.

[34]

Степень гомогенности ферментного препарата должна составлять не менее 95% (или 90%) электрофоретической чистоты.

[35]

Для проведения полимеризации лакказу добавляют в количестве 5-10 мкг на 50 мл раствора белкового гидролизата (20-60%-ной концентрации по массе).

[36]

Для получения биополимеров из белковых гидролизатов кератинсодержащего сырья используют лакказу и сшивающий агент - водный раствор глутарового альдегида. Глутаровый альдегид представляет собой жидкость желтоватого цвета с характерным запахом и содержанием действующего вещества 25%. Глутаровый альдегид вносится в реакционную смесь в количестве 1,5, 10 или 20 масс.%.

[37]

Получение растворов белкового гидролизата и обработка лакказой

[38]

Белковый гидролизат растворяют в дистилированной водой в концентрациях 20 - 60 масс.%. После полного растворения белкового гидролизата в раствор вносят лакказу в дозировке 1,5-3 мкг/мл. Для проведения ферментативной реакции растворы, обработанные лакказой, перемешивают при температуре 25-50°С в течение 0,5-1 часа. Для увеличения эффективности работы фермента лакказы перемешивание проводится в открытой посуде со свободным доступом атмосферного кислорода.

[39]

Добавление сшивающего агента

[40]

К предварительно обработанным лакказой растворам белкового гидролизата добавляют необходимое количество 25% водного раствора глутарового альдегида. Итоговая концентрация глутарового альдегида в растворе белкового гидролизата должна составлять 20 - 1 масс.%. Полученную смесь растворов белкового гидролизата и глутарового альдегида ставят на перемешивание при температуре 25-50°С в течение 1 часа.

[41]

Высушивание

[42]

Смесь, полученную в ходе предыдущего этапа методики, переливают на твердую подложку и оставляют сушиться при комнатной температуре в течение 200 часов (при толщине раствора не более 2 см)

[43]

Высушенные образцы полимеров можно хранить при комнатной температуре.

[44]

Примеры

[45]

Пример 1.

[46]

Получение биополимера из 40 масс% раствора белкового гидролизата с добавлением 5 масс% глутарового альдегида.

[47]

Белковый гидролизат в виде сухого порошка хранят с минимальным доступом влаги в герметичных пакетах при температуре не выше+5°С.

[48]

К 3 г белкового гидролизата добавляют 3 мл дистилированной воды. Перемешивают на магнитной мешалке при температуре 50°С 60 мин до получения вязкого раствора насыщенного коричневого цвета.

[49]

В полученный раствор вносят 4 мкл раствора лакказы с концентрацией 2 мг/мл в 50 мМ калий-фосфатном буферном растворе, рН 6,5.

[50]

Для проведения ферментативной реакции растворы, обработанные лакказой, перемешивают при температуре 50°С в течение 60 мин. Для увеличения эффективности работы фермента лакказы перемешивание проводят в открытой посуде со свободным доступом атмосферного кислорода.

[51]

К предварительно обработанным лакказой растворам белкового гидролизата добавляют 1,6 мл 25% раствора глутарового альдегида. Полученную смесь ставят на перемешивание при температуре 50°С в течение 1 часа, после чего полученные в итоге растворы переливают на твердую подложку и оставляют сушиться при комнатной температуре в течение 200 часов (при толщине раствора не более 2 см). Высушенные образцы полимеров можно хранить при комнатной температуре.

[52]

Пример 2.

[53]

Получение биополимера из 20 масс.% раствора белкового гидролизата с добавлением 10 масс.% глутарового альдегида.

[54]

Белковый гидролизат в виде сухого порошка хранят с минимальным доступом влаги в герметичных пакетах при температуре не выше +5°С.

[55]

К 3 г белкового гидролизата добавляют 11,4 мл дистилированной воды. Перемешивают на магнитной мешалке при температуре 25°С в течение 30 мин.

[56]

В полученный раствор вносят 11 мкл раствора лакказы с концентрацией 2 мг/мл в 50 мМ калий-фосфатном буферном растворе, рН 6,5.

[57]

Для проведения ферментативной реакции растворы, обработанные лакказой, перемешивают при температуре 25°С в течение 1 часа. Для увеличения эффективности работы фермента лакказы перемешивание проводится в открытой посуде со свободным доступом атмосферного кислорода.

[58]

К предварительно обработанным лакказой растворам белкового гидролизата добавляют 6,4 мл 25% раствора глутарового альдегида. Полученную смесь ставят на перемешивание при температуре 25°С в течение 1 часа. Полученные в итоге растворы переливают на твердую подложку и оставляют сушиться при комнатной температуре в течение 200 часов (при толщине раствора не более 2 см). Высушенные образцы полимеров можно хранить при комнатной температуре.

[59]

Пример 3.

[60]

Получение биополимера из 40 масс.% раствора белкового гидролизата с добавлением 1 масс.% глутарового альдегида.

[61]

Белковый гидролизат в виде сухого порошка хранят с минимальным доступом влаги в герметичных пакетах при температуре не выше +5°С.

[62]

К 3 г белкового гидролизата добавляют 4,2 мл дистилированной воды. Перемешивают на магнитной мешалке при температуре 25°С в течение 30 мин.

[63]

В полученный раствор вносят 5 мкл раствора лакказы с концентрацией 2 мг/мл в 50 мМ калий-фосфатном буферном растворе, рН 6,5.

[64]

Для проведения ферментативной реакции растворы, обработанные лакказой, перемешивают при температуре 25°С в течение 1 часа. Для увеличения эффективности работы фермента лакказы перемешивание проводится в открытой посуде со свободным доступом атмосферного кислорода.

[65]

К предварительно обработанным лакказой растворам белкового гидролизата добавляют 0,32 мл 25% раствора глутарового альдегида. Полученную смесь ставят на перемешивание при температуре 25°С в течение 1 часа. Полученные в итоге растворы переливают на твердую подложку и оставляют сушиться при комнатной температуре в течение 200 часов (при толщине раствора не более 2 см). Высушенные образцы полимеров можно хранить при комнатной температуре.

[66]

Пример 4.

[67]

Получение биополимера из 60 масс.% раствора белкового гидролизата с добавлением 1 масс.% глутарового альдегида.

[68]

Белковый гидролизат в виде сухого порошка хранят с минимальным доступом влаги в герметичных пакетах при температуре не выше +5°С.

[69]

К 3 г белкового гидролизата добавляют 1,8 мл дистилированной воды. Перемешивают на магнитной мешалке при температуре 50°С в течение 60 мин.

[70]

В полученный раствор вносят 2,5 мкл раствора лакказы с концентрацией 2 мг/мл в 50 мМ калий-фосфатном буферном растворе, рН 7,0.

[71]

Для проведения ферментативной реакции растворы, обработанные лакказой, перемешивают при температуре 50°С в течение 1 часа. Для увеличения эффективности работы фермента лакказы перемешивание проводится в открытой посуде со свободным доступом атмосферного кислорода.

[72]

К предварительно обработанным лакказой растворам белкового гидролизата добавляют 0,21 мл 25% раствора глутарового альдегида. Полученную смесь ставят на перемешивание при температуре 50°С в течение 1 часа. Полученные в итоге растворы переливают на твердую подложку и оставляют сушиться при комнатной температуре в течение 200 часов (при толщине раствора не более 2 см). Высушенные образцы полимеров можно хранить при комнатной температуре.

[73]

Пример 5.

[74]

Получение биополимера из 60 масс.% раствора белкового гидролизата с добавлением 5 масс.% глутарового альдегида.

[75]

Белковый гидролизат в виде сухого порошка хранят с минимальным доступом влаги, в герметичных пакетах при температуре не выше +5°С.

[76]

К 3 г белкового гидролизата добавляют 1,0 мл дистилированной воды. Перемешивают на магнитной мешалке при температуре 50°С в течение 60 мин.

[77]

В полученный раствор вносят 1,5 мкл раствора лакказы с концентрацией 2 мг/мл в 50 мМ калий-фосфатном буферном растворе, рН 7,0.

[78]

Для проведения ферментативной реакции растворы, обработанные лакказой, перемешивают при температуре 50°С в течение 1 часа. Для увеличения эффективности работы фермента лакказы перемешивание проводится в открытой посуде со свободным доступом атмосферного кислорода.

[79]

К предварительно обработанным лакказой растворам белкового гидролизата добавляют 1,1 мл 25% раствора глутарового альдегида. Полученную смесь ставят на перемешивание при температуре 50°С в течение 1 часа. Полученные в итоге растворы переливают на твердую подложку и оставляют сушиться при комнатной температуре в течение 200 часов (при толщине раствора не более 2 см). Высушенные образцы полимеров можно хранить при комнатной температуре.

[80]

Пример 6.

[81]

Получение биополимера из 20 масс.% раствора белкового гидролизата с добавлением 20 масс.% глутарового альдегида.

[82]

Белковый гидролизат в виде сухого порошка хранят с минимальным доступом влаги в герметичных пакетах при температуре не выше +5°С.

[83]

К 2 г белкового гидролизата добавляют 0,5 мл дистилированной воды. Перемешивают на магнитной мешалке при температуре 50°С в течение 60 мин.

[84]

В полученный раствор вносят 1,0 мкл раствора лакказы с концентрацией 2 мг/мл в 50 мМ калий-фосфатном буферном растворе, рН 6,0.

[85]

Для проведения ферментативной реакции растворы, обработанные лакказой, перемешивают при температуре 50°С в течение 1 часа. Для увеличения эффективности работы фермента лакказы перемешивание проводится в открытой посуде со свободным доступом атмосферного кислорода.

[86]

К предварительно обработанным лакказой растворам белкового гидролизата добавляют 8,4 мл 25% раствора глутарового альдегида. Полученную смесь ставят на перемешивание при температуре 50°С в течение 1 часа. Полученные в итоге растворы переливают на твердую подложку и оставляют сушиться при комнатной температуре в течение 200 часов (при толщине раствора не более 2 см). Высушенные образцы полимеров можно хранить при комнатной температуре.

[87]

Пример 7.

[88]

Получение биополимера из 20 масс.% раствора белкового гидролизата с добавлением 1 масс.% глутарового альдегида.

[89]

Белковый гидролизат в виде сухого порошка хранят с минимальным доступом влаги в герметичных пакетах при температуре не выше +5°С.

[90]

К 3 г белкового гидролизата добавляют 11,4 мл дистилированной воды. Перемешивают на магнитной мешалке при температуре 25°С в течение 30 мин.

[91]

В полученный раствор вносят 11,5 мкл раствора лакказы с концентрацией 2 мг/мл в 50 мМ калий-фосфатном буферном растворе, рН 6,5.

[92]

Для проведения ферментативной реакции растворы, обработанные лакказой, перемешивают при температуре 25°С в течение 30 мин. Для увеличения эффективности работы фермента лакказы перемешивание проводится в открытой посуде со свободным доступом атмосферного кислорода.

[93]

К предварительно обработанным лакказой растворам белкового гидролизата добавляют 0,64 мл 25% раствора глутарового альдегида. Полученную смесь ставят на перемешивание при температуре 25°С в течение 1 часа. Полученные в итоге растворы переливают на твердую подложку и оставляют сушиться при комнатной температуре в течение 200 часов (при толщине раствора не более 2 см). Высушенные образцы полимеров можно хранить при комнатной температуре.

Как компенсировать расходы
на инновационную разработку
Похожие патенты