патент
№ RU 2644030
МПК G01R31/00

КОМПЛЕКС ДЛЯ ИСПЫТАНИЙ ТЕХНИЧЕСКИХ СРЕДСТВ НА УСТОЙЧИВОСТЬ К ВОЗДЕЙСТВИЮ ЭЛЕКТРОМАГНИТНОГО ПОЛЯ

Авторы:
Шабанов Роберт Иванович
Номер заявки
2017101306
Дата подачи заявки
16.01.2017
Опубликовано
07.02.2018
Страна
RU
Как управлять
интеллектуальной собственностью
Чертежи 
4
Реферат

Изобретение относится к области радиотехники и может быть использовано при испытании технических средств на устойчивость к воздействию электромагнитного поля. Комплекс для испытаний технических средств на устойчивость к воздействию электромагнитного поля включает в себя систему создания испытательного поля, включающую в себя излучающую антенну, систему калибровки испытательного поля и систему управления. Система создания испытательного поля имеет возможность перемещения в вертикальном и горизонтальном направлениях и включает в себя сменные коаксиально-волноводный переход Н-образного сечения и согласующий переход, один из концов которого соединен с указанным коаксиально-волноводным переходом, а другой - с излучающей антенной, выполненной в виде пирамидального рупора, конструктивно связанного с отражателем, поверхность которого представляет собой часть эллипсоида вращения, образованного вращением эллипса вокруг большой оси, таким образом, что ближний по отношению к отражателю фокус указанного эллипсоида вращения расположен в геометрической вершине пирамидального рупора, а другой фокус - в зоне испытаний технических средств. Согласующий переход выполнен в форме усеченной пирамиды прямоугольного поперечного сечения, вдоль оси симметрии каждой из больших боковых граней которой расположено ребро, имеющее экспоненциальный профиль, выступающее внутрь согласующего перехода. Система калибровки испытательного поля включает в себя поглощающий экран и тепловизионную камеру, связанную с системой управления оптоволоконной линией связи. Технический результат заключается в уменьшении энергопотребления комплекса в результате обеспечения возможности создания испытательного поля с характеристиками, достаточными для проведения испытаний без использования мощных усилителей, и упрощении процесса испытания технических средств на устойчивость к воздействию электромагнитного поля. 2 з.п. ф-лы, 7 ил.

Формула изобретения

1. Комплекс для испытаний технических средств на устойчивость к воздействию электромагнитного поля, включающий в себя систему создания испытательного поля, включающую в себя излучающую антенну, систему калибровки испытательного поля и систему управления, отличающийся тем, что система создания испытательного поля имеет возможность перемещения в вертикальном и горизонтальном направлениях и включает в себя сменные коаксиально-волноводный переход Н-образного сечения и согласующий переход, один из концов которого соединен с указанным коаксиально-волноводным переходом, а другой - с излучающей антенной, выполненной в виде пирамидального рупора, конструктивно связанного с отражателем, поверхность которого представляет собой часть эллипсоида вращения, образованного вращением эллипса вокруг большой оси, таким образом, что ближний по отношению к отражателю фокус указанного эллипсоида вращения расположен в геометрической вершине пирамидального рупора, а другой фокус - в зоне испытаний технических средств, согласующий переход выполнен в форме усеченной пирамиды прямоугольного поперечного сечения, вдоль оси симметрии каждой из больших боковых граней которой расположено ребро, имеющее экспоненциальный профиль, выступающее внутрь согласующего перехода, а система калибровки испытательного поля включает в себя поглощающий экран и тепловизионную камеру, связанную с системой управления оптоволоконной линией связи.

2. Комплекс по п. 1, отличающийся тем, что поглощающий экран выполнен из полимерной пленки с резистивным покрытием.

3. Комплекс по п. 1 или 2, отличающийся тем, что система создания испытательного поля расположена на дистанционно управляемой платформе.

Описание

[1]

Изобретение относится к области радиотехники и может быть использовано при испытании технических средств на устойчивость к воздействию электромагнитного поля.

[2]

Известен комплекс для испытаний на устойчивость технических средств к воздействию электромагнитного поля, включающий в себя систему создания испытательного поля, систему калибровки испытательного поля и систему управления (см. ГОСТ 30804.4.3-2013 Совместимость технических средств электромагнитная. Устойчивость к радиочастотному электромагнитному полю. Требования и методы испытаний). Система создания испытательного поля известного комплекса включает в себя последовательно соединенные генератор сигнала, усилитель мощности, направленный ответвитель падающей и отраженной волны и излучающую антенну, в качестве которой в диапазоне частот выше 1 ГГц используют рупорную антенну. Система калибровки испытательного поля включает в себя приемную антенну, с помощью которой замеряют напряженность поля в различных точках интересующей области в плоскости однородного поля и, анализируя полученные значения, делают вывод о соответствии испытательного поля установленным критериям.

[3]

Известный комплекс принят в качестве ближайшего аналога к заявленному комплексу.

[4]

Основным недостатком известного комплекса является необходимость использования мощных усилителей для создания испытательного поля с характеристиками, достаточными для проведения испытаний. Кроме этого, зона испытаний находится в дальней зоне излучающей антенны, которая не является стационарной, и ее расположение в значительной степени зависит от размера апертуры антенны и рабочей частоты. Так же используемый способ калибровки испытательного поля требует проведения множества измерений, что увеличивает время проведения испытаний.

[5]

Технической проблемой, решаемой настоящим изобретением, является создание комплекса для испытания технических средств на устойчивость к воздействию электромагнитного поля, лишенного указанных недостатков.

[6]

В результате достигается технический результат, заключающийся в уменьшении энергопотребления комплекса в результате обеспечения возможности создания испытательного поля с характеристиками, достаточными для проведения испытаний без использования мощных усилителей, и упрощении процесса испытания технических средств на устойчивость к воздействию электромагнитного поля.

[7]

Указанный технический результат достигается созданием комплекса для испытания технических средств на устойчивость к воздействию электромагнитного поля, включающего в себя систему создания испытательного поля, систему калибровки испытательного поля и систему управления, в котором система создания испытательного поля имеет возможность перемещения в вертикальном и горизонтальном направлениях и включает в себя сменные коаксиально-волноводный переход Н-образного сечения и согласующий переход, один из концов которого соединен с указанным коаксиально-волноводным переходом, а другой - с излучающей антенной, выполненной в виде пирамидального рупора, конструктивно связанного с отражателем, поверхность которого представляет собой часть эллипсоида вращения, образованного вращением эллипса вокруг большой оси, таким образом, что ближний по отношению к отражателю фокус указанного эллипсоида вращения расположен в геометрической вершине пирамидального рупора, а другой фокус - в зоне испытаний технических средств, согласующий переход выполнен в форме усеченной пирамиды с прямоугольным поперечным сечением, вдоль оси симметрии каждой из больших боковых граней которой расположено ребро, имеющее экспоненциальный профиль, выступающее внутрь согласующего перехода, а система калибровки испытательного поля включает в себя поглощающий экран и тепловизионную камеру, связанную с системой управления оптоволоконной линией связи.

[8]

Согласно частному варианту выполнения поглощающий экран выполнен из полимерной пленки с резистивным покрытием.

[9]

Согласно еще одному частному варианту выполнения система создания испытательного поля расположена на дистанционно управляемой платформе.

[10]

На фиг. 1 представлено схематичное изображение заявленного комплекса для проведения испытаний технических средств на устойчивость к воздействию электромагнитного поля.

[11]

На фиг. 2 представлен общий вид излучающей антенны.

[12]

На фиг. 3 представлен общий вид согласующего перехода.

[13]

На фиг. 4 представлено схематичное изображение продольного сечения согласующего перехода.

[14]

На фиг. 5а и 5b представлены фотография коаксиально-волноводного перехода Н-образного поперечного сечения и схематичное изображение его поперечного сечения.

[15]

На фиг. 6 представлена фотография комплекта согласующих переходов.

[16]

На фиг. 7 представлено схематичное изображение системы калибровки испытательного поля.

[17]

Комплекс для испытания технических средств на устойчивость к воздействию электромагнитного поля, представленный на фиг. 1, включает систему создания испытательного поля 1, имеющую возможность перемещения в вертикальном и горизонтальном направлениях, например, за счет расположения на дистанционно управляемой платформе (не показана), систему калибровки испытательного поля 2 и систему управления 3. Системы 1 и 2 расположены в безэховой камере либо на открытом пространстве. Система управления 3, включающая в себя, например, ПК, расположена в экранированном помещении 4.

[18]

Система создания испытательного поля 1 включает в себя последовательно соединенные генератор сигналов 4 (например, СВЧ-диапазона), усилитель мощности 5, направленный ответвитель падающей и отраженной волны 6, коаксиально-волноводный переход 7 Н-образного сечения, согласующий переход 8 и излучающую антенну 9. К направленному ответвителю падающей и отраженной волны 6 подключены датчики падающей и отраженной мощности 10, связанные оптоволоконной линией связи 11 с системой управления 3. Генератор сигналов 4 также связан оптоволоконной линией связи 12 с системой управления 3.

[19]

Излучающая антенна 9, как показано на фиг. 2, выполнена в виде пирамидального рупора 13, конструктивно связанного с отражателем 14. Поверхность отражателя 14 представляет собой часть эллипсоида вращения, образованного вращением эллипса (на фиг. 1 показан пунктирной линией) вокруг большой оси.

[20]

Излучающая антенна 9 выполнена таким образом, что ближний по отношению к отражателю 14 фокус F2 указанного эллипсоида вращения совпадает с геометрической вершиной пирамидального рупора 13, а другой фокус F1 расположен в зоне испытаний технических средств (см. фиг. 1).

[21]

Излучение, исходящее из фокуса F2, попадает на отражающую поверхность и фокусируется в фокусе F2, образуя фокальное пятно, поле в котором используется в качестве испытательного поля.

[22]

Использование в заявленном комплексе излучающей антенны 9, способной фокусировать излучение, и использование, вследствие этого, поля фокального пятна в качестве испытательного поля позволяет значительно увеличить величину плотности потока энергии электромагнитного поля в зоне испытаний по сравнению с использованием рупорной антенны.

[23]

Для обеспечения работы системы создания испытательного поля в широком диапазоне рабочих частот используется комплект из сменных коаксиально-волноводных переходов Н-образного сечения и соответствующих им согласующих переходов.

[24]

Количество таких сменных переходов зависит от диапазона рабочих частот и величин рабочих частот указанных переходов.

[25]

В частности, для покрытия диапазона от 2 ГГц до 40 ГГц может быть использован комплект из четырех коаксиально-волноводных переходов Н-образного сечения: WRD200093-NF10 (2,0÷4,8 ГГц), WRD475093-NF10 (4,75÷11,0 ГГц), WRD750093-NF10 (7,5÷18 ГГц) и WRD180093-KF10 (18,0÷40 ГГц) и соответствующих им четырех согласующих переходов.

[26]

Каждый из согласующих переходов 8, как показано на фиг. 4, выполнен в форме усеченной пирамиды прямоугольного поперечного сечения, вдоль оси симметрии каждой из больших боковых граней которой расположено ребро 15 с экспоненциальным профилем, выступающее внутрь согласующего перехода.

[27]

Широкий конец согласующего перехода 8 соединен фланцем 16 с фланцем 18 пирамидального рупора 13 излучающей антенны 9, а узкий конец - фланцем 17 с фланцем коаксиально-волноводного перехода Н-образного сечения 7.

[28]

Экспоненциальный профиль каждого из ребер 15 рассчитывается (расчет приведен для верхнего ребра, показанного на фиг. 4) в декартовой системе координат по формуле:

[29]

y=eax-b,

[30]

где х - ось абсцисс, направленная вдоль оси симметрии перехода от фланца 17 к фланцу 16;

[31]

a, b - параметры экспоненты, определяемые из соотношений:

[32]

[33]

где L - длина перехода без учета толщины фланца 17, мм;

[34]

h - расстояние от плоскости ребра до оси симметрии коаксиально-волноводного перехода Н-образного сечения (см. фиг 5б), мм;

[35]

D - полувысота согласующего перехода 8 по торцу фланца 16, равная соответствующему параметру фланца 18 пирамидального рупора 13.

[36]

Каждое ребро 15 по толщине фланца 17 имеет постоянную высоту. Зона перехода между частью ребра 15 с экспоненциальным профилем и частью ребра 15 постоянной высоты в области фланца 17 отшлифовывается таким образом, чтобы переход был гладкий и не содержал изломов.

[37]

Ширина ребер согласующего перехода 8 равна ширине ребер соответствующего коаксиально-волноводного перехода Н-образного сечения 7.

[38]

Система калибровки испытательного поля 2, представленная на фиг. 7, содержит поглощающий экран 19 и тепловизионную камеру 20, связанную с системой управления 3 оптоволоконной линией связи 23. Поглощающий экран 19 выполнен из полимерной теплопроводной пленки с резистивным покрытием, нанесенным со стороны излучающей антенны 9, натянутой на квадратную диэлектрическую рамку 21. Сторона рамки составляет (5-6)λмак, где λмак - максимальная длина волны рабочего диапазона. В частности, при минимальной рабочей частоте 2 ГГц площадь рамки составляет 1 м2. Резистивное покрытие может быть получено методом термовакуумного напыления сплавов, содержащих хром и никель (в частности, может использоваться сплав РС3710).

[39]

Принцип калибровки испытательного поля с помощью поглощающего экрана и тепловизионной камеры основан на эффекте нагрева резистивного покрытия при падении на него электромагнитной волны и дистанционном фиксировании получившегося распределения температур покрытия с помощью тепловизионной камеры.

[40]

Согласно закону Джоуля-Ленца мощность тепла, выделяемого в единице поверхности вещества за единицу времени, равна:

[41]

w=jЕ=σЕ2,

[42]

где j - поверхностная плотность тока на экране, А/м;

[43]

Е - напряженность поля в фокальном пятне, В/м;

[44]

σ - удельная поверхностная проводимость экрана, Сим.

[45]

Следовательно, количество тепла, выделяемое за время t на участке площади ΔS (настолько малом, что поле на нем можно считать однородным):

[46]

Δq1=w⋅t⋅dS=σE2⋅t⋅dS

[47]

Количество тепла, необходимое для повышения температуры участка экрана площадью ΔS от Т1 до Т2, равно:

[48]

[49]

где с - удельная теплоемкость экрана, Дж/(кг⋅К);

[50]

m - масса экрана, кг;

[51]

S - площадь экрана, м2;

[52]

T1 и Т2 - начальная и конечная температура участка экрана, K.

[53]

Плотность потока энергии Р в фокальном пятне равна:

[54]

[55]

откуда следует, что Е2≈120 πР.

[56]

Из уравнения баланса количества тепла на участке экрана следует (без учета тепловых потерь и процессов теплопереноса по площади экрана), что Δg1=Δq2.

[57]

Таким образом, распределение температур на экране пропорционально распределению плотности потока энергии электромагнитного поля в фокальном пятне:

[58]

[59]

Испытания технических средств на устойчивость к воздействию электромагнитного поля проводят следующим образом.

[60]

В начале испытаний производят калибровку испытательного поля с помощью поглощающего экрана 19 и тепловизионной камеры 20. Поглощающий экран 19 размещают в зоне испытаний, которая расположена в области дальнего фокуса F1 поверхности отражателя 14 излучающей антенны 9.

[61]

С помощью тепловизионной камеры 20 получают распределение температур на экране и затем, на основе этих данных, с помощью системы управления 3 получают распределение плотности потока энергии и соответственно напряженности электрического поля в зоне испытаний.

[62]

После завершения процесса калибровки систему калибровки испытательного поля 2 убирают из зоны испытаний и размещают в ней испытуемые технические средства 23. К испытуемым техническим средствам 23 подключают средства контроля их функционирования (условно не показаны), которые (например, с помощью оптоволоконной линии связи) подсоединяют к системе управления 3.

[63]

Проводят испытания в необходимых диапазонах частот и интенсивностей испытательного поля и обрабатывают информацию со средств контроля функционирования испытуемых технических средств посредством системы управления 3.

[64]

Расположение системы создания испытательного поля 1 с возможностью перемещения в горизонтальном и вертикальном направлениях позволяет провести испытания технических средств крупногабаритных объектов (в частности, самолетов, вертолетов) посредством перемещения системы создания испытательного поля относительно испытуемого объекта и последовательного направления испытательного поля на его различные участки.

Как компенсировать расходы
на инновационную разработку
Похожие патенты