патент
№ RU 2637839
МПК C21C5/06

СТАЛЕПЛАВИЛЬНЫЙ ФЛЮС "ЭКОШЛАК" И СПОСОБ ЕГО ПОЛУЧЕНИЯ И ПРИМЕНЕНИЯ

Авторы:
Паршин Валерий Михайлович
Правообладатель:
Номер заявки
2016151579
Дата подачи заявки
27.12.2016
Опубликовано
07.12.2017
Страна
RU
Как управлять
интеллектуальной собственностью
Реферат

Изобретение относится к черной металлургии и может быть использовано при производстве стали с использованием флюсов в качестве обрабатывающих реагентов. Сталеплавильный флюс содержит, мас. %: оксид кальция основа; оксид алюминия 5-25; диоксид кремния 5-20; оксид магния 4-15; оксиды железа 0,1-2, который подают в установку кристаллизации шлака для термической стабилизации путем ускоренного охлаждения в интервале температур 1600→600°С со скоростью 30-100°С/с, обеспечивающей кристаллизацию двухкальциевого силиката (CS) в метастабильной фазе βи получение кондиционного продукта кусковой формы фракции 5-70 мм и отсева фракции менее 5 мм. Изобретение позволяет получить флюс с низкой температурой плавления 1425-1465°С и высокой реакционной способностью, а также обеспечивает формирование первичного шлака, насыщенного оксидами кальция и железа, снижение негативного воздействия на окружающую среду за счет исключения образования отходов и выбросов фторсодержащих веществ, накопление и хранение шлака в отвалах. 3 н. и 1 з.п. ф-лы, 3 пр., 4 табл.

Формула изобретения

1. Сталеплавильный флюс, содержащий оксиды кальция, магния, железа, алюминия и диоксид кремния, отличающийся тем, что он представляет собой термически стабилизированный ковшевой шлак, средний минералогический состав которого соответствует твердым растворам на основе двухкальциевого силиката β-модификации (β-C2S), алюмината кальция (C12A7) и шпинели (MgA) и/или перикла (MgO) и содержит указанные компоненты при следующем соотношении оксидов, мас. %:

Оксид кальция основа
Оксид алюминия 5-25
Диоксид кремния 5-20
Оксид магния 4-15
Оксиды железа 0,1-2,0

2. Способ получения сталеплавильного флюса, включающий подачу сырьевых компонентов, их обработку и выделение кондиционного продукта, отличающийся тем, что в качестве сырьевых компонентов используют расплав ковшевого шлака при следующем соотношении оксидов, мас.%:

оксид кальция основа
оксид алюминия 5-25
диоксид кремния 5-20
оксид магния 4-15
оксиды железа 0,1-2,0,

который термически стабилизируют в установке кристаллизации шлака путем ускоренного охлаждения в интервале температур 1600→600°С со скоростью 30-100°С/с, обеспечивающей кристаллизацию двухкальциевого силиката (C2S) в метастабильной фазе βL и получение кондиционного продукта кусковой формы фракции 5-70 мм и отсева фракции менее 5 мм.

3. Способ по п. 2, отличающийся тем, что к отсеву фракций менее 5 мм добавляют отсев извести и/или известняка и брикетируют при содержании компонентов шихты, мас. %:

отсев сталеплавильного флюса фракции
менее 5 мм50-80
отсев извести и/или известняка 20-50

4. Способ выплавки стали в сталеплавильной печи, включающий добавку флюса в завалку с металлошихтой и/или в процессе расплавления металлошихты, расплавление шихты, окисление, дефосфорацию и рафинирование стали, отличающийся тем, что используют сталеплавильный флюс по п. 1.

Описание

[1]

Изобретение относится к черной металлургии и может быть использовано при производстве стали с использованием флюсов в качестве обрабатывающих реагентов.

[2]

Известен сталеплавильный флюс, получаемый способом стабилизации распадающегося (белого) рафинировочного ковшевого шлака внепечной обработки стали в установке ковш-печь [1] путем введения добавки оксида бора в виде природных минералов на основе бора, включая борную кислоту, буру, колеманит, боратовую руду и др. в количестве 0,5-1,5% от массы обрабатываемого шлака.

[3]

Недостатками известного флюса является использование борсодержащих компонентов для стабилизации шлака, содержащих попутно такие вредные примеси как сера, водород, натрий, мышьяк, кроме того, в колеманите содержится гипс, который в процессе обработки разлагается с выделением кристаллизационной влаги, сульфида кальция, элементарной серы и атомарных кислорода и водорода, которые взаимодействуют с металлом и снижают его качество, мышьяк может восстанавливаться в выплавляемом металле и снижать его качество, а также является ядовитым элементом.

[4]

Известно использование в качестве сталеплавильного флюса распадающегося ковшевого шлака с установки ковш-печь [2]. Способ получения флюса включает затвердевание шлакового расплава, распад, фракционирование с извлечением металла и окомкованием до фракции 5-20 мм. Полученный окомкованый флюс добавляют вместе с извлеченным металлом в печь в количестве 3-8 кг/т стали через 10-20 секунд после образования расплавленной ванны металла.

[5]

Недостатками сталеплавильного флюса и способа его получения являются отсутствие стабилизации шлака, приводящее к его распаду в мелкодисперсный порошок при затвердевании и необходимости просеивания, дробления и окомкования перед подачей в печь, что существенно усложняет процесс. При окомковании, как правило, используется вода, а наличие влаги в шлакообразующих компонентах сталеплавильной шихты приводит к перерасходу электроэнергии и повышению содержания водорода в стали. Возможность использования флюса в количестве 3-8 кг/т стали по балансу производства стали не обеспечивает полный рециклинг распадающегося шлака, т.к. на стадии внепечной обработки в установке ковш-печь объем образование шлака составляет 15-20 кг/т стали.

[6]

Наиболее близким по технической сущности и достигаемым результатам к предлагаемому решению является сталеплавильный флюс, получаемый путем рециклинга распадающегося ковшевого шлака [3]. Способ предусматривает добавку белого шлака в жидком или твердом виде в расплавленную сталь. При этом жидкий белый шлак добавляют в расплавленную сталь, а распадающийся твердый охлаждают в шлаковне, дробят, просеивают и окомковывают до размера фракций 10-80 мм. Шлак добавляют в расплавленную сталь в количестве не более 6 кг/т стали при этом каждый добавленный кг/т стали заменяет 0,5 кг/т стали флюорита и 0,5 кг/т стали извести.

[7]

Недостатками известного решения являются сложность организации подачи жидкого шлака из сталеразливочного ковша в печь в период расплавления стали, что обусловлено типовыми конструктивными особенностями зданий сталеплавильных цехов и их грузопотоков и практически исключает использование метода при массовом промышленном производстве стали. Отсутствие стабилизации твердого белого шлака от внепечной обработки стали приводит к необходимости многостадийной его подготовки. Технологические операции охлаждения, дробления, просеивания и окомкования существенно удорожают процесс производства флюса. При окомковании, как правило, используется вода, а наличие влаги в шлакообразующих компонентах сталеплавильной шихты приводит к перерасходу электроэнергии и повышению содержания водорода в стали. Кроме того, использование белого шлака в количестве не более 6 кг/т стали не обеспечивает его полный рециклинг, а замена в общей сложности только 3 кг/т стали флюорита и 3 кг/т стали извести не дает значимого экономического эффекта.

[8]

В основу изобретения поставлена задача создания сталеплавильного флюса с высоким содержанием оксидов кальция, обладающего низкой температурой плавления 1350-1465°С и высокой реакционной способностью, обеспечивающего формирование первичного шлака для интенсификации сталеплавильных процессов плавления, окисления, дефосфорации и рафинирования стали в печи и снижение потребления таких сырьевых ресурсов как известь, известняк, доломит и флюорит, а также способа получения такого флюса с низкой себестоимостью и отсутствием негативного воздействия на окружающую среду за счет исключения образования отходов.

[9]

Ожидаемым техническим результатом изобретения являются:

[10]

• Обеспечение технологических режимов производства сталеплавильного флюса с низкой температурой плавления и высокой реакционной способностью;

[11]

• интенсификация процессов плавления, окисления, дефосфорации и рафинирования стали в печи при использовании флюса;

[12]

• снижение потребления извести, известняка, доломита и флюорита;

[13]

• снижение себестоимости производства флюса;

[14]

• снижение негативного воздействия на окружающую среду.

[15]

Поставленная задача решается тем, что сталеплавильный флюс «Экошлак», содержащий оксиды кальция, магния, железа, алюминия и диоксид кремния, представляет собой термически стабилизированный ковшевой шлак (ТСКШ) фракции 5-70 мм, средний минералогический состав которого соответствует твердым растворам на основе двухкальциевого силиката β-модификации (β-C2S), алюмината кальция (С12А7), и шпинели (MgA) и/или периклаза (MgO) и содержит указанные компоненты при следующем соотношении оксидов, мас. %:

[16]

[17]

Способ получения сталеплавильного флюса «Экошлак» включает подачу сырьевых компонентов, их обработку и выделение целевого продукта, при этом сырьем является расплав ковшевого шлака, который термически стабилизируют в установке кристаллизации шлака путем ускоренного охлаждения в интервале температур 1600→600°С со скоростью 30-100°С/сек, обеспечивающей кристаллизацию двухкальциевого силиката (C2S) в метастабильной фазе βL и получение кондиционного продукта кусковой формы фракции 5-70 мм.

[18]

Способ применения сталеплавильного флюса «Экошлак» включает добавку флюса в сталеплавильную печь в количестве 15-20 кг/т стали в завалку с металлошихтой и/или в процессе расплавления металлошихты, при этом 1 кг/т стали флюса замещает 0,3-1,0 кг/т стали извести и флюорита.

[19]

Сталеплавильный флюс «Экошлак» фракции менее 5 мм пригоден для использования в качестве основного исходного материала для изготовления крупнокускового флюса способом брикетирования с добавлением отсева извести и/или известняка при следующем содержании компонентов шихты, мас. %:

[20]

[21]

Сталеплавильный флюс «Экошлак» фракции менее 5 мм также может использоваться в качестве добавки к основному связующему в шихту для изготовления брикетированного известково-железистого флюса (ИЖФ), который содержит пыль газоочистки и окалину при следующем содержании компонентов шихты, мас. %:

[22]

[23]

Причинно-следственная связь между совокупностью существенных признаков заявляемого способа и достигаемым техническим результатом заключается в следующем.

[24]

• Низкая температура плавления и высокая реакционная способность сталеплавильного флюса «Экошлак» достигаются за счет минералогического состава который представлен эвтектикой твердых растворов на основе двухкальциевого силиката (β-C2S), алюмината кальция (С12А7) и шпинели (MgA) и/или периклаза (MgO) с температурой плавления 1425-1465°С при указанном соотношении оксидов.

[25]

• Интенсификация процессов плавления, окисления, дефосфорации и рафинирования стали в печи достигается за счет легкоплавких свойств флюса «Экошлак», способствующих ускоренному формированию первичного шлака, насыщенного оксидами кальция и железа, обеспечивающего благоприятные условия для удаления фосфора, усвоения извести и сокращение периода расплавления металлошихты, и соответственно, плавки в целом.

[26]

• Снижение расхода извести, известняка, доломита и плавикового шпата в печи достигается при эквивалентной замене СаО извести на СаО флюса «Экошлак» в пропорции от 1:3 до 1:1. и повышении степени усвоения извести за счет быстрого растворения легкоплавкого флюса эвтектического состава, что способствует быстрому формированию первичного шлака с высокой жидкоподвижностью, в котором известь растворяется быстрее и применение флюорита для разжижения шлака не требуется.

[27]

• Снижение себестоимости производства сталеплавильного флюса «Экошлак» достигается за счет применения в качестве сырья расплава ковшевого шлака и способа его переработки с минимальными затратами человеческих, энергетических и материальных ресурсов непосредственно из расплава в кондиционную продукцию фракции 5-70 мм путем термической стабилизации расплава в интервале температур 1600→600°С со скоростью охлаждения 30-100°С/сек, обеспечивающей кристаллизацию двухкальциевого силиката (C2S) в βL-модификации.

[28]

• Снижение негативного воздействия на окружающую среду достигается за счет исключения образования отходов и выбросов фторсодержащих веществ при замене флюорита на флюс «Экошлак», исключения пылеобразования, накопления и хранения распадающегося ковшевого шлака в отвалах, а также снижения выбросов СO2 при снижении потребления и производства извести.

[29]

Сущность предложенного решения заключается в получении необходимых термодинамических свойств и параметров сталеплавильного флюса «Экошлак», имеющего химический состав, мас. %: оксид кальция 45-65; оксид алюминия 5-25; оксид кремния 5-20; оксид магния 4-15; оксиды железа общее 0,1-2,0, и средний минералогический состав которого представлен эвтектикой твердых растворов на основе двухкальциевого силиката (β-C2S), алюмината кальция (C12A7) и шпинели (MgA) и/или периклаза (MgO) и получен путем термической стабилизации расплава ковшевого шлака, обеспечивающей кристаллизацию двухкальциевого силиката (C2S) в βL-модификации, не подверженной силикатному распаду. Исходным сырьем для сталеплавильного флюса «Экошлак» являются ковшевые шлаки, химический состав которых в указанных диапазонах содержания оксидов соответствует технологическим режимам внепечной обработки при производстве любых марок стали. Таким образом, весь ковшевой шлак текущего производства может быть подвержен термической стабилизации и в режиме полного рециклинга использоваться в качестве сталеплавильного флюса при выплавке стали.

[30]

Шлаковый расплав с наличием двухкальциевого силиката C2S можно закристаллизовать в метастабильной фазе βL путем быстрого охлаждения в интервале температур 1600-600°С при фазовом превращении из α'-фазы в βL-фазу, не переходящую в дальнейшем в γ-фазу. Затвердевание шлакового расплава, формирование крупности затвердевшего шлака осуществляют в межшаровом пространстве металлических шаров в момент заливки и вращения установки кристаллизации шлака. Это является процессом термической стабилизации. В результате термической стабилизации получают кондиционный продукт фракции 5-70 мм, с низкой температурой плавления 1350-1450°С.

[31]

Сталеплавильный флюс «Экошлак» фракции менее 5 мм используют в качестве основного исходного материала для изготовления крупнокускового флюса способом брикетирования с добавлением отсева извести и/или в качестве добавки к основному связующему в шихту для изготовления брикетированного известково-железистого флюса (ИЖФ), который содержит пыль газоочистки и окалину.

[32]

Сталеплавильный флюс «Экошлак» фракции 5-70 мм и брикеты на его основе или связке подают в сталеплавильную печь в завалку с металлошихтой и/или в начальный период плавления для обеспечения раннего формирования высокоосновного жидкоподвижного первичного шлака, способствующего быстрому усвоению извести и интенсификации процессов плавления, окисления, дефосфорации и рафинирования стали.

[33]

Сталеплавильные ковшевые шлаки образуются при обработке стали на установке ковш-печь и относятся к так называемым распадающимся шлакам. В распадающихся шлаках основными минералами являются соединения силикатов, а именно двухкальциевый силикат (C2S), при охлаждении которого в температурном интервале с 1425°С до 500°С происходят полиморфные превращения, причем завершающее фазовое превращение из β-фазы в γ-фазу происходит в интервале 630-500°C с увеличением объема кристаллической решетки на 12%. Охлаждение шлака в естественных условиях сопровождается силикатным распадом и затвердевший продукт превращается в мелкодисперсный порошок. Наличие в составе шлака свободного оксида кальция СаО (неусвоенной извести) после затвердевания расплава приводит к его гидратации, в результате которой продукт увеличивается в объеме и разрушается, происходит известковый распад. Кроме того, в ковшевых шлаках всегда содержатся металлические включения, которые обычно выделяют с помощью магнитной сепарации в виде металлического скрапа.

[34]

С целью предотвращения процесса самораспада ковшевого шлака возможна и иногда применяется в промышленности его стабилизация химическим и термическим способами. Химическая и кристаллохимическая стабилизация воздействуют на изменение исходного состава ковшевого шлака путем введения в расплав специальных стабилизирующих добавок на основе оксидов алюминия, кремния, бора, фосфора и др. Насыщение ковшевого шлака оксидами алюминия и кремния приводит к уменьшению его основности, к уменьшению содержания фазы двухкальциевого силиката (С2S) и, следовательно, к снижению его металлургических свойств при использовании в печи в качестве сталеплавильного флюса. Введение оксидов бора для замещения ионов Са+ ионами В+ в решетке (C2S) и предотвращения силикатного распада при использовании шлака в печи сопровождается переходом бора в сталь, наличие которого является вредным фактором для большинства марок стали и футеровки печи. Повышение фосфора в шлаке негативно влияет на процесс дефосфорации металла в печи.

[35]

Термическая стабилизация подразумевает закалочное охлаждение расплава без изменения исходного химического состава шлака и сохранение его металлургических свойств. Формирование структуры продукта из расплава зависит от химического состава и скорости охлаждения расплава. Последовательность формирования кристаллической структуры из расплава в зависимости от химического состава при равновесии всех фаз соответствует температурам плавления и режимам охлаждения основных минералов. При резком увеличении скорости охлаждения процесс кристаллизации смещается в сторону образования новых фаз в отличие от равновесных условий кристаллизации.

[36]

Исходя из этого, флюс «Экошлак» получают на основе термически стабилизированного ковшевого шлака (ТСКШ) в установках кристаллизации шлака путем закалки расплава в интервале температур 1600→600°С со скоростью охлаждения 30-100°С/сек, обеспечивающей кристаллизацию двухкальциевого силиката (C2S) в βL-модификации, не переходящей в дальнейшем в γ-фазу. Полученный таким способом флюс «Экошлак» обладает низкой температурой плавления 1350-1450°С и высокой реакционной способностью его растворения в сталеплавильных шлаковых расплавах.

[37]

Охлаждение расплава проводят в интервале температур 1600→600°C с целью завершения всех фазовых превращений двухкальциевого силиката в заданном интервале. При температуре 1425°С происходит фазовый переход α→αH, затем при температуре 1160°С происходит превращение αH→αL, а фаза αL в свою очередь при температуре ниже 700°С переходит в β-фазу, при этом в зависимости от скорости охлаждения образуется либо низкотемпературная форма βL (630-620°С), которая стабилизируется и не переходит при дальнейшем охлаждении в γ-фазу, либо высокотемпературная форма βH(680-630°С), которая при температуре ниже 500°С переходит в γ-фазу с увеличением объема кристаллической решетки на 12% и распадом шлака в мелкодисперсный порошок. Поэтому важным условием получения сталеплавильного флюса «Экошлак» является режим охлаждения шлакового расплава в интервале температур 1600→600°С.

[38]

Опытным путем установлены оптимальные режимы охлаждения расплава в диапазоне скоростей 30-100°С/сек, обеспечивающие необходимое переохлаждение расплава для кристаллизации с получением двухкальциевого силиката в низкотемпературной форме βL (630-620°С) и стабилизации шлака от дальнейшего распада.

[39]

Проведенные испытания режимов охлаждения для обеспечения термической стабилизации ковшевых шлаков показали, что при охлаждении со скоростью менее 30°С/сек необходимое переохлаждение расплава не обеспечивается, шлак стабилизируется не в полном объеме и наблюдается частичный его распад. Охлаждение расплава со скоростью более 100°С/сек требует существенного увеличения расхода охладителей и энергоресурсов для поддержания заданной скорости охлаждения, что приводит к удорожанию технологического процесса и капитальных затрат на оборудование.

[40]

При высоком содержании оксидов кальция и наличии оксидов кремния и алюминия в присутствии оксидов магния при ускоренном охлаждении образуются твердые растворы двухкальциевого силиката (C2S), алюмината кальция (C12A7) и шпинели (MgA) и/или периклаза (MgO), имеющие эвтектический состав с низкой температурой плавления 1350-1465°С. Термодинамические исследования сталеплавильного флюса «Экошлак» на основе ТСКШ показали, что температура плавления образцов флюса в обычных условиях производства при диапазонах содержания оксидов, мас. %: кальция 50-60, кремния 8-13, алюминия 12-20, магния 4-6, находится в пределах 1425-1465°С при суммарном эндотермическом эффекте 15-20 Дж/г и расходе энергии на расплавление 4-5 кВтч/т. Для сравнения, температура плавления извести превышает 2600°С, а расход энергии на ее расплавление составляет 667 кВтч/т. Таким образом, добавка сталеплавильного флюса «Экошлак» в количестве 15-20 кг/т стали для частичной замены извести и флюорита не приводит к увеличению расхода электроэнергии, а наоборот, обеспечивает снижение расхода электроэнергии за счет более низкой температуры плавления флюса и на порядок меньшей энтальпии.

[41]

Для получения сталеплавильного флюса «Экошлак» и снижения себестоимости в сравнении с прототипом используются менее затратные переделы производства:

[42]

- при подготовке сырьевой смеси исключаются энергозатратные переделы с дроблением, рассевом, сепарацией и усреднением, используется ускоренное охлаждение жидкого шлака;

[43]

- перед подачей в печь исключается этап окомкования флюса, получаемый флюс имеет заданный фракционный состав 5-70 мм.

[44]

При типовой технологии выплавки стали шихта состоит, как правило, из стального лома, легированных отходов, чугуна, железорудного сырья, шлакообразующих, флюса, раскислителей и науглероживателей. Для процессов дефосфорации в окислительный период плавки требуется наведение высокоосновного низковязкого шлака с содержанием оксидов железа не менее 25%. Твердые окислители, такие как железная руда, агломерат, окатыши и шлакообразующие, такие как известь и/или известняк используют для интенсификации процессов окисления кремния, марганца, углерода, фосфора и др. Флюорит применяют для ускорения шлакообразования и повышения жидкоподвижности шлака. Расход извести составляет 45-55 кг/т стали, флюорита 0,5-2,5 кг/т стали. К недостаткам типовой технологии выплавки стали относятся:

[45]

• избыточный расход шлакообразующих материалов, извести и/или известняка, поскольку они не полностью растворяются и остаются в шлаке в виде неусвоенной извести (СаО), которая в конечном итоге гидратирует в течение длительного времени в процессе вылеживания сталеплавильных шлаков в отвалах. Это обстоятельство не позволяет из сталеплавильных шлаков получать кондиционную продукцию без их вылеживания в отвалах;

[46]

• применение дефицитного и дорогостоящего флюорита (фторида кальция CaF2) для повышения жидкоподвижности шлака негативно влияет на окружающую среду ввиду наличия соединений фтора;

[47]

•удорожание процесса выплавки стали в результате использования и перерасхода дорогостоящих сталеплавильных флюсов.

[48]

Использование сталеплавильного флюса «Экошлак» на основе ТСКШ при выплавке стали в печах (конвертер или электропечь) способствует более раннему формированию высокоосновного жидкоподвижного первичного шлака, быстрому усвоению извести, снижению расхода извести на 10-30%, исключению добавок флюорита, интенсификации процессов расплавления и окисления, в том числе дефософрации, сокращению периода плавки и расхода электроэнергии. Сталеплавильный флюс «Экошлак» на основе ТСКШ пригоден для выплавки всех марок сталей.

[49]

Таким образом, заявляемое изобретение соответствует критерию ʺновизнаʺ.

[50]

При анализе на соответствие критерию ʺизобретательский уровеньʺ не обнаружено источников информации, указывающих на известность предложенных технологических решений по функциональному назначению и поставленной задаче.

[51]

Предложенное решение может быть реализовано в промышленности, а ожидаемый технический результат вытекает из совокупности существенных признаков изобретения, что свидетельствует о соответствии критерию ʺпромышленная применимостьʺ.

[52]

Использование сталеплавильного флюса «Экошлак» реализуется следующим образом.

[53]

После окончания разливки стали на МНЛЗ сталеразлиеочный ковш с остатками шлака и металла кантуют в установку кристаллизации шлака для термической стабилизации расплава в интервале температур 1600→600°С со скоростью 30-100°С/сек, обеспечивающей кристаллизацию двухкальциевого силиката (C2S) в βL-модификации. Полученный флюс «Экошлак» фракции 5-70 мм подвергают или не подвергают магнитной сепарации и вместе с металлоскрапом задают в сталеплавильную печь в количестве 15-20 кг/т В печи формируется высокоосновный жидкоподвижный первичный шлак, который способствует быстрому усвоению извести, снижению ее расхода, интенсификации процессов расплавления и окисления, в том числе дефософрации, сокращению периода плавки и расхода электроэнергии.

[54]

Отсев сталеплавильного флюса «Экошлак» фракции менее 5 мм после брикетирования с добавлением отсева извести, пыли газоочистки и окалины для изготовления крупнокускового известково-железистого флюса (ИЖФ) также может использоваться в сталеплавильной печи вместе с металлоскрапом в количестве 5-10 кг/т

[55]

Конкретные примеры применения сталеплавильного флюса «Экошлак» при выплавке стали в электропечи.

[56]

В качестве базы для сравнения эффективности применения сталеплавильного флюса «Экошлак» на основе ТСКШ приняты средние результаты 243 стандартных плавок в электропечи емкостью 160 т (по жидкой стали): завалка металлошихты и 1 подвалка, плавление-окисление 35 мин, рафинирование 15 мин, и выпуск стали 4 мин, подача 7,0 т извести и 0,4 т флюорита в период плавления и 1,5 т извести в период рафинирования. Общая продолжительность плавки 54 мин, общий расход извести 8,5 т, расход флюорита 0,4 т, удельный расход электроэнергии 433 кВтч/т. стали, извести 53,12 кг/т стали, флюорита 2,5 кг/т стали.

[57]

По предложенному способу проведены серии опытных плавок на средне- и низкоуглеродистом сортаменте стали, где флюорит и часть извести заменяли флюсом «Экошлак» на основе ТСКШ в соотношении от 1:3 до 1:1 и плавку вели следующим образом:

[58]

1. В электропечь емкостью 160 т (по жидкой стали) вместе с завалкой металлолома подают 2,5 т флюса «Экошлак», содержащего мас. % 54 оксида кальция, 6 оксида магния, 11 оксида кремния и 23 оксида алюминия. В период плавления присаживают 6,0 т извести и 0,5 т флюса «Экошлак» и в период рафинирования 1,5 т извести. Получены следующие средние результаты серии из 39 опытных плавок при замене извести и флюорита в соотношении 1:3. Общая продолжительность плавки 53 мин, общий расход извести 7,5 т, расход флюорита 0 т, расход флюса «Экошлак» 3,0 т, удельный расход энергии 404 кВтч/т, извести 46,87 кг/т стали, флюорита 0 кг/т стали, флюса «Экошлак» 18,75 кг/т стали, всего шлакообразующих 65,6 кг/т стали.

[59]

2. В электропечь емкостью 160 т (по жидкой стали) вместе с завалкой металлолома подают 3,0 т флюса «Экошлак», содержащего мас. % 52 оксида кальция, 6 оксида магния, 8 оксида кремния и 29 оксида алюминия. В период плавления присаживают 6,4 т извести и в период рафинирования 0,6 т извести. Получены следующие средние результаты серии из 44 опытных плавок при замене извести и флюорита в соотношении 1:2. Общая продолжительность плавки 52 мин, общий расход извести 7,0 т, расход флюорита 0 т расход флюса «Экошлак» 3,0 т, удельный расход энергии 411 кВтч/т, извести 43,75 кг/т стали, флюорита 0 кг/т стали, флюса «Экошлак» 18,75 кг/т стали, всего шлакообразующих 62,5 кг/т стали.

[60]

3. В электропечь емкостью 160 т (по жидкой стали) вместе с завалкой металлолома подают 2,5 т флюса «Экошлак», содержащего мас. % 56 оксида кальция, 5 оксида магния, 13 оксида кремния и 19 оксида алюминия. В период плавления присаживают 4,5 т извести и в период рафинирования 1,5 т извести. Получены следующие средние результаты серии из 42 опытных плавок при замене извести и флюорита в соотношении 1:1. Общая продолжительность плавки 52 мин, общий расход извести 6,0 т, расход флюорита 0 т, флюса «Экошлак» 2,5 т, удельный расход энергии 409 кВтч/т., извести 37,5 кг/ т стали, флюорита 0 кг/т стали, флюса «Экошлак» 15,62 кг/т стали, всего шлакообразующих 53,12 кг/т стали.

[61]

Обобщенные показатели плавок по результатам опробования приведены в таблице.

[62]

Как видно из таблицы, применение предложенного способа по сравнению со стандартной плавкой в электропечи обеспечило снижение времени плавки на 3,5% (1-2 мин) и расхода извести на 15 кг/т стали, при этом экономия извести составила до 30% с коэффициентом замены 1,0 при сохранении основности не менее 2,2. Сокращение расхода электроэнергии на плавку составило 4-6% (22-29 кВтч/т стали).

[63]

Экономия извести и флюорита в печи ведет к прямому снижению себестоимости производства стали. Так, по ценам 2016 г. цена свежеобожженной извести составляет 4 руб./кг, флюорита 16 руб./кг, а себестоимость производства флюса «Экошлак» 0,5 руб./кг. Замена 15 кг/т стали извести и 2,5 кг/т стали флюорита на 20 кг/т флюса «Экошлак» дает экономию: 60+40-10=90 руб./т. стали. При производстве 1 млн.тонн стали экономия составит 90 млн.руб. без учета снижения затрат на охрану окружающей среды при хранении шлака в отвалах и экологического эффекта.

[64]

Источники информации

[65]

1. Патент РФ №2539228, МПК С21С 5/06, опубл. 20.01.2015 г. Бюл. №2.

[66]

2. Патент Китая № CN 102337379 А, МПК С21С 7/076, С21В 3/06, опубл. 01.02.2012.

[67]

3. Патент Китая № CN 104404176 А, МПК С21В 3/04, С21С 7/076, опубл. 01.03.2015.

[68]

Как компенсировать расходы
на инновационную разработку
Похожие патенты